Logistisk regression 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Logistisk regression 2"

Transkript

1 Logistisk rgrssion 2 Indhold: Logit Logistisk rgrssion Paramtrisring Vkslvirkning 1

2 Sammnhæng mllm rygvanr og hjrtsygdomm CHD : Hjrtsygdom MI : dligr hjrtsygdomm Sammnligning af gruppr gørs vha odds ratio! p 2 p 1 OR = xp log it log it 1 p2 1 p1 Gruppsammnligningr blivr til forskll i logit-værdir 2

3 Sammnhæng mllm rygvanr og hjrtsygdomm Prsonr udn tidligr hjrtsygdom Rygr n hjrtsyg p odds logit oddsratio nj ( ) rf ja ( ) ( ) Prsonr md tidligr hjrtsygdom Rygr n p odds logit oddsratio hjrtsyg nj ( ) rf ja ( ) ( ) 3

4 Dn logistisk rgrssionsmodl Ρ 1+ α + β Rygr ( Υ = 1Rygr) = α + β Rygr Rygr kodt: 0 ~ Rygr ikk 1 ~ Rygr Tablln md modllns sandsynlighdr Rygr ikk Ingn hjrtsygdom 1 α 1+ Hjrtsygdom 1+ α α Rygr 1 α + β α + β α + β α + β α α + β Odds ratio = = α α + β α β

5 Stratificrd analysr multipl rgrssionsanalysr Sammnhæng mllm rygvanr og hjrtsygdomm Ingn tidligr hjrtsygdom: Rygr Risiko odds logit nj (0) 1.3 % ja (1) 3.1 % Odds-ratio = Logit forskl = Logistisk rgrssionsmodl: P( Hjrts Rygr) = Rygr Rygr 5

6 Tidligr hjrtsygdom: Rygr Risiko odds logit nj (0) 21.2 % ja (1) 13.6 % Odds-ratio = Logit forskl = Logistisk rgrssionsmodl: P( Hjrts Rygr) = Rygr Rygr 6

7 Antag, at dr r tal om samm rlativ risiko forbundt md rygning i d to gruppr. Estimat ln(estimat) Std. Error of ln(estimat) Asymp. Sig. (2-sidd) Asymp. 95% Confidnc Intrval Mantl-Hanszl Common Odds Ratio Estimat Common Odds Ratio ln(common Odds Ratio) Lowr Bound Uppr Bound Lowr Bound Uppr Bound 2,013,699,179,000 1,418 2,856,349 1,050 Th Mantl-Hanszl common odds ratio stimat is asymptotically normally distributd undr th common odds ratio of 1,000 assumption. So is th natural log of th stimat. Mantl-Hanszl: Odds ratio = 2.013, Logit forskl=

8 Indsæt logit forsklln i d to rgrssionsmodllr: Ingn tidligr hjrtsygdom: P( Hjrts Rygr) = Rygr Rygr Tidligr hjrtsygdom: P( Hjrts Rygr) = Rygr Rygr 8

9 Logit(ingn tidligr hjrt.sygd, ikk rygr) = Logit(tidligr hjrt.sygdom, ikk rygr) = Forskl = Dfinr ny variabl: Z= 0 : ingn tidligr hjrt-sygdom 1 : tidligr hjrt-sygdom Logit (Z, ikk rygr) = Z Indsætts i d to logistisk rgrssionsmodllr: 9

10 P( Hjrts Rygr, Z ) = Z Rygr Z Rygr En multipl logistisk rgrssionsmodl 10

11 Intraktionr Effktmodifikation Rygvanr og tidligr hjrtsygdom RYGER * Hjrtsygdom * Tidligr MI Crosstabulation Tidligr MI nj ja RYGER Total RYGER Total nj ja nj ja % within RYGER % within RYGER % within RYGER % within RYGER % within RYGER % within RYGER Hjrtsygdom nj ja Total ,7% 1,3% 100,0% ,9% 3,1% 100,0% ,0% 2,0% 100,0% ,8% 21,2% 100,0% ,4% 13,6% 100,0% ,9% 17,1% 100,0% Hypotsn om ns odds-ratioværdir i d to strata forkasts: Statistics Conditional Indpndnc Homognity Tsts for Homognity of th Odds Ratio Cochran's Mantl-Hanszl Brslow-Day Taron's Asymp. Sig. Chi-Squard df (2-sidd) 16,413 1,000 15,660 1,000 7,329 1,007 7,321 1,007 Undr th conditional indpndnc assumption, Cochran's statistic is asymptotically distributd as a 1 df chi-squard distribution, only if th numbr of strata is fixd, whil th Mantl-Hanszl statistic is always asymptotically distributd as a 1 df chi-squard distribution. Not that th continuity corrction is rmovd from th Mantl-Hanszl statistic whn th sum of th diffrncs btwn th obsrvd and th xpctd is 0. Dn logistisk rgrssionsmodl skal modificrs så dr tags højd for dtt! 11

12 Ingn tidligr hjrtsygdom (Z=0): P( Hjrts Rygr) = Rygr Rygr Tidligr hjrtsygdom (Z=1): P( Hjrts Rygr) = Z Rygr Z Rygr = Dn logistisk rgrssionsmodl for prsonr md tidligr hjrtsygdom (Z=1) kan drfor omskrivs på følgnd måd: 1 + P( Hjrts Rygr) = Z Rygr Rygr Z Z Rygr Rygr Z Intraktionr mllm ffktn af to llr flr variabl rpræsntrs som paramtr knyttt til produktt af diss variabl 12

13 13

14 14

15 Estimatr af paramtr Stp 1 a RYGER(1) MI(1) MI(1) by RYGER( Constant Variabls in th Equation B S.E. Wald df Sig. Exp(B) Lowr Uppr,892,193 21,270 1,000 2,441 1,671 3,567 3,003,371 65,665 1,000 20,145 9,744 41,648-1,429,545 6,868 1,009,240,082,697-4,319, ,672 1,000,013 a. Variabl(s) ntrd on stp 1: RYGER, MI, MI * RYGER. 95,0% C.I.for EXP(B) 15

16 Samlt ffkt af rygning og tidligr hjrtsygdom (MI) β rygr Rygr + β tidl Tidl + β rygr,tidl Rygr Tidl Rygr Tidl. MI nj ja nj ja = 2.46 Ikk rygr udn tidligr hjrtsygdom r rfrncgrupp 16

17 Logistisk rgrssion 3 Postoprativ sårinfktionr 194 patintr md kontaminrt oprationssår For patint blv rgistrrt: Aldr Oprationstid Om patintn fik postoprativ sårinfktion Kodt: 1, hvis patintn fik postoprativ sårinfktion 0, llrs 17

18 1,2 1,2 1,0 1,0,8,8 INFEKTIONS,6,4 INFEKTIONS,6,4,2,2 0,0 0,0 -, , ALDER OPERATIONSTID (minuttr) 18

19 OPTID3 * INF * ALDER3 Crosstabulation ALDER3 undr 50 år år 70+ år OPTID3 Total OPTID3 Total OPTID3 Total 1-59 min min 120+ min 1-59 min min 120+ min 1-59 min min 120+ min % within OPTID3 % within OPTID3 % within OPTID3 % within OPTID3 % within OPTID3 % within OPTID3 % within OPTID3 % within OPTID3 % within OPTID3 % within OPTID3 % within OPTID3 % within OPTID3 19 INF Nj Ja Total ,2% 2,8% 100,0% ,0% 100,0% ,0% 100,0% ,5% 1,5% 100,0% ,0% 100,0% ,0% 100,0% ,8% 18,2% 100,0% ,5% 9,5% 100,0% ,0% 100,0% ,4% 21,6% 100,0% ,6% 29,4% 100,0% ,1% 20,9% 100,0%

20 ALDER3 undr 50 år år 70+ år Parson Chi-Squar Parson Chi-Squar Parson Chi-Squar Chi-Squar Tsts Asymp. Sig. Valu df (2-sidd),846 a 2,655 4,019 b 2,134 5,459 c 2,065 a. 4 clls (66,7%) hav xpctd count lss than 5. Th minimum xpctd count is,06. b. 3 clls (50,0%) hav xpctd count lss than 5. Th minimum xpctd count is,95. c. 1 clls (16,7%) hav xpctd count lss than 5. Th minimum xpctd count is 3,14. ALDER3 undr 50 år år 70+ år Ordinal by Ordinal N of Valid Cass Ordinal by Ordinal N of Valid Cass Ordinal by Ordinal N of Valid Cass a. Not assuming th null hypothsis. Gamma Gamma Gamma Symmtric Masurs b. Using th asymptotic standard rror assuming th null hypothsis. Asymp. Valu Std. Error a Approx. T b Approx. Sig. -1,000,000-1,014, ,000,000 2,210,027 42,489,172 2,426,

21 ALDER3 * INF * OPTID3 Crosstabulation OPTID min min 120+ min ALDER3 Total ALDER3 Total ALDER3 Total undr 50 år år 70+ år undr 50 år år 70+ år undr 50 år år 70+ år % within ALDER3 % within ALDER3 % within ALDER3 % within ALDER3 % within ALDER3 % within ALDER3 % within ALDER3 % within ALDER3 % within ALDER3 % within ALDER3 % within ALDER3 % within ALDER3 INF Nj Ja Total ,2% 2,8% 100,0% ,0% 100,0% ,0% 100,0% ,4% 1,6% 100,0% ,0% 100,0% ,0% 100,0% ,4% 21,6% 100,0% ,0% 11,0% 100,0% ,0% 100,0% ,8% 18,2% 100,0% ,6% 29,4% 100,0% ,7% 23,3% 100,0% 21

22 OPTID min min 120+ min Parson Chi-Squar Parson Chi-Squar Parson Chi-Squar Chi-Squar Tsts Asymp. Sig. Valu df (2-sidd),706 a 2,703 8,742 b 2,013 2,246 c 2,325 a. 3 clls (50,0%) hav xpctd count lss than 5. Th minimum xpctd count is,16. b. 3 clls (50,0%) hav xpctd count lss than 5. Th minimum xpctd count is 1,10. c. 2 clls (33,3%) hav xpctd count lss than 5. Th minimum xpctd count is,93. OPTID min min 120+ min Ordinal by Ordinal N of Valid Cass Ordinal by Ordinal N of Valid Cass Ordinal by Ordinal N of Valid Cass a. Not assuming th null hypothsis. Gamma Gamma Gamma Symmtric Masurs b. Using th asymptotic standard rror assuming th null hypothsis. Asymp. Valu Std. Error a Approx. T b Approx. Sig. -1,000,000-1,013, ,000,000 3,195,001 73,422,257 1,555,

23 Dn logistisk rgrssionsmodl Ρ Stp 1 a α + β1 Aldr+ β2 Opr. tid ( Infktion Aldr, Opr.tid) = α + β Aldr+ β Opr. tid OPERTID ALDER Constant 1+ Variabls in th Equation B S.E. Wald df Sig. Exp(B),00753, ,681 1,000, ,00756,03532, ,902 1,000, , , , ,46 1,000,00000,00601 a. Variabl(s) ntrd on stp 1: OPERTID, ALDER. Fortolkning af aldrsffktn: For t år ældr patint r risikon ca. 3.6% højr Fortolkning af ffktn af oprationsvarighd: Et minut længr oprationstid øgr risikon md 0.8% Bmærk: Effktn r btingt md dn andn variabl

24 Estimrt sandsynlighd for sårinfktion: ˆ p i = Aldr Opr.tid i Aldr Opr.tid i i i 24

25 Afbildning af dn stimrd infktionsrisiko 25

Introduktion til logistisk regression

Introduktion til logistisk regression Introduktion til logistisk rgrssion Indhold: Sandsynlighdr, odds og logits Logistisk rgrssion Dummy variabl Wald tst SPSS 1 Rgrssionsmodllr bskrivr hvorlds én afhængig variabl, Y, afhængr af n llr flr

Læs mere

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lktion Lidt sandsynlighdsrgning Lidt mr om signifikanstst Logistisk rgrssion Lidt sandsynlighdsrgning Lad A vær n hændls (t llr flr mulig udfald af t ksprimnt ) Fx A Dt rgnr i morgn P(A)

Læs mere

Om analyse af kategoriske data fra arbejdsmiljøundersøgelse Svend Kreiner Biostatistisk afdeling

Om analyse af kategoriske data fra arbejdsmiljøundersøgelse Svend Kreiner Biostatistisk afdeling Om analys af katgorisk data fra arbjdsmiljøundrsøgls Svnd Krinr Biostatistisk afdling Januar 2012 1 Katgorisk data Typisk kildr til katgorisk data Spørgskmaundrsøglsr Fir typr af variabl Binær variabl

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet.

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet. Introduktion til samfundsvidenskabelig metode Samfundsvidenskabelig metode IT-Universitetet September 2007 Mikkel Leihardt Hvad er metode? Metode er regler og retningslinjer for, hvordan vi undersøger

Læs mere

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning Danske Fysioterapeuter Kvalitet i træning Undersøgelse blandt Danske Fysioterapeuters paneldeltagere 2010 Udarbejdet af Scharling Research for Danske Fysioterapeuter juni 2010 Scharling.dk Side 1 af 84

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes 25. april 2. gang: Introduktion til Logistisk Regression Morten Frydenberg 22 Institut for Biostatistik, Århus Universitet MPH. studieår specialmodul Cand. San. uddannelsen. studieår Hvorfor logistisk

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Dette spørgeskema indeholder derudover tre åbne spørgsmål, hvor I har mulighed for at lægge billet ind på konkurrencens øvrige priser:

Dette spørgeskema indeholder derudover tre åbne spørgsmål, hvor I har mulighed for at lægge billet ind på konkurrencens øvrige priser: Årts sundst virksomhd 2009 Spørgskmat udgør ldlsns bsvarls til konkurrncn "Årts sundst virksomhd 2009" samt mulighd for at dltag i d tr kstra prisr. Prisn "Årts sundst virksomhd 2009" ovrrækks af ministr

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Betinget hæftelse. Et regneeksempel 01-04-2014

Betinget hæftelse. Et regneeksempel 01-04-2014 Btingt hæftls Et rgnsmpl 01-04-2014 1 Indldning Notatt sr lidt nærmr på sammnhængn mllm btingt hæftls og dt forvntd afast for ationærr og rditorr i n (finansil) virsomhd, hvor gnapitalandln r lav. Notatt

Læs mere

Hvordan er trivslen blandt eleverne på skolen (fx i forhold til mobning)?

Hvordan er trivslen blandt eleverne på skolen (fx i forhold til mobning)? Skol og Forældr Kvægtorvsgad 1 1710 Købnhavn V Tlf. 3326 1721 Fax 3326 1722 post@skol-foraldr.dk www.skol-foraldr.dk Skolbstyrlsrns bdømmls af trivsl og samarbjd i skoln Skol og Forældr har stillt n rækk

Læs mere

Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1

Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1 Basal Statistik Logistisk Regression Judith L. Jacobsen, PhD. Lene Theil Skovgaard http://staff.pubhealth.ku.dk/~lts/basal13_ jlj@statcon.dk Dagens Tekst Logistisk regression Binære data Logit transformation

Læs mere

. k er en konstant. Endvidere antages det i d), at gx ( 0) 0. I e) antages det, at f er differentiabel i x 0 og g er differentiabel i y 0

. k er en konstant. Endvidere antages det i d), at gx ( 0) 0. I e) antages det, at f er differentiabel i x 0 og g er differentiabel i y 0 0BRgnrglr for ubstmt intgralr I dtt lill tillæg skal vi s på n sætning, som angivr d rgnrglr, dr gældr for ubstmt intgralr (intgralr udn grænsr), samt giv t bvis for sætningn. Da vi i bvist skal gør brug

Læs mere

- Panelundersøgelse, Folkeskolen, September 2012. Folkeskolen. Undersøgelse om syn på og erfaringer med inklusion 2012

- Panelundersøgelse, Folkeskolen, September 2012. Folkeskolen. Undersøgelse om syn på og erfaringer med inklusion 2012 Folkeskolen Undersøgelse om syn på og erfaringer med inklusion 2012 Udarbejdet af Scharling Research for redaktionen af Folkeskolen, september 2012 Scharling.dk Formål Side 1 af 118 Denne rapport har til

Læs mere

Notat. Forslag til ekstraordinære tiltag som kan imødekomme udgiftspresset for hele Social- og Sundhedsudvalgets område i 2015.

Notat. Forslag til ekstraordinære tiltag som kan imødekomme udgiftspresset for hele Social- og Sundhedsudvalgets område i 2015. Til: CENTER FOR SOCIAL OG SUNDHED Økonomistyring Dato: 30. juni 2015 Notat Forslag til kstraordinær tiltag som kan imødkomm udgiftsprsst for hl Social- og Sundhdsudvalgts områd i 2015. Ndnstånd r forslag,

Læs mere

slagelse uddannelses- og karrierefestival

slagelse uddannelses- og karrierefestival 4 1 K U r på S l l i t s om ud s n? d m n m r o k ad v Vl h g o op r d a v H Vlkommn som udstillr på SUK-fstivaln Vlkommn i flokkn af ngagrd udstillr, dr år ftr år r md til at gør SUKfstivaln til Vstsjællands

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

REFERAT/DAGSORDEN Ekstraordinært. Mikael F. Sørensen, Anja M. Jensen, Litha Skjolden, Jette Bjerg Brix, Jens Josephsen,

REFERAT/DAGSORDEN Ekstraordinært. Mikael F. Sørensen, Anja M. Jensen, Litha Skjolden, Jette Bjerg Brix, Jens Josephsen, REFERAT/DAGSORDEN Ekstraordinært SB-mød Skolvængt 12. novmbr 2015 kl. 18.15-20.15 Til std: Forældr Mdarbjdr Elvr Ldls Mikal F. Sørnsn, Anja M. Jnsn, Litha Skjoldn, Jtt Bjrg Brix, Jns Josphsn, Marik Wijbnga-Bijma

Læs mere

Bilag 4: Spørgeskemaundersøgelse, politikere

Bilag 4: Spørgeskemaundersøgelse, politikere Bilag 4: Spørgskmaundrsøgls, politikr Er du mand llr kvind? Krydst md: Pa mokra Vnstr Dt Konsr par Mand 187 13 48 43 10 2 54 163 18 26 71,4% Kvind 77 12 11 20 4 0 24 58 9 11 28,6% 264 25 59 63 14 2 78

Læs mere

Folkeskolen. Undersøgelse af fagbladet Folkeskolen. Udarbejdet af Scharling Research for redaktionen af Folkeskolen, maj Scharling.

Folkeskolen. Undersøgelse af fagbladet Folkeskolen. Udarbejdet af Scharling Research for redaktionen af Folkeskolen, maj Scharling. Folkeskolen Undersøgelse af fagbladet Folkeskolen 2011 Udarbejdet af Scharling Research for redaktionen af Folkeskolen, maj 2011 Scharling.dk Side 1 af 107 Formål Denne rapport har til hensigt at afdække

Læs mere

GRAFISK DESIGN SKABELON TIL PRINT-SELV OPSKRIFTSBOG

GRAFISK DESIGN SKABELON TIL PRINT-SELV OPSKRIFTSBOG GRAFISK DESIGN SKABELON TIL PRINT-SELV OPSKRIFTSBOG DOKUMENTATION OPGAVEBESKRIVELSE Dtt r n opgav som r lavt privat, da jg havd t ønsk om at lav min gn opskriftsbog. Idn bag dnn opskriftsbog r at, man

Læs mere

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Approximations-algoritmer Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Negativt resultat om generel TSP Approximations-algoritme

Læs mere

Halvårsrapport 30.06.2005

Halvårsrapport 30.06.2005 Halvårsrapport 30.06.2005 Indhold Hovd- og nøgltal...3 Priodns rsultat...4 Forrtningsområd...5 Forvntningr til frmtidn...6 Rgnskabspraksis...7 Rsultatopgørls...8 Balanc...9 Notr...10 Pn-Sam Bank A/S CVR-nr.

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Morten Frydenberg 25. april 2006

Morten Frydenberg 25. april 2006 . gang: Introduktion til Logistisk Regression Morten Frydenberg 26 Afdeling for Biostatistik, Århus Universitet MPH. studieår specialmodul 4 Cand. San. uddannelsen. studieår Hvorfor logistisk regression

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk 21. marts 2013 Dagens program Chi-i-anden (χ 2 )-testet Sandsynligheder,

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Statistik for MPH: 7

Statistik for MPH: 7 Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Praktiske oplysninger.

Praktiske oplysninger. Praktisk oplysningr. Lundrskov Boldklub vil grn byd all dltagr vlkommn til Lundrskov Frøs Cup 2015. Dt r i år 34. gang vi afviklr stævnt. Dr dltagr til stævnt 76 hold og dt btydr, at dr skal afvikls 199

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard

Læs mere

KUNDETILFREDSHEDSMÅLING

KUNDETILFREDSHEDSMÅLING Skatteudvalget SAU alm. del - Svar på Spørgsmål 381 Offentligt KUNDETILFREDSHEDSMÅLING NUMMERPLADEOPGAVEN. GENNEMFØRT UGE 10/2008 Indholdsfortegnelse 1 Indledning... 1 2 Hvad giver denne rapport svar på?...

Læs mere

I dag. Normalfordelingen. Hvad skal vi bruge normalfordelingen til? Eksempel: hjerneceller hos marsvin

I dag. Normalfordelingen. Hvad skal vi bruge normalfordelingen til? Eksempel: hjerneceller hos marsvin I dag Normalfordlingn Hll Sørnsn E-mail: hll@math.ku.dk Formiddag og ftrmiddag: Datatilrttlæggls i SAS (fra mandag) Hvad skal vi brug normalfordlingn til og hvorfor r dn vigtig? Histogram og normalfordlingstæthd

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Arbejdsløsheden hastigt på vej mod 100.000 - en underfinansieret skattereform løser ikke krisen

Arbejdsløsheden hastigt på vej mod 100.000 - en underfinansieret skattereform løser ikke krisen 26. fbruar 29 af Spcialkonsulnt Erik Bjørstd Dirkt tlf. 33 55 77 15 og Chfanalytikr Frdrik I. Pdrsn Dirkt tlf. 33 55 77 12 llr 28 42 42 72 Rsumé: Arbjdsløshdn hastigt på vj mod 1. - n undrfinansirt skattrform

Læs mere

Vedtægter for Oure Vandværk A.M.B.A.

Vedtægter for Oure Vandværk A.M.B.A. Vdtægtr for Our Vandværk A.M.B.A. VEDTÆGTER OR ANDELSSELSKABET OURE VANDVÆRK Navn og hjmstd 1 Slskabt dr r stiftt i 1948, r t andlsslskab md bgrænst ansvar (a.m.b.a.), hvis navn r OURE VANDVÆRK. Slskabt

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Halvårsrapport 30.06.2005

Halvårsrapport 30.06.2005 Halvårsrapport 30.06.2005 Indhold Hovdtal...3 Priodns rsultat...4 Forvntningr til frmtidn...5 Invstringsstratgi og finansil risikostyring...6 Rsultatopgørls...7 Balanc...8 Notr...10 Pn-Sam Skad forsikringsaktislskab

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Gender. BirthYear. Region. Q1_Uddannelse. Hvad er dit køn? Kvinde Mand. Hvilket år er du født? Hvilken region er du bosat i?

Gender. BirthYear. Region. Q1_Uddannelse. Hvad er dit køn? Kvinde Mand. Hvilket år er du født? Hvilken region er du bosat i? Gndr Hvad r dit køn? Kvind Mand BirthYar Hvilkt år r du født? Rgion Hvilkn rgion r du bosat i? Rgion Hovdstadn Rgion Sjælland Rgion Syddanmark Rgion Midtjylland Rgion Nordjylland Udlandt Q1_Uddannls Hvad

Læs mere

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: 1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Statistiske Modeller 1: Kontingenstabeller i SAS

Statistiske Modeller 1: Kontingenstabeller i SAS Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

1.000 kr. Kval. Lån 2014 2015 2016 2017

1.000 kr. Kval. Lån 2014 2015 2016 2017 Socialudvalgt Skrtariatt: 1.000 kr. Kval. Lån 2014 2015 2016 2017 1 Grønnmosværkstdrn nyt tag 2.100 - - 1.200 2 Ådaln ny tag mm 2.829 3 Fornyls og opgradring af brand- og kaldanlæg på pljcntrn 4.149 2.450

Læs mere

Personalegoder i folkeskolen

Personalegoder i folkeskolen Personalegoder i folkeskolen Rapport 2007 Udarbejdet af Scharling Research for Folkeskolens redaktion/månedsmagasinet Undervisere juni-juli 2007 Scharling.dk Side 1 af 107 Formål Månedsmagasinet Undervisere

Læs mere

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik ... september 1 Epidemiologi og biostatistik. Uge, mandag. september Michael Væth, Institut for Biostatistik. Ikke parametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering

Læs mere

Logistisk regression

Logistisk regression Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Uge 13 referat hold 4

Uge 13 referat hold 4 Uge 13 referat hold 4 Gruppearbejde 1a: Er variablen kvotient inkluderet på en hensigtsmæssig måde? Der er to problemer med kvotient: 1) Den er trunkeret ved 6.9 og 10.0, løsningen er at indføre dummyer

Læs mere

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion . februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet

Læs mere

Lokalplanområdets placering i Haderslev

Lokalplanområdets placering i Haderslev LOKALPLANOMRÅDET Lokalplanområdts placring Lokalplanområdts placring i Hadrslv LOKALPLANOMRÅDETS BELIGGENHED Lokalplanområdt omfattr t områd bliggnd på hjørnt af Grønningn og Aarøsundvj i dn sydlig dl

Læs mere

Confounding og stratificeret analyse

Confounding og stratificeret analyse Faculty of Health Sciences Confounding og stratificeret analyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursets form Seks fredage

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Spørgsmål 1: Kan formålet med projektet KulturXpres løftes?

Spørgsmål 1: Kan formålet med projektet KulturXpres løftes? Spørgsmål 1: Kan formålet med projektet KulturXpres løftes? Formålet med undersøgelsen var at skabe en folkelig debat om kulturpolitikken, som kan danne grundlag for folketingets diskussioner om kulturpolitikken

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Europaudvalget 2004 KOM (2004) 0360 Offentligt

Europaudvalget 2004 KOM (2004) 0360 Offentligt Europaudvalgt 2004 KOM (2004) 0360 Offntligt KOMMISSIONEN FOR DE EUROPÆISKE FÆLLESSKABER Bruxlls, dn 30.4.2004 KOM(2004) 360 ndlig BERETNING FRA KOMMISSIONEN om gnnmførlsn i 19992000 af forordning (EØF)

Læs mere

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske

Læs mere

Arbejdsmiljøsektionen 16. juni 2008. En arbejdspladsvurdering af det fysiske og psykiske arbejdsmiljø på Fællesområdet ved Aarhus Universitet

Arbejdsmiljøsektionen 16. juni 2008. En arbejdspladsvurdering af det fysiske og psykiske arbejdsmiljø på Fællesområdet ved Aarhus Universitet En arbejdspladsvurdering af det fysiske og psykiske arbejdsmiljø på Fællesområdet ved Aarhus Universitet 1 Indholdsfortegnelse 1.0 Indledning...3 2.0 Metodiske overvejelser...5 3.0 Svarfordeling...6 4.1

Læs mere

Elektronens specifikke ladning

Elektronens specifikke ladning Elktronns spcifikk ladning Martin Gislr 25. aj 2001 Indhold 1 Forål 1 2 Udførls 1 3 Toriafsnit 2 3.1 Sprdning............................. 3 4 Forsøgsrsultatr 4 5 Bhandling af forsøgsrsultatr 4 6 Diskussion

Læs mere

KA 4.2 Kvantitative Forskningsmetoder Forår 2010

KA 4.2 Kvantitative Forskningsmetoder Forår 2010 KA 4.2 Kvantitative Forskningsmetoder Forår 2010 Besvar alle spørgsmål. Brug ikke mere end én side af tekst på de åbne spørgsmål som er markeret * Answer all questions. Do not write more than one page

Læs mere

Bilag 1. AIDA-modellen: Sepstrups kampagneplatform:

Bilag 1. AIDA-modellen: Sepstrups kampagneplatform: Bilag 1 AIDA-modlln: Spstrups kampagnplatform: Bilag 2: 1 Risikofaktor for usikkr sx i Danmark: Hvrt år dør 300 danskr på grund af usikkr sx. Dt svarr til 0,5 % af all dødsfald. Dt flst r kvindr dr dør

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

KRESTON DANMARK Et landsdækkende samarbejde mellem uafhængige statsautoriserede revisionsvirksomheder.

KRESTON DANMARK Et landsdækkende samarbejde mellem uafhængige statsautoriserede revisionsvirksomheder. S tat s a u t o r i s r d R v i s o r r 2 21 Sid 2 Løn contra udbytt Sid 3 Tid til gnrationsskift? Sid 4 Pas på ovrskriftrn Sid 4 Fidus llr j Sid 5 Dtailrigdom contra ovrblik SIDE 5 Aktiavancbskatning

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere