Variabelsammenhænge og grafer
|
|
|
- Rudolf Clemmensen
- 10 år siden
- Visninger:
Transkript
1 Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller... 6 Opgaver... 7 Facits:... 8 Variable I matematik taler vi ofte om variable talstørrelser. Det kan fx være temperaturen målt i celsius-grader, der varierer i løbet af året. En talstørrelse, der varierer kaldes en variabel. Et kvadrat er en firkant hvor alle vinkler er 90 og alle sider lige lange. Lad os tegne et kvadrat på et stykke papir, der er 7,5 cm på hver led. Hvis vi regner i cm, kan sidelængden variere fra 0 og op til 7,5. Arealet kan variere fra 0 og op til 56,25. Arealet af kvadratet afhænger af sidelængden og kaldes den afhængige variable mens sidelængden kaldes den uafhængige variable. Hvis vi kalder arealet y og sidelængden x, bliver arealet y bestemt ved regneforskriften: y = x² (x² betyder x x, fx 5² betyder 5 5). Funktion Man siger, at arealet y er en funktion Det skrives y = f(x) og udtales y er lig f af x af x. Regneforskriften kan også skrives f(x) = x². Funktionen er defineret for alle tal x i intervallet 0 til og med 7,5. Mængden af de tal x, hvor funktionen er defineret kaldes definitionsmængden. Definitionsmængden for en funktion med navnet f kan forkortet skrives Dm(f) PeterSoerensen.dk: Matematik C interaktivt for hf. Variabelsammenhænge og grafer, mundtlig eksamen side 1 / 8
2 Ud fra regneforskriften f(x) = x² får vi Hvis x er 3 så er y = f(3) = 3² = 9 og hvis x er 4 så er y = f(4) = 4² = 16 Vi siger funktionsværdien af 3 er 9 og funktionsværdien af 4 er 16 Mængden af alle funktionsværdierne kaldes værdimængden for f og er intervallet fra 0 til og med 56,25.. Værdimængden for en funktion med navnet f kan forkortet skrives Vm(f) Grafen for en funktion Ofte vil man præsentere en funktion grafisk. Hvis man vil tegne funktionen med regneforskriften y = x², er det en god ting at starte med at udfylde et såkaldt sildeben med forskellige samhørende x- og y-værdier, såkaldte støttepunkter: Selvom 0 ikke tilhører definitionsmængden, kan det være praktisk at have 0 med i sildebenet, men vi skriver 0 i parentes: ( 0). Den tilsvarende y-værdi, som også er 0 sættes ligeledes i parentes. Støttepunkter for y = x². x ( 0 ) 0, ,5 y ( 0 ) 0, ,25 Den første og sidste x-værdi er de to endepunkter i definitionsintervallet. Resten af x- værdierne er valgt så de fordeler sig nogenlunde jævnt i definitionsmængden. Når man skal tegne en graf vælger man selv x-værdier. Vi vil tegne et billede (en graf) af funktionen i et såkaldt koordinatsystem. Et koordinatsystem består af 2 tallinjer vinkelret på hinanden. Den ene tallinje kaldes x-aksen og den anden y-aksen. Hvert støttepunkt plantes ud for sin x-værdi på x-aksen og ud for sin y-værdi på y-aksen. PeterSoerensen.dk: Matematik C interaktivt for hf. Variabelsammenhænge og grafer, mundtlig eksamen side 2 / 8
3 Punktet med x-værdien 0 er afsat med en ring fordi 0 ikke ligger i definitionsmængden. De øvrige punkter ligger på den graf vi vil tegne. Når vi skal tegne grafen, vil vi som regel vælge at tegne en blød kurve gennem støttepunkterne: Ved at forbinde grafpunkterne med en blød kurve forestiller vi os at have tegnet de punkter hvor y = x², idet x for hvert punkt betyder punktets placering ud for x-aksen mens y er punktets placering ud for y-aksen. Denne antagelse giver imidlertid ikke et præcist billede af grafen. Fx ser det overfor ud som om f(x) er 10; men f(3) er faktisk 9. Ethvert punkt i koordinatsystemet er bestemt ved et talar (x, y) der kaldes punktets koordinatsæt. x er punktets placering ud for x-aksen (også kaldet 1. aksen) og kaldes punktets x-værdi (eller punktets 1. koordinat). y er punktets placering ud for y-aksen (også kaldet 2. aksen) og kaldes punktets y-værdi (eller punktets 2. koordinat). Fx er (5, 2.5) punktet ud for 5 på x-aksen og ud for 2.5 på y-aksen (Der er brugt decimalpunktum i stedet for decimalkomma. Det gøres ofte.) I punktet (0, 0) er tegnet en ring. Det betyder, at punktet ikke hører med til grafen.. I punktet (7.5, 56.25) er egnet en bolle. Det betyder, at punktet hører med til grafen. PeterSoerensen.dk: Matematik C interaktivt for hf. Variabelsammenhænge og grafer, mundtlig eksamen side 3 / 8
4 Proportionalitet Ligefrem proportional eller blot proportional Hvis man køber benzin til 10 kr pr. liter, vil prisen i kroner være 10 gange så stor som antal liter. Hvis antal liter kaldes x og prisen kaldes y, gælder y=10x. Vi siger y er proportional eller ligefrem proportional med x og at proportionalitetsfaktoren er 10. For x 0 ser grafen for y således ud: Omvendt proportionalitet Hvis vi har 420 havefliser og vil lave en terrasse kan vi fx lægge 42 fliser på den ene led og 10 fliser på den anden. Terrassen er et såkaldt rektangel. Se tegningen, hvor x = 42 og y = 10. y = 10 x = 42 Vi kan også vælge at lægge 21 fliser på den ene led og 20 på den anden. Se tegning hvor x=21 og y=20. y = 20 x = 21 PeterSoerensen.dk: Matematik C interaktivt for hf. Variabelsammenhænge og grafer, mundtlig eksamen side 4 / 8
5 VI ser at når y gøres dobbelt så stor, så bliver x halv så stor. Endvidere gælder, at hvis vi havde gjort y tre gange så stor altså til 30 så ville x blive tre gane så lille, nemlig 14. Vi kunne også gøre x dobbelt så stor til 84, men så måtte vi også gøre y dobbelt så lille, nemlig 5. Generelt gælder der følgende sammenhæng mellem x og y: 1 y = x y = 420 x Vi siger y og x er omvendt proportionale med proportionalitetsfaktoren 420 For x mellem 1 og 10 ser grafen for y således ud: I ovenstående tilfælde med fliser er x større end nul. Bemærk: Regneudtrykket y = 420 har ingen mening for x lig nul; x men man kan godt beregne værdien af udtrykket for negative x. For x forskellig fra nul ser grafen for y således ud: 1 Bemærk: Grafen til højre illustrerer ikke flise-eksemplet, hvor x > 0 ; men blot variabelsammenhængen: PeterSoerensen.dk: Matematik C interaktivt for hf. Variabelsammenhænge og grafer, mundtlig eksamen side 5 / 8
6 Intervaller Ofte vil definitionsmængden og værdimængden være intervaller. Ved intervaller benyttes nogle matematiske symboler, hvis betydning fremgår af følgende eksempler: Intervaleksempel ] -, 3[ ] -, 3] ]-2 ; 2,3[ [-2 ; 2,3[ ]-2 ; 2,3] [-2 ; 2,3] ]-2 ; [ [-2 ; [ Forklaring Åbent interval mindre end 3 Halvåbent interval mindre end eller lig med 3 Åbent interval mellem -2 og 2,3 Halvåbent interval større end eller lig - 2 og mindre end 2,3 Halvåbent interval større end -2 og mindre end eller lig 2,3 Lukket interval større end eller -2 og mindre end eller lig 2,3 Åbent interval større end -2 Åbent interval større end eller lig - 2 Grafik PeterSoerensen.dk: Matematik C interaktivt for hf. Variabelsammenhænge og grafer, mundtlig eksamen side 6 / 8
7 Opgaver Betragt nedenstående graf for funktionen f og løs de følgende opgaver Opgave 1 Udfyld de tomme felter x y = f(x) 14 Opgave 2 Find f(-2) f(-2) = Opgave 3 Løs ligningen: f(x)=14 x = Opgave 4 Løs ligningen: f(x)=2 Der er 3 løsninger, som kan skrives i en tuborgparentes, også kaldet mængdeklamme og adskilles med komma. Løsningsmængden = {,, } PeterSoerensen.dk: Matematik C interaktivt for hf. Variabelsammenhænge og grafer, mundtlig eksamen side 7 / 8
8 Opgave 5 Hvad er definitionsmængden? Dm(f) = Opgave 6 Hvad er værdimængden? Vm(f) = Facits: Opgave 1 x Y=f(x) Opgave 2 Find f(-2): f(-2) =2 Opgave 3 Løs ligningen: f(x)=14: x=4 Opgave 4 Løs ligningen: f(x)=2 Der er 3 løsninger, som kan skrives i en tuborgparentes. Løsningsmængden = {-2, 0, 2} Opgave 5 Dm(f) = [-4; 4] Opgave 6 Vm(f) = [-10; 14] PeterSoerensen.dk: Matematik C interaktivt for hf. Variabelsammenhænge og grafer, mundtlig eksamen side 8 / 8
Sammenhæng mellem variable
Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...
for matematik på C-niveau i stx og hf
VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):
Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.
Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f
Variabel- sammenhænge
Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.
Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul
Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse
GrundlÄggende variabelsammenhänge
GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.
Potensfunktioner og dobbeltlogaritmisk papir
1 Potensfunktioner og dobbeltlogaritmisk papir OBS: til skriftlig eksamen skal du kun kunne aflæse på en graf, der allerede er indtegnet på dobbeltlogaritmisk papir. Du kan ikke komme ud for at skulle
Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5
Lineære funktioner Indhold Definition:... Hældningskoefficient... 3 Begndelsesværdi... 3 Formler... 4 Om E-opgaver a... 5 Definition: En lineær funktion er en funktion, hvor grafen er lineær. Dvs. grafen
Kort om Eksponentielle Sammenhænge
Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.
Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul
Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit
Kom i gang-opgaver til differentialregning
Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke
Formler og diagrammer i OpenOffice Calc
Formler i Calc Regneudtryk Sådan skal det skrives i Excel Facit 34 23 =34*23 782 47 23 =47/23 2,043478261 27³ =27^3 19683 456 =KVROD(456) 21,3541565 7 145558 =145558^(1/7) 5,464829073 2 3 =2*PI()*3 18,84955592
Lektion 7 Funktioner og koordinatsystemer
Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer
1 monotoni & funktionsanalyse
1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig
sammenhänge for C-niveau i stx 2013 Karsten Juul
LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem
Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:
INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler
Funktioner og ligninger
Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive
Funktioner. Funktioner Side 150
Funktioner Brug af grafer koordinatsystemer... 151 Lineære funktioner ligefrem proportionalitet... 157 Andre funktioner... 163 Kært barn har mange navne... 165 Funktioner Side 15 Brug af grafer koordinatsystemer
Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså
Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen
Symbolsprog og Variabelsammenhænge
Indledning til Symbolsprog og Variabelsammenhænge for Gymnasiet og Hf 1000 kr 500 0 0 5 10 15 timer 2005 Karsten Juul Brugsanvisning Du skal se i de fuldt optrukne rammer for at finde: Regler for løsning
Lektion 7 Funktioner og koordinatsystemer
Lektion 7 Funktioner koordinatsystemer Brug af grafer koordinatsystemer Lineære funktioner Andre funktioner ligninger med ubekendte Lavet af Niels Jørgen Andreasen, VUC Århus. Redigeret af Hans Pihl, KVUC
Eksamensspørgsmål: Trekantberegning
Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8
Rettevejledning, FP9, Prøven med hjælpemidler, endelig version
Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning
PeterSørensen.dk : Differentiation
PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3
Analytisk Geometri. Frank Nasser. 12. april 2011
Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul
Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi
Variabel- sammenhænge
Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende
Kapitel 3 Lineære sammenhænge
Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk
cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty
cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11
Opgaver om koordinater
Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater
i tredje sum overslag rationale tal tiendedele primtal kvotient
ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning
Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter
Arealmomenter af. og. orden side Institut for Matematik, DTU: Gymnasieopgave Arealmomenter Teori: Se lærebøgerne i faget Statiske konstruktionsmodeller og EDB. Se også H&OL bind,., samt bind appendix.3,
Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.
Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen
Start-mat. for stx og hf Karsten Juul
Start-mat for stx og hf 0,6 5, 9 2017 Karsten Juul Start-mat for stx og hf 2017 Karsten Juul 1/8-2017 (7/8-2017) Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes
Modellering betyder at lave en matematisk model, der beskriver en praktisk situation. I det følgende arbejdes med lineære funktioner.
Modellering Modellering betyder at lave en matematisk model, der beskriver en praktisk situation. I det følgende arbejdes med lineære funktioner. Der er forskellige trin, når der modelleres. De er beskrevet
Formelsamling Matematik C
Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden
Funktioner. 1. del Karsten Juul
Funktioner 1. del 0,6 5, 9 2018 Karsten Juul 1. Koordinater 1.1 Koordinatsystem... 1 1.2 Kvadranter... 1 1.3 Koordinater... 2 1.4 Aflæs x-koordinat... 2 1.5 Aflæs y-koordinat... 2 1.6 Koordinatsæt... 2
Eksponentielle sammenhænge
Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller
Matematikprojekt Belysning
Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang
Uafhængig og afhængig variabel
Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig
Computerundervisning
Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende
Omvendt proportionalitet og hyperbler... 25 Eksponentialfunktioner... 28 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner...
Funktioner Omvendt proportionalitet og hperbler... 5 Eksponentialfunktioner... 8 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner... 33 Funktioner Side 4 Omvendt proportionalitet og
Eksamensspørgsmål: Eksponentiel vækst
Eksamensspørgsmål: Eksponentiel vækst Indhold Definition:... Eksempel :... Begndelsesværdien b... Fremskrivningsfaktoren a... Eksempel :... Formlerne for a og b... 3 Eksempel 3:... 3 Bevis for formlen
fortsætte høj retning mellem mindre over større
cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka
Matematik B. Studentereksamen
Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Matematikkens tal og grundlæggende begreber
Matematikkens tal og grundlæggende begreber 2. Mængden af positive hele tal fx 1,2,3,... 4. Eksempelvist tallene -2,-1,0,1 Bruges til fx at tælle Gæld, frostvejr, osv. 6. Et tal på formen a b Dele der
Årsplan for 4. klasse matematik på Solhverv Privatskole
Årsplan for 4. klasse matematik på Solhverv Privatskole Klasse / hold: 4. klasse Skoleår / periode: 2015/2016 Team / lærere: Grethe Søgaard Der arbejdes ud fra Fælles mål efter 6. klasse. http://uvm.dk/uddannelserog-dagtilbud/folkeskolen/faelles-maal
H Å N D B O G M A T E M A T I K 2. U D G A V E
H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................
Grundlæggende Opgaver
Grundlæggende Opgaver Opgave 1 En retvinklet trekant har sine vinkelspidser i (,4),(4, 4) og (, 4). a) Hvor store er kateterne? b) Hvor store er hypotenusen? c) Beregn trekantens areal. d) Bestem kateterne,
Differentialregning. Et oplæg Karsten Juul L P
Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene
Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:
7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)
Geometri i plan og rum
INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af
[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0
MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...
Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet
Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.
Potensfunktioner samt proportional og omvent proportional. for hf Karsten Juul
Potensfunktioner samt proportional og omvent proportional for hf 2018 Karsten Juul Potensfunktion 1. Oplæg til forskrift for potensfunktion...1 2. Forskrift for potensfunktion...2 3. Udregn x eller y i
Årsplan matematik 7.klasse 2014/2015
Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.
Kapitel 2 Tal og variable
Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder
Pointen med Funktioner
Pointen med Funktioner Frank Nasser 0. april 0 c 0080. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en
Billeder på matematikken
Billeder på matematikken Oplæg om repræsentationer Aktiviteter: Et rundt forløb Grovmotorik I skal lege med Footzie (den der dims man tager om foden med en snor i med en kugle i enden) og I skal lege Kaffen
DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE.
Geogebra. DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. (dvs. det er ikke alle emner i SYMBOLLINIEN, der beskrives). Navnet GEOGEBRA er en
Teknologi & Kommunikation
Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige
Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering
Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen
Matematik B. Studentereksamen
Matematik B Studentereksamen stx13-mat/b-1408013 Onsdag den 14. august 013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
matx.dk Enkle modeller
matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær
Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne
Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne Periode Mål Eleverne skal: Tal og enheder arbejde med tal og enheder, som bruges i hverdagen blive bedre til at omregne mellem enheder
Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger.
Faglige Områder Tal og brøker Der anvendes blandet tal. Der anvendes ikke blandet tal, men uægte brøker. Anvender brøker Anvender både blandet tal og brøker. Antal cifre Der skal afrundes til et passende
matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1
33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er
Den svingende streng
Den svingende streng Stig Andur Pedersen October 2, 2009 Ufuldstændigt udkast. Abstract 1 I det 18. århundrede blev differential- og integralregningen, som var introduceret af Newton, Leibniz og mange
Kun beregnet billetpris. Korrekt regneudtryk, ingen facit.
Opgavenummer 1.1 200 2 46 108 Hun skal have 108 kr. retur. Korrekt regneudtryk, korrekt facit og korrekt konklusion (bidrager positivt til helhedsindtryk). 46 46 92 200 92 108 Hun skal have 108 kr. tilbage.
Eksponentielle funktioner for C-niveau i hf
Eksponentielle funktioner for C-niveau i hf 2017 Karsten Juul Procent 1. Procenter på en ny måde... 1 2. Bestem procentvis ændring... 2 3. Bestem begyndelsesværdi... 2 4. Bestem slutværdi... 3 5. Vækstrate...
Matema10k. Matematik for hhx C-niveau. af Rasmus Axelsen
Matema10k Matema10k Matematik for hhx C-niveau af Rasmus Axelsen Matema10k. Matematik for hhx C-niveau 1. udgave, 1. oplag, 2013 Forfatteren og Bogforlaget Frydenlund ISBN 978-87-7118-253-8 Redaktion:
Lineære sammenhænge. Udgave 2. 2009 Karsten Juul
Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær
Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00
Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx103-mat/a-01010 Mandag den 0. december 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Undervisningsbeskrivelse for: 1mac15e2 0814 ma
Undervisningsbeskrivelse for: 1mac15e2 0814 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C for enkeltfag Termin: Juni 2015 Uddannelse: HF Lærer(e): Jacob
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd
Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3
Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4
Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.
Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske
MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX
MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...
MATEMATIK A-NIVEAU. Terminsprøve 2010. Kl. 09.00 14.00. STX0310-MAA-net
NETADGANGSFORSØGET STUDENTEREKSAMEN I MATEMATIK TERMINSPRØVE MAJ 2007 2010 MATEMATIK A-NIVEAU Terminsprøve 2010 Kl. 09.00 14.00 STX0310-MAA-net Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret
i tredje brøkstreg efter lukket tiendedele primtal time
ægte 1 i tredje 3 i anden rumfang år 12 måle kalender lagt sammen resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn efter bagved foran placering kvart fjerdedel lagkage rationale
i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0
BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den
Matematik - undervisningsplan
I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes
Repetition til eksamen. fra Thisted Gymnasium
Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes
Eksponentielle sammenhænge
Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6
xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1
Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y
Ang. skriftlig matematik B på hf
Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet
Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet
Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord
Eksempler på problemløsning med differentialregning
Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3
Matematik for stx C-niveau
Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx
Matematiske færdigheder opgavesæt
Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas
Elementær Matematik. Funktioner og deres grafer
Elementær Matematik Funktioner og deres grafer Ole Witt-Hansen 0 Indhold. Funktioner.... Grafen for en funktion...3. grafers skæring med koordinat akser...4. To grafers skæringspunkter...4 3. Egenskaber
Computerundervisning
Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3
Funktioner - supplerende eksempler
- supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige
Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul
Deskriptiv statistik for C-niveau i hf 75 50 25 2015 Karsten Juul DESKRIPTIV STATISTIK 1.1 Hvad er deskriptiv statistik?...1 1.2 Hvad er grupperede og ugrupperede data?...1 1.21 Eksempel pä ugrupperede
Ikke-lineære funktioner
I elevernes arbejde med funktioner på tidligere klassetrin har hovedvægten ligget på sammenhænge, der kan beskrives med lineære funktioner. Dette kapitel berører ligefrem proportionalitet og stykkevist
