ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt stocikel. To foskellige stocikle på kuglen afgænse en sfæisk tokant. Den sfæiske tokant ha to hjøne og, som e antipodiske i fohold til hinanden, dvs. og ligge diamentalt modsat på kuglen. e definition e hjønenes vinkle og lig med vinklen mellem de to plane, som indeholde omtalte stocikle. Hvis man tegne en ækvato ind på kuglen, dvs. en stocikel, så og blive nodpol og sdpol i fohold hetil, så e vinkel (= vinkel ) lig med vinklen mellem vektoene og, jævnfø figu 1 (vevej hvofo!). Vinkel e i øvigt også lig med vinklen mellem tangentene til stociklene i punktet : Se figu 2, hvo man kigge på kuglen fa en position lodet ove punkt så og se ud til at falde sammen. Tokanten e det skaveede omåde. Det e da et klat, at tokantens aeal må foholde sig til hele kuglens aeal som vinklen foholde sig til 360 gade. Hvis hele 2 kuglens aeal betegnes = 4π, hvo e ciklens adius, så må tokantens aeal væe lig med følgende: (1) a( ' ) = Sfæisk tekant Hvis man cutte en kugle med te plane, de alle passee igennem kuglens centum, så fembinges i alt 8 sfæiske tekante, som vi jævnfø figu 3 kan betegne: (2) C C C C C C C C Til høje fo hve sfæisk tekant i venste søjle stå den tilhøende antipodiske tekant : Hjønene i den antipodiske tekant til en given tekant fås ved at udskifte hvet hjøne i den opindelige tekant med det tilsvaende antipodiske punkt. ntipodiske tekante e i øvigt konguente, dvs specielt ha de samme aeal. emæk, at alle de sfæiske tekante i føste søjle alle ha som hjøne. Se på figu 3: De fie tekante udgå alle fa og danne tilsammen en halvkugle, nemlig alle tekantene ove den plan, som indeholde punktene, C, og C. Summen af aealene af tekantene i venste søjle e altså ½.
eal af sfæisk tekant Vi e inteesseet i at bestemme aealet af den sfæiske tekant C. Detil vise det sig fonuftigt føst at se på alle de sfæiske tokante, som indeholde tekant C. De e tale om følgende sfæiske tokante, jævnfø figu 3: C CC C Vinklene i de te tokante e henholdsvis C og. Tokantenes samlede aeal e defo ifølge (1) ovenfo: (3) a( ' C) + a( CC' ) + a( ' C) C = + + = ( + + C ) Vi skal finde et andet udtk fo det samme aeal. Hve tokant kan splittes op i to tekante. Tokant C kan fo eksempel splittes op i tekantene C og C (bemæk sstemet!). lt i alt kan de te tokante splittes op i følgende 6 tekante: C C C C C C o det føste e de te stk af tekant C. Denæst e de ét stk af alle de øvige tekante på den øve halvkugle (halvkugle ove stociklen C C ) undtagen tekant C. Til gengæld e de en anden tekant, nemlig C. Imidletid e C og C hinandens antipodiske, så de e konguente og ha samme aeal. Så vi kan uden videe udskifte tekant C med C uden at det ænde på det samlede aeal. Efte udskiftningen ha vi altså ét stk af hve af tekantene på den øve halvkugle samt to eksta dublette af tekant C. Da aealet af en halvkugle e ½, få vi nu et nt udtk fo tokantenes samlede aeal: 2 a( C) + ½. Sættes dette udtk lig med (3) få vi: (4) @ 2 a( C) + ½ = ( + + C) a( C) = ( + + C 180 ) 720
igu 1 igu 2 Nod-sd-akse Ækvatoplanen Tangentvekto til den føste stocikel i Tangentvekto til den anden stocikel i igu 3 C C
Sfæiske koodinate til ektangulæe koodinate Tillæg til side 105 i matematik højniveau 1 fa TRI. unktet ligge lodet unde punktet i -planen. emæk, at ϕ e den vinkel, som e dejet i fohold til -aksen. Vinklen ϕ egnes i intevallet 180 ; 180 og egnes positiv ove mod -aksen og negativ den modsatte vej. Vinklen θ e den lodette vinkel, dvs. den vinkel, som ligge ove. Vinklen egnes i intevallet 90 ; 90 : positiv, nå ligge ove -planen og negativ, nå ligge unde planen. Vi skal nu se på omsætningen mellem sfæiske og ektangulæe koodinate: Helt pæcist skal vi givet et punkt med de sfæiske koodinate ( ϕ, θ ) finde hvad det svae til i ektangulæe koodinate (.,, ) etagt det tedimensionale billede af situationen på figu 1: unktet fås ved at pojicee ned i -planen. å figu 2 se jeg specielt på tekanten. Vi finde nemt længden af linjestkket : (2a) sin( θ) = = sin( θ) (2b) cos( θ) = = cos( θ) å tilsvaende måde fås af figu 3, hvo situationen e set oppefa: (3a) cos( ϕ) = = cos( ϕ) (3b) sin( ϕ) = = sin( ϕ) Indsættes (2b) i (3a) og (3b) fås (4) = cos( ϕ) = cos( θ) cos( ϕ ) (5) = sin( ϕ) = cos( θ) sin( ϕ ) Sammen med (2a) give (4) og (5) udtkkene fo de te koodinate,, og. I øvigt e adius givet ved 2 2 (6) = + + 2.
igu 1 (,, ) θ ϕ igu 2 igu 3 opad θ ϕ