Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple

Størrelse: px
Starte visningen fra side:

Download "Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple"

Transkript

1 Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved: Linjen l må have samme hældningskoeffecient som m. Dette indsættes sammen med punktet A i linjens ligning for først at bestemme q: Ligningen for linjen l bliver da: 1b - Eksponentiel vækstfunktion En funktion er givet ved regneforskriften. Vi får opgivet følgende: Begge koordinatsæt indsættes i hver sin regneforskrift: b isoleres i den første og udtrykket for denne indsættes i den anden regneforskrift:

2 Værdien for a indsættes i den ene af regneforskrifterne for at beregne værdien for b: Vi får da regneforskriften: 1c - Andengradsligning Vi får opgivet en andengradsligning, hvor c er en konstant: Vi skal bestemme konstanten c så ligningen har netop en løsning. Vi ved at der er netop én løsning hvis diskriminanten er nul: 1d - Ulighed Vi får opgivet to funktioner: Vi skal løse udligheden:

3 Ovenstående er en andengradsulighed. Vi bestemmer andengradsulighedens rødder med det formål at faktorisere den: Vi faktoriserer udtrykket: Vi ved at hvis den ene, og kun den ene, faktor er negativ vil det samlede udtryk blive negativt. Den første faktor kan aldrig blive negativ. Grafen for f ligger ltså under grafen for g i intervallet: 1e - Tangent Vi får opgivet en funktion med regneforskriften: Vi skal bestemme ligningen for tangenten til grafen i punktet tangentligningen med den ønskede x-værdi:. Først opstilles Vi beregner funktionsværdien :

4 Vi bestemmer den første afledede af f, da denne er et udtryk for hældningskoeffecienten i et givent punkt: Hernæst beregner vi hældningskoeffecienten i punktet : Ovenstående indsættes i tangentlignignen: 1f - Den første afledede En funktion f er givet ved regneforskriften: Den første afledede bestemmes ved hjælp af kædereglen for sammensatte funktioner: Hernæst skal vi løse ligningen:

5 Vi kan nu løse den som en almindelig andengradsligning ved at bestemme diskriminanten: Vi får da løsningsmængden: (1.6.1) 1g - Parallelle tangenter En funktion f er givet ved forskriften: Grafen for f har to tangenter der er parallelle med linjen med ligningen beregne koordinatsættet til hvert af disse berøringspunkter.. Vi skal Vi bestemmer den første afledede af f: Da den første afledede er et udtryk for hældningskoeffecienten skal denne sættes lig hældningskoeffecienten i den linje tangenterne skal være parallelle med: Vi løser udtrykket som en andengradsligning ved først at bestemme diskriminanten: (1.7.1)

6 Vi har nu fundet x-koordinaterne til berøringspunkterne for tangenterne med hældningskoeffecienten 2. Disse indsættes i regneforskriften for f for at bestemme de tilhørende y-koordinater: 1h - Monotoniforhold Om en funktion f oplyses: Vi skitserer dette i GeoGebra: Vi ser at regneforskriften er en faktoriseret forskrift for et andengradspolynomium, som har rødderne: Hernæst bestemmes fortegnsvariationen for den første afledede, ved at beregne en værdi i hvert interval:

7 0 Fortegnsvariation Vi ser altså at funktionens monotoniforhold må være som følger: 0 Lok. maks. Lok. min. Monotoniforhold Funktionen er altså aftagende i intervallet: Og funktionen er voksende i intervallerne: Opgave 2 I en firkant ABCD får vi opgivet følgende: Vi skitserer firkanten i GeoGebra:

8 2a - Diagonalen BD Diagnoalen BD kan beregnes ved hjælp af cosinusrelationen i trekant ABD: Diagonalen BD er altså (2.1.1) 2b - Vinklerne B, C og D Vinkel C kan i trekant BCD beregnes ved hjælp af cosinusrelationen: (2.2.1) Ligeledes kan vinkel B beregnes. Først i trekant ABD. Dernæst i trekant BCD. Summen af disse må udgøre den samlede vinkel B: (2.2.2) (2.2.3)

9 Vinkel D kan nu beregnes ved hjælp af vinkelsummen i et firkant: (2.2.4) (2.2.5) Vores vinkler har altså følgende størrelser: 2c - CH Længden CH, som udgør vinkelhalveringslinjen i trekant BCD, beregnes. Da CH er en vinkelhalveringslinje kan vi bestemme hvor stor en del af vinkel C som tilhører trekant BCH: Udfra vinkelsummen i en trekant kan vi beregne vinkel H i trekanten BCH: (2.3.1) Da vi kender vinkel H samt den overforliggende side og vinkel B som er vinklen overfor halveringslinjen, kan sidstnævnte beregnes ved hjælp af sinusrelationen: (2.3.2) CH er altså (2.3.3) 2d - Areal BCH Arealet af trekant BCH kan beregnes på normalvis som arealet af en vilkårlig trekant: Arealet af trekant BCH er altså (2.4.1) Opgave 3 Vi får opgivet funktionen f med regneforskriften:

10 3a - Da vi ikke må dividere med nul kan vi bestemme hvilke værdier x ikke må antage: Vi får altså definitionsmængden: (3.1.1) Den første afledede bestemmes udfra vores regneregel om division: Vi har følgende: Dette indsættes i vores generelle regneregel: 3b - Monotoniintervaller Vi beregner skæringspunkterne med x-aksen for den første afledede af f ved at sætte den lig nul: Vi ved at brøken er nul hvis tælleren er nul, så vi får derved en almindelig andengradsligning:

11 Da 1 ikke er med i definitionsmængden kasseres denne. Hernæst bestemmes fortegnsvariationen for den første afledede, ved at beregne en værdi i hvert interval: Fortegnsvariation (3.2.1) 4 (3.2.2) (3.2.3) Vi ser altså at funktionens monotoniforhold må være som følger: Min. Monotoniforhold Funktionen er altså aftagende i intervallerne: Og funktionen er voksende i intervallet: 3c - Vmf For at bestemme værdimængden undersøger vi relevante grænseværdier. I dette tilfælde -1 og 1. (3.3.1)

12 (3.3.2) (3.3.3) (3.3.4) Herefter undersøger vi fortegnsvariationen for f ved først at bestemme skæringspunkter med x- aksen: Fortegnsvariation undersøges: 0 (3.3.5) Fortegnsvariation (3.3.6) 8 8 (3.3.7) (3.3.8) Vi ser på vores grænseværdier at vi har minimum i, hvor grafen selvfølgelig er faldende før og stigende efter, som det også ses under monotoniintervaller i opgaven ovenover. Vi ser også at ved går mod uendelig. Efter er grafen faldende, men vi ser dog på fortegnsvariationen for f, at den aldrig bliver negativ. er altså ikke kun lokalt minimum, men også globalt minimum. Vi får derfor: 3d - Vi skal løse ligningen :

13 Vi ved at brøken er nul hvis tælleren er nul. Vi kan derfor løse udtrykket som en andengradsligning: (3.4.1) Vi får altså løsningsmængden: (3.4.2)

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:

Læs mere

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner

Læs mere

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier: Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Løsningsforslag 27. januar 2011

Løsningsforslag 27. januar 2011 Løsningsforslag 27. januar 2011 Opgave 1 (5%) Isolér t i udtrykket: 3x + 4 = 2x + t t 3x + 4 = 2x + t t og t 0 t(3x + 4) = 2x + t 3tx + 4t t = 2x t(3x + 4 1) = 2x t = 2x 3x + 3 og G = R\{-1} Opgave 2 (5%)

Læs mere

Løsningsforslag MatB Juni 2012

Løsningsforslag MatB Juni 2012 Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Løsningsforslag MatB Jan 2011

Løsningsforslag MatB Jan 2011 Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige

Læs mere

Løsningsforslag MatB Juni 2014

Løsningsforslag MatB Juni 2014 Løsningsforslag MatB Juni 2014 Opgave 1 (5 %) a) Bestem en ligning for den rette linje l, der indeholder punkterne P( 2,4) og Q(4, 1) Løsning: Da de to punkter er givet kan vi beregne hældningen på følgende

Læs mere

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven 2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Differentialregning 2

Differentialregning 2 Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

GL. MATEMATIK B-NIVEAU

GL. MATEMATIK B-NIVEAU GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

Differentialregning ( 16-22)

Differentialregning ( 16-22) Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere

Spørgsmål Nr. 1. Spørgsmål Nr. 2

Spørgsmål Nr. 1. Spørgsmål Nr. 2 Spørgsmål Nr. 1 TITEL: Statistik Definition af beskrivende statistik Opdeling af beskrivende statistik i grupperede observationer og ikke grupperede observationer Deskriptorerne typetal og middelværdi

Læs mere

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4 Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1 Side 1 Funktion Opgaverne med svar starter på side 2, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 3 med et s foran nummeret. 1001 Figuren viser grafen

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C MIHY (Michael

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave

Læs mere

navn: dato: fag: Matematik hold: 2dMa modtaget af: ark nr: 1 af i alt 12 ark

navn: dato: fag: Matematik hold: 2dMa modtaget af: ark nr: 1 af i alt 12 ark ark nr: af i alt ark Opgave En lineær funktion f opfylder at dens graf går gennem A(3,7) og B(9,5) Vi finder hældningen a af grafen a = y - y 5-7 8 = = = 3 x - x 9-3 6 Forskriften for f kan nu bestemmes

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Løsninger til eksamensopgaver på B-niveau 2013

Løsninger til eksamensopgaver på B-niveau 2013 Løsninger til eksamensopgaver på B-niveau 013 Opgave 1: y a x b x 6 y 5 9 4. maj 013: Delprøven UDEN hjælpemidler Metode 1: Man kan bestemme a ved at indsætte de sammenhørende værdier i ligningsudtrykket,

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 :

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 : Eksemplarisk løsning af eksamensopgave Nedenstående opgaver er delprøven med hjælpemidler fra Matematik B eksamen d. 22 maj 2014 restart with Gym : Opgave 7 a) For at bestemme a og b i y=ax+b defineres

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Matematik B. Anders Jørgensen

Matematik B. Anders Jørgensen Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 13/14 Institution Grenaa HTX Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Bo Paivinen Ullersted

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX Anders Jørgensen & Mark Kddafi 2016 matematikhfsvar.page.tl 8. august 2016 15. august 2016 Anders Jørgensen & Mark Kddafi MATEMATIK

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Matematik A eksamen 14. august Delprøve 1

Matematik A eksamen 14. august Delprøve 1 Matematik A eksamen 14. august 2014 www.matematikhfsvar.page.tl Delprøve 1 Info: I denne eksamensopgave anvendes der punktum som decimaltal istedet for komma. Eks. 3.14 istedet for 3,14 Opgave 1 - Andengradsligning

Læs mere

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A-24052016 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Løsninger til eksamensopgaver på B-niveau 2014

Løsninger til eksamensopgaver på B-niveau 2014 Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.

Læs mere

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette

Læs mere

Løsninger til eksamensopgaver på A-niveau 2011 18. maj 2011: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2011 18. maj 2011: Delprøven UDEN hjælpemidler Løsninger til eksamensopgaver på A-niveau 011 18. maj 011: Delprøven UDEN hjælpemidler Opgave 1: x x1 0 Dette er en andengradsligning, der kan løses enten ved diskriminantmetoden eller ved at finde to

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010

MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 2016 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 Dette

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier. Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte Strange-Pedersen

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B (hf-enkeltfag)

Læs mere

Dernæst vil der komme et vindue frem, hvor man kan ændre på x- og y-aksen samt andre indstillinger så som farve og skrift.

Dernæst vil der komme et vindue frem, hvor man kan ændre på x- og y-aksen samt andre indstillinger så som farve og skrift. IT Inden du starter med at tegne funktionerne ind i Graph er det en god ide, at indstille akserne til behovet. Det gør man ved at gå op i værktøjslinjen hvor man finder det ikon som her er markeret med

Læs mere

Ugesedler til sommerkursus

Ugesedler til sommerkursus Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x =

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x = MAT B GSK august 009 delprøven uden hjælpemidler Opg 1 For en vare er sammenhængen mellem pris og efterspørgsel bestemt ved funktionen d() = + 1 0 1 hvor angiver den efterspurgte mængde og d() angiver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Differentialligninger med TI-Interactive!

Differentialligninger med TI-Interactive! Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

Løsning til aflevering uge 11

Løsning til aflevering uge 11 Løsning til aflevering uge 11 100011/nm Opg.1 Beregninger på Foucaults pendul. Først en skitse A B c l a b l d C l c l E h d D 0.m Vandrette udsving a m a) Længden af pendulet kan beregnes ved at isolere

Læs mere