MATRICER LINEÆRE LIGNINGER

Størrelse: px
Starte visningen fra side:

Download "MATRICER LINEÆRE LIGNINGER"

Transkript

1 MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad x x x x 3 udgave 03

2

3 FORORD Dette notat giver en gennemgang af de matrixoperationer, der er nødvendige for at løse lineære ligningssystemer, herunder også overbestemte ligningsystemer (regression) Regnemidler: I dette notat er der i eksemplerne vist hvorledes beregningerne skal foretages med lommeregneren TI89" og TI-Nspire-CAS Disse regnemidler kan foretage de sædvanlige matrixoperationer, hvilket betyder, at der ikke lægges vægt på at øve, hvorledes man beregner eksempelvis en invers matrix I et appendix er forklaret hvorledes beregningern kunne foretages med programmet Mathcad Ønskes bevis for en række af sætningerne i notatet kan henvises til lærebogssystemet B Hellesen, M Oddershede Larsen : Matematik for Ingeniører Bind 3 kapitlerne 6, 7 og 8, hvor man også i kapitel 9 kan finde en gennemgang af egenværdier mm Bøgerne kan i pdf-format findes på adressen wwwlarsen-netdk På denne adresse findes også en række bøger, der behandler forskellige emner indenfor såvel grundlæggende som videregående matematik og statistik maj 03 Mogens Oddershede Larsen i

4 INDHOLD Indledning Matricer 3 Regneregler for matricer 3 4 Matrixregning udført på TI89 og TI-Nsire 5 5 Ligningssystem hvor koefficientmatrix er invertibel 6 6 Lineære ligningssystemer 8 7 Determinant 4 8 Lineære ligningssystemer med parameter 5 9 Cramers sætning 7 0 Overbestemt ligningssystem 8 Grundlæggende operationer udført med anvendelse af Mathcad 3 Opgaver 5 Facitliste 33 Stikord 35 ii

5 Indledning Indledning Ved problemer, hvis løsning kræver, at man opererer med et større antal sammenhørende lineære ligninger (førstegradsligninger), kan man med fordel anvende matrixregning Da det matematiske problem i sådanne tilfælde alene er bestemt af de konstanter, der forekommer i ligningssystemet, og ikke af de betegnelser vi giver de variable, er det praktisk ved behandlingen af ligningssystemerne blot at se på skemaer (såkaldte matricer ) indeholdende konstanterne Eksempelvis vil man ved behandlingen af ligningssystemet 3x 4x3 x4 3x x 4x3 x4 x x3 x4 0 x 3x 3x4 med fordel kunne se på matricerne A 3 4 (ligningssystemets koefficientmatrix ) B (ligningssystemets højre side ) T (ligningssystemets totalmatrix ) Større systemer af ligninger forekommer feks ved mange procestekniske beregninger, hvor man opstiller et system af balanceligninger (stofbalancer, energibalancer, økonomiske balancer, osv), eller ved beregning af modstande og spændinger i elektriske kredsløb Et meget enkel eksempel herpå er følgende elektriske kredsløb:

6 Matricer og lineære ligninger Ved benyttelse af Kirchoffs strømlov fås I punktet P: i i i 3 0 I punktet Q: i i i 3 0 Højre kreds: 0i 5i 90 3 Venstre kreds: 0i 0i 80 Ligningssystemet der består af 4 ligninger med 3 ubekendte er så simpelt, at man umiddelbart kan løse det Lidt større kredsløb vil føre til flere ligninger med mange ubekendte, og her vil den følgende matrixteori være nødvendig Matricer Ved en matrix forstås et regulært skema bestående af tal eller bogstavsymboler: De enkelte symboler kaldes matricens elementer, og vil i denne bog være reelle tal Matricen A 3 4 har 4 rækker og 4 søjler Man siger kort, at den er en 4 gange 4 matrix (4 x 4) matrix Matricer, der som A har lige mange rækker og søjler kaldes kvadratiske Matricen B har 4 rækker og søjle (er en (4 x ) matrix) 0 Matricer, der som B kun har søjle, kaldes også for søjlematricer eller søjlevektorer Ombyttes rækker og søjler i en matrix C, ( række bliver til søjle, række bliver til søjle osv) fremkommer C s transponerede matrix C T Eksempelvis har matricen C den transponerede matrix C T T Af definitionen følger: ( A ) T A

7 3 Regneregler for matricer T Er A A kaldes A symmetrisk En symmetrisk matrix må nødvendigvis være kvadratisk a a a a a a Mere generelt skrives en matrix A a a a n n m m mn De enkelte symboler kaldes matricens elementer, og vil i dette notat være reelle tal I skemaets m (vandrette) rækker og n (lodrette) søjler indgår mn tal, nummererede med dobbelte indices, således at første index angiver rækkenummer, og andet index angiver søjlenummer Elementet a rs står således i den r`te række og den s`te søjle Man siger kort, at A er en m gange n matrix (skrives m x n) Elementerne a, a, a33, osv (dvs elementerne hvor rækkenummeret = søjlenummeret) siges at udgøre matricens diagonal 3 0 I C er c og diagonalen er, 6, D 5 6 er symmetrisk, da matricen er symmetrisk om diagonalen Regneregler for matricer Lighed To m x n matricer A og B kaldes ens (skrives A = B ), hvis tilsvarende elementer i de to matricer er ens Eksempelvis er A 3 og ens B Multiplikation af matrix med tal (skalar) For et vilkårligt reelt tal k og en vilkårlig matrix A defineres k A som en ny matrix, fremkommet ved at alle A`s elementer er multipliceret med k 6 3 Eksempelvis gælder

8 Matricer og lineære ligninger Addition af matricer Ved summen af to m x n matricer A og B forstås den m x n matrix, der fremkommer ved at tilsvarende elementer i A og B adderes Eksempelvis Det ses umiddelbart, at A + B = B + A (den kommutative lov gælder) og A + (B + C) = (A + B) + C (den associative lov gælder) Bemærk: Både A og B skal være m x n matricer Multiplikation af matricer Lad der være givet to matricer A og B, hvor antallet af søjler i A er lig antallet af rækker i B Elementerne i matricen C A B beregnes ved en række-søjle multiplikation, dvs hvis rækkerne i A opfattes som vektorer, og søjlerne i B ligeledes som vektorer, så fremkommer et element i C ved at rækkerne i A multipliceres skalært med søjlerne i B Følgende eksempel illustrerer dette Eksempel 3 Multiplikation af matricer 0 5 Lad A og B Beregn AB og BA, hvis det er muligt 3 7 Løsning: 5( ) ( ) 50( ) 5( ) ( ) ( ) AB 3 ( ) ( ) 7 ( ) B A ikke er defineret Den nedenfor viste opstilling af matricerne kan gøre regningerne mere overskuelige: Anden faktor Første faktor Produkt Det ses ved udregning, at der gælder A (B+C) = A B+A C (den distributive lov) De fleste af disse regneregler er ganske som regnereglerne for de reelle tal Bemærk dog, at der ikke gælder nogen kommutativ lov for multiplikation, dvs vi må normalt forvente, at A B B A 4

9 4 Matrixregning udført på TI89 og Mathcad 4 Matrixregning udført på TI89 og TI-Nspire Skal man eksempelvis løse 0 sammenhørende ligninger med 0 ubekendte, bliver matricerne meget store, og så er det nødvendigt at benytte et matrixprogram Selv om TI89 sagtens kan regnemæssigt kan behandle 0 ligninger, så er displayet så lille, at det bliver lidt besværligt at overskue løsningen Her kan det være en fordel at benytte PCprogrammerne TI-Nspire med en stor skærm Eksempel 4 Regning med matricer ved benyttelse af TI89 og TI-Nspire 0 5 Lad A og B Beregn AB og 3 7 A T Løsning: TI-Nspire Matricerne A og B indtastes: Vælg: Beregninger,Skriv a:=, Vælg Matricer og Vektorer,Opret,Matrix, antal rækker=, antal kolonner = 3,OK Udfyld skemaet med matricen A, ENTER Tilsvarende oprettes matricen B Beregn A B: Skriv ab Resultat som i eksempel 3 A T Beregn : Skriv a, Vælg i menu : Transponerer TI89 Matricerne A og B indtastes: APPS, Data/Matrix editor, New, Udfyld Type = Matrix, Variable = a, antal rækker= og søjler = 3, ENTER, ENTER Udfyld skemaet med matricen A, Home Nu er matricen A indtastet Tilsvarende oprettes matricen B Beregn A B: skriv A T Beregn a,math, Matrix, T, ENTER : Resultat: se eksempel 3 Bemærk: a) Ofte er matricerne så store, at man i Historik feltet ikke kan se alle resultater Så må man flytte feltet nedad ved at holde tasten pil opad (se øverste tastrække) nede samtidig med at man bruger piletasten nedad b) Hvis man i næste opgave ønsker igen at kalde en Matrix A, så må man i VAR-Link først slette den tidligere definerede matrix A 5

10 Matricer og lineære ligninger 5 Ligningssystem hvor koefficientmatrix er invertibel Vi vil i dette afsnit betragte lineære ligningssystemer, hvor der er lige mange ligninger og ubekendte, og som har netop én løsning Et eksempel på et sådant ligningssystem er 3x 4x3 x4 3x x 4x3 x4 x x3 x4 0 x 3x 3x4 Dette ligningssystem kan nu skrives x 3 4 x 0 x x4 eller kort K X = H, hvor K 3 4 er ligningssystemets koefficientmatrix x x X og H er ligningssystemets højreside x3 0 x4 K er kvadratisk, da den har lige mange rækker og søjler For at kunne løse en sådan ligning, ville det være godt, hvis der eksisterede en invers matrix A så A X B X A B Ligesom 0 ikke har noget inverst element i de reelle tal, findes der matricer, der ikke har en invers matrix Ved en invertibel matrix forstås en matrix, der har en invers matrix Ved en singulær matrix, forstås en matrix, der ikke har en invers matrix Vi vil i dette kapitel kun betragte ligningssystemer, hvor den kvadratiske koefficientmatrix er invertibel Sammenlignes med en sædvanlig førstegradsligning ax x a, a 0 ses, at man må indføre en matrix, som svarer til tallet 6

11 5 Ligningssystem hvor koefficientmatrix er invertibel DEFINITION af enhedsmatrix Ved en enhedsmatrix (skrives E eller ) forstås en kvadratisk n x n matrix, hvor alle elementer i diagonalen er og alle elementer udenfor diagonalen er Eksempelvis er E 4 en 4 4enhedsmatrix Ved direkte udregning ses, at for en vilkårlig n x n matrix A gælder enhedsmatricen reelle tal E n E n AE E A A, dvs spiller samme rolle i mængden af kvadratiske n x n matricer, som gør i de DEFINITION af invers (reciprok) matrix Matricen A, hvis A A A A E A A n kaldes invers matrix til matricen Man ser, at spiller samme rolle i forhold til A som f eks tallet gør i forhold til tallet ( ) Man kunne forestille sig, at en matrix kunne have flere forskellige inverse matricer Dette er imidlertid ikke tilfældet: Bevis: Antag, at B og C begge er inverse matricer til A Vi ville da få B BE B( AC) ( B A) C E C C A dvs B = C Ved håndregning at beregne en invers matrix er så tidskrævende, at man altid vil bruge et regneprogram (Håndregningsmetoden kan ses i Matematik for Ingeniører bind 3,kapitel 7 side 8 eksempel 73, hvis man vil vide hvordan) Eksempel 5 Invers matrix Find den inverse matrix til A Løsning TI89 + TI-Nspire Matricen A indtastes som angivet i eksempel t A, ^-, ENTER Resultat: Ønskes decimaltal vælges gul tast + ENTER (eller skriv et tal i A som decimaltal) Ønskes eksempelvis kun med decimaler TI-Nspire : Vælg Filer, Indstillinger, Dokumentindstillinger, Flydende 3 TI89: Mode, Display, Digits, Float n 7

12 Matricer og lineære ligninger A Har man først fundet er det hurtigt at finde løsningen til ligningssystemet A X = B, da AX B A AX A B EX A B X A B Eksempel 5 Løsning af ligningssystem 3x 4x3 x4 3x x 4x3 x4 Løs ligningssystemet x x3 x4 0 x 3x 3x4 Løsning: Vi har A X = B, hvor x A 3 4 x X og B 0 x x4 Matricerne A og B indtastes som angivet i eksempel 4 TI89+ TI-Nspire: X findes ved indtastning af A B Vi får X dvs x, x, x3 0, x4 0 X fremkommer i displayet 6 Lineære ligningssystemer At et ligningssystem er lineært betyder, at de ubekendte alle er af første grad Et ligningssystem hvori der forekommer x er således ikke lineært I kapitel 5 har vi løst ligningssystemer hvor koefficientmatrix var invertibel Vi vil nu benytte en mere generel metode, som ved såkaldt Gauss-elimination kan løse alle typer af lineære ligningssystemer uanset antallet af ligninger og ubekendte Et eksempel på et sådant ligningssystem er x 3x x3 0 x 6x 5x3 x4 3x5 5x3 0x4 5x5 5 x 6x 8x4 8x5 6 som har n = 4 ligninger med m = 5 ubekendte 8

13 Man starter nu med at opskrive ligningssystemets totalmatrix T T Lineære ligningssystemer Løsningsmetoden er, at man ved passende såkaldte rækkeækvivalente operationer simplificerer ligningssystemet til et system, hvoraf man let kan finde de ubekendte Rækkeækvivalente operationer Et lineært ligningssystems løsningsmængde ændrer sig ikke, hvis a) to ligninger ombyttes - svarende til rækkeombytning i totalmatricen T, b) en ligning multipliceres med en konstant k 0 - svarende til at en række i T multipliceres med k 0 c) en ligning L p erstattes af ligningen L p + k L q - svarende til at den q`te række i T multipliceres med k og adderes til den p`te række ( p q ) Dette kaldes en rækkeoperation i T og skrives kort r p + k r q To matricer A og B er rækkeækvivalente (skrives A B ), hvis de overføres i hinanden ved èn eller flere af de i punkterne a), b) og c) nævnte ændringer Echelon - matrix Ideen i den såkaldte Gauss elimination er, at man ved rækkeækvivalente operationer omdanner ligningssystemets totalmatrix til en såkaldt echelon-matrix, hvorefter ligningssystemets løsning er nem at finde En matrix af typen kaldes en echelon-matrix (echelon = trinvis opstilling med skrå front) En sådan matrix er karakteriseret ved ) at rækker, som består af lutter 0`er placeret nederst i matricen og for de øvrige rækker gælder ) at i en række er det første fra 0 forskellige tal i rækken et -tal Tallet kaldes for rækkens pivotelement, eller ledende -tal 3) at for to på hinanden følgende rækker vil pivotelementet i den nederste af de to rækker stå længere til højre end pivotelementet i den øverste af de to rækker Andre eksempler på echelon-matricer er ,, Bemærk: Ethvert pivotelement har lutter 0`er under sig 9

14 Matricer og lineære ligninger Gauss elimination Det følgende eksempel viser Gauss eliminationsmetode på et mindre ligningssystem: Eksempel 6 Gauss elimination Løs ligningssystemet x 6x 4x3 0 3x x 3x3 7x 0x 5x3 Da der er lige mange ligninger og ubekendte kunne man umiddelbart fristes til at finde den inverse matrix Forsøges dette fås udskriften ERR: SINGULAR MAT (Dette skyldes, at L3 L L, så reelt er der kun ligninger med 3 ubekendte) Vi reducerer nu totalmatrix til echelon-form r 3r r r3 7r r3 r r x 6x 4x3 0 x 3x x3 5 Vi har: 3x x 3x3 9 4 x x 3 7x 0x 5x3 Der er følgelig uendelig mange løsninger, idet en af de variable kan vælges frit Vælges som fri variabel fås x x, x 53 x x eller x 3 x x, x x3, x3 fri For større ligningssystemer er det meget tidsbesparende at benytte et program der kan omdanne en matrix til en echelon matrix Imidlertid er det her arbejdsbesparende at reducere matricen yderligere ved at skaffe 0'er også over pivotelementerne Metoden forkortes til rref ( reduced row echelon matrix) Vi viser dette på samme ligningssystemet som i eksempel 6 0

15 Eksempel 6 Gauss elimination ved TI89 og TI-Nspire Løs ligningssystemet x 6x 4x3 0 3x x 3x3 7x 0x 5x3 Løsning: Totalmatricen indtastes Lad matricens navn være T TI-Nspire: Skriv rref(t) (eller benyt Matrix og Vektorer, Reduceret række echelon form, t ) 0 5/ 3/ Der fremkommer følgende matrix: 0 9/ 4/ Lineære ligningssystemer heraf fås x x3, x x3, x fri altså samme facit som i eksempel 6 3 TI89: MATH, 4:MATRIX, ENTER, 4:rref, VAR-Link, T, ENTER, ), ENTER Facit som ovenfor Et lineært ligningssystem kan have netop løsning, uendelig mange løsninger, eller ingen løsninger Hvis koefficientmatrix K er invertibel (dvs K, der har en invers matrix ) så er der netop én løsning (jævnfør eksempel 5) Hvis K er singulær, så har ligningssystemet uendelig mange løsninger, eller ingen løsninger Hvis koefficienterne er konkrete tal som i eksempel 6 er det simpleste at omdanne totalmatrix til en rref-echelonmatrix, og på det grundlag løse ligningssystemet Det vil så umiddelbart fremgå hvad løsningsmængden er Indgår der i ligningssystemet en parameter kan man imidlertid komme til at overse et specialtilfælde Et eksempel herpå vises i eksempel 8 Eksempel 63 Ligningssystemers løsninger Lad der være fundet følgende echelonmatricer A= 03, B =, C =, D Angiv om det tilsvarende ligningssystem har løsning, ingen løsning eller uendelig mange løsninger Hvis der er uendelig mange løsninger skal angives antallet af frie variable (variable der kan angives frit)

16 Matricer og lineære ligninger Løsning: A: Netop én løsning, da der er et pivotelement i alle tre rækker i koefficientmatricen B: Uendelig mange løsninger, da antallet af ubekendte m = 3 er større end antallet af ligninger n = Antal parametre er m - n = (jævnfør eksempel 6) C: Ingen løsning, da en række har lutter 0 -er i koefficientmatricen, men et tal forskelligt fra nul på højre side ( 0 x = ) D: Uendelig mange løsninger, da antallet af ubekendte m = 4 er større end antallet af ligninger n = Antal frie variable er m - n = Rang af matrix Rangen af en matrix er lig med antallet af uafhængige rækker i matricen Rangen er derfor lig med antallet af ikke-nul rækker i en tilsvarende echelon-matrix Rangen af A skrives kort ( A) eller rang(a) Eksempel 63 (fortsat) ( A) =3 rang( koefficientmatrix) = 3, antal ubekendte=3 så netop løsning ( B) rang(koefficientmatrix)=, antal ubekendte =3 3 - = fri variabel ( C) 3 rang( koefficientmatrix) = : antal ubekendte =3 Da < 3 så L=Ø ( D) rang( koefficientmatrix) =: antal ubekendte = 4 4- = fri variable Vi vil illustrere de forskellige løsningsmuligheder ved yderligere tre eksempler Eksempel 64 Netop en løsning (= eksempel 5) 3x 4x3 x4 3x x 4x3 x4 Løs ligningssystemet x x3 x4 0 x 3x 3x4 Løsning: Totalmatrix T indtastes A rref(t) = Heraf ses, at x, x, x 0, x 3 4

17 6 Lineære ligningssystemer Eksempel 65 Uendelig mange løsninger Løs ligningssystemet x 3x x3 0 x 6x 5x3 x4 3x5 5x3 0x4 5x5 5 x 6x 8x4 8x5 6 Løsning: Totalmatricen er T Totalmatricen indtastes rref(t) = / Da rang(k) = rang(t) = 3 og antal ubekendte er 5, er der 5-3 = fri variable Vi får: x 5, x x x x, x 3x 4x4 0 x 3x 4x4 ( x, x, x, x, x ) ( 3x 4x, x, x, x, ) Eksempel 66 Ingen løsning Løs ligningssystemet x x x3 x 3x 3x3 4 x x3 x x x3 Løsning: Totalmatricen er T rref(t) = Da rang(k) = 3 < rang(t) = 4 har ligningssystemet ingen løsning (nederste ligning giver 0x ) 3 3

18 Matricer og lineære ligninger 7 Determinant Til enhver kvadratisk n n matrix A hører et tal kaldet determinanten for A Determinanten skrives kort det(a) eller A Vi kender allerede for en matrix determinanten, idet a a a a a a a a Vi kender også dens geometriske betydning, idet determinanten numeriske værdi er arealet af det a parallelogram der udspændes af de to rækkevektorer a og a a a a Hvis determinanten er 0, vil de to vektorer være parallelle, dvs a ka Det er overkommeligt på tilsvarende måde at udregne determinanten for en 3 3 determinant, hvis numeriske værdi er rumfanget af det parallelepipedum, der udspændes af de tre rækkevektorer Er determinanten 0 vil rumfanget være 0, dvs vektorerne ligger i samme plan, hvilket igen vil sige, at den ene vektor kan udtrykkes ved de to andre a k a k a 3 Man siger, at de 3 vektorer er lineært afhængige Generelt gælder, at hvis determinanten 0 er søjlevektorerne (og rækkevektorerne) lineært afhængige Beregningen af en determinant for en vilkårlig kvadratisk matrix kan principielt udføres på nedenfor beskrevne måde,(se eventuelt Matematik for Ingeniører bind 3, kapitel 8 for nærmere begrundelser), men er antal rækker stort, bliver regningerne så tidskrævende, at man må bruge et program Værdien af en determinant Værdien beregnes efter følgende forskrift: ) Man udvælger en bestemt række r eller en bestemt søjle s ) For hvert element i den valgte række eller søjle dannes et produkt af følgende 3 faktorer a rs a) Elementet a rs selv b) Elementets underdeterminant D rs, dvs den determinant der fremkommer ved at slette både den række og søjle, hvori elementet indgår c) Tallet ( ) r r r 3) det(a) ( ) ardr( ) ar Dr ( ) arn Drn 4) De fremkomne underdeterminanter opløses på tilsvarende måde, og sådan fortsættes til man når ned på determinanter,som kan udregnes direkte Eksempel 7 Beregning af determinant ved håndregning Beregn ved håndregning determinanten D = Løsning: Man finder en række eller søjle med mange 0-er Her vælges 3 række Vi har D = ( ) ( ) ( )

19 8 Lineære ligningssystemer med parameter De underdeterminanter efter henholdsvis 3 række og række (fordi der er et 0 i disse rækker) 3 D = ( ) ( ) ( ) ( ) ( ) ( ) ( ) Vi kan nu udregne de 4 determinanter 3( 8 4) 3( 8) ( 3) ( 9 ) ( 9 ) 60 ( 33 7) 0 D = Eksempel 7 Beregning af determinant med TI89 og TI-Nspire Beregn determinanten D = Løsning: Matricen indtastes Lad matricens navn være B TI-Nspire: Skriv det(b) TI89: MATH, 4:MATRIX, ENTER, : det( B, ) ENTER Resultat: 0 Det kan vises Sætning 7 Invertibel matrix A er invertibel det( A) 0 Denne sætning er nyttig til at afgøre om en kvadratisk matrix er invertibel ( benyttes i næste afsnit) 8 Lineære ligningssystemer med parameter Benytter man eksempelvis Laplacetransformation til løsning af et differentialligningssystem, fremkommer et lineært ligningssystem, hvor koefficienterne sædvanligvis vil indeholde parameteren s, altså ikke alle være reelle tal Ligningssystemer som indeholder én eller flere parametre vil ofte give anledning til, at der for visse værdier af parametrene vil være specielle løsninger, feks at der ingen løsninger er, eller der er uendelig mange Regner men i hånden skal man derfor i forbindelse med reduktion til en echelon-matrix være opmærksom på, om man for visse værdier af parameteren dividerer med 0, da det så giver anledning til en undtagelse Benyttes et program, og er der lige mange ligninger og ubekendte, vil det sikreste være først at finde de værdier af parametrene, hvor determinanten af koefficientmatrix K er nul, da det viser, hvor ligningssystemet er singulært (ikke regulært) Hvis man kun anvender rref-echelon-metoden, kan man risikere at overse en værdi af parameteren a, der gør K singulær Eksempelvis vil echelon-metoden reducere ( a) x4 5( a) x4 5 og derved vil man overse, at a = gør K singulær Dette illustreres i eksempel 8 5

20 Matricer og lineære ligninger Eksempel 8 Ligningssystem med parameter Find for enhver værdi af parameteren a løsningen til ligningssystemet x x ax3 x ax3 x 6x 4x3 3 Løsning: Da koefficientmatrix er kvadratisk, beregnes først determinanten for koefficientmatrix, for at finde de værdier af parameteren a for hvilke ligningssystemet er singulært a Koefficientmatrix K = 0 a indtastes på sædvanlig måde 6 4 Determinanten af K beregnes (som i eksempel 7): Resultat: K 8( a) Heraf ses, at K 0a Vi må derfor dele op i tilfælde a og a = Højre side B af ligningssystemet indtastes på sædvanlig måde Totalmatricen kan nu fås ved ordren augment (K,B) TI-Nspire Skriv rref(augment(k,b) Resultat: x 0 0 3/ ( a ) 0 0 ( a ) 0 0 ( a ) 3 x x ( a ), ( a ), ( a) 3 for a Sættes a = ind i totalmatricen (augment(k,b), fås analogt echelon-matricen Af nederste ligning 0x ses, at ligningssystemet ingen løsning har 3 Bemærk: Anvender man i stedet Algebra, Løs et system af ligninger, Løs et system af lineære ligninger giver det kun en fejlmelding, da systemet endeholder en parameter TI 89: rref(augment(k,b) ) augment findes under MATH, Matrix resultat som ovenfor 6

21 7 Cramers sætning At det virkeligt er nødvendigt først at se på diskriminanten ses af følgende eksempel Eksempel 8 Ligningssystem med parameter Til beregning af 4 størrelser x, x, x3og x 4 er opstillet følgende ligningssystem: x x ( a3) x3 ( a) x4 3 x x ( a) x3 a ( a) x ax ( a3) x4 a 3x x ( a) x3 x4 a Løs ligningssystemet for alle værdier af a Løsning: Først beregnes determinanten til koefficientmatrix K = a3 a a 0 a a 0 a3 3 a Koefficientmatrix K og højre side B indtastes på sædvanlig måde Man får det(k) = a( a) ( a ) Heraf ses, at K er singulær for a = 0, a= og a = - TI 89+TI-Nspire: Vi får nu totalmatricen T ved T:=augment(K,B) Vi får for a 0a a 3a 6 0 a a x a4 x ( ) ( ), ( a4) 8, x x aa ( ) aa ( ) aa ( ), 3 4 Som det ses ville vi her ikke opdage, at der er en singularitet for a = Vi indsætter nu a= 0 analogt som i eksempel 8 og finder :Ingen løsninger Derefter indsættes a = - og man finder igen Ingen løsninger 7 Endelig indsættes a= og man finder uendelig mange løsninger x, x t, x 5t, x t 4 a 3 9 Cramers sætning (determinantmetoden) I kapitel 4 løste vi et ligningssystem med lige mange ligninger og ubekendte hvor koefficientmatrix var invertibel Dette er den hurtigste metode, hvis man ønsker at finde alle de ubekendte Hvis man kun ønsker at finde en enkelt variabels værdi feks x 5 kan denne determinantmetode (Cramers metode) dog være velegnet Endvidere har den stor teoretisk interesse Cramers sætning Lad der være givet et ligningssystem A X = B, hvis det( A) 0 Den ubekendte findes som forholdet mellem determinanter Nævneren er determinanten af x k A og tælleren er determinanten af den matrix, som er A bortset fra, at den k te søjle er erstattet af ligningssystemets højre side 7

22 Matricer og lineære ligninger 0 Overbestemt ligningssystem Det følgende eksempel illustrerer metoden Eksempel 9 Determinantmetoden eller Cramers metode Find x af ligningssystemet x x x3 x4 x 3x 3x3 4 x x3 x4 x x 3x4 Løsning: x De to matricer svarende til tæller og nævner indtastes benævnes A og B Man beregner nu det(a)/det(b) Resultat x 0 Overbestemt ligningssystem I de foregående afsnit har vi antaget, at ligningssystemets konstanter er eksakte tal I tekniske anvendelser er tallene ofte behæftet med måleusikkerhed og lignende, og så vil løsningen naturligvis heller ikke blive eksakt For at mindske fejlen, benytter man ofte ekstra ligninger, som vist i følgende eksempel (og løser dem ved mindste kvadraters metode ) Eksempel 0 Overbestemt ligningssystem På et laboratorium analyseres en blanding af tre organiske stoffer kvantitativt ved måling af et ultraviolet spektrum Heraf fås følgende ligningssystem for koncentrationerne c, c og c 3 00 c 00 c 4 00c c 300 c 00 c c 00 c 0 00c (for overblikkets skyld er her valgt nemme tal) Ligningssystemet har netop én løsning, men da konstanterne er behæftet med uundgåelige småfejl (målefejl mm), ønsker man at forbedre nøjagtigheden af løsningen ved at foretage nogle ekstra målinger Lad os for simpelheds skyld antage, at der kun forekommer yderligere én ligning: 00 c 300 c 300 c3 000 Den sidste ligning burde være en linearkombination af de tre første, men på grund af målefejlene er dette sjældent tilfældet, så det samlede ligningssystem har normalt ingen eksakt løsning 8

23 0 Overbestemt ligningssystem Opgaven er nu at finde et talsæt ( c, c, c3), som tilfredsstiller ligningssystemet bedst muligt, dvs således at residualerne (resterne) r, r, r3 og r 4 givet ved r 00 c 00 c 4 00c r 00 c 300 c 00 c3 800 () r3 00 c 00 c 000 c3 400 r4 00 c 300 c 300 c3 000 bliver mindst mulige Ved mindste kvadraters metode skal talsættet vælges således, at RMS-fejlen r r r r bliver mindst mulig (RMS = root mean square error ) Bemærk, at RMS vedrører fejl på ligningerne og ikke fejl på løsningen ( c, c, c3) ADVARSEL: Det oprindelige ligningssystem må ikke ændres ved at man feks multiplicerer en ligning med 0, da det jo ganger residualet med 0 (ligningen indgår med en anden vægt ) SÆTNING 0 (løsning til overbestemt ligningssystem ) For et overbestemt ligningssystem A X B vil den løsning, som giver mindst mulig RMS-fejl på ligningssystemet, være en T T eksakt løsning til det såkaldte normalligningssystem A AX A B, dvs X A T T ( A) ( A B) Sætningen anføres uden bevis (se eventuelt Matematik for ingeniører bind 3 side 85-87) T I sætningen indgår A A Er A eksempelvis 4 3 fås A T Det ses, hvad gælder generelt, at matricen Beregning af A T : Se afsnit 4 Formlerne, der skal anvendes ved benyttelse af regnemidler er: T T Koefficienter C A A ( A B ) Residualer:D = A* C - B T det( D * D) RMS: RMS hvor n er antal rækker i B n D D er en matrix indeholdende kun et tal A A T A er kvadratisk og symmetrisk (om diagonalen) 9

24 Matricer og lineære ligninger 0 Overbestemt ligningssystem Eksempel 0 Overbestemt ligningssystem (fortsættelse af eksempel 0) ) Find den løsning til ligningssystemet 00 c 00 c 4 00c c 300 c 00 c c 00 c 0 00c c 300 c 300 c3 000 som giver mindst mulig RMS-fejl ) Find endvidere residualerne og RMS-fejlen Løsning: T T ) X A A ( A B) Koefficientmatrix A og højre side B indtastes T TI-Nspire: T A A T A B C: A A ( A B) TI89 ( ) STO C 9/ 5 Resultat: som er blevet gemt i matricen C 3/ 5 Heraf fås c 8, c, c 06 3 T ) Håndkraft Residualerne beregnes residualerne ved indsætning i de oprindelige ligninger: r r r r RMS 4 Regnemaskiner Residualer:D = A* C - B T det( D * D) RMS: RMS hvor n =4 er antal rækker i B n TI-Nspire D:=A*C-B RMS:Under matematikskabeloner findes, numerisk tegn * * TI89: A*C-B STO D RMS: (ABS(, Math,Matrix, det(d,math,matrix,t*d)/4) 0

25 0 Overbestemt ligningssystem Eksempel 03 Regressionsmodel Ved et fysisk forsøg har man målt følgende sammenhørende værdier af x og y x y Punkterne tegnes ind i et koordinatsystem I TI-Nspire:Indsæt lister og regneark, tal indtastes i to kolonner Marker begge lister ved at trykke på listebogstav (A), holde shift nede og brug pil mod højre Vælg data, hurtiggraf Der viser sig så nedenstående punktplot Punkterne ligger næppe på en ret snarere på en hyperbel Man vælger derfor modellen b y a x () Bestem ved mindste kvadraters metode konstanterne a og b Løsning: Indsættes punkterne i ligning () fås følgende 9 ligninger l i n i e, m e n

26 Matricer og lineære ligninger 0 Overbestemt ligningssystem b a 5 b a 34 b a 9 3 b a 7 4 b a 6 5 b a 5 6 b a 4 7 b a 3 8 b a 9 Koefficientmatrix A og højre side B indtastes, og man bestemmer a og b af det overbestemte T ligningssystem: X A A ( A B) Vi får: dvs kurven bliver y 9 35 x Grafen tegnes i TI-Ninspire sammen med punkterne Vælg Undersøg data, Plotfunktion, skriv funktionen Man ser, at punkterne ligger tilfældigt og tæt omkring kurven T At punkterne ligger tæt og tilfældigt omkring kurven kan også indses ved at beregne residualerne, og eventuelt RMS-fejlen Ti 89 og TI-Nspire har et udmærket statistikprogram, hvor man bla kan udføre regressionsanalyse på forskellige modeller

27 Grundlæggende operationer udført med Mathcad Grundlæggende operationer udført med anvendelse af Mathcad Indsæt menuer på skærm: Vælg View Toolbars Matrix, Evaluation Calculos mm Oprette en matrix A: Lad matricen have rækker og 3 søjler Skriv A: Vælg fra Matrix-paletten,matrix, Rows =, Column = 3, ENTER, indsæt tal Bemærk: Skal man anvende eksempelvis matricen A i et udtryk, skal udtrykket stå under A Et elememt i matricen A, der står i -række, søjle benævnes, da første række og søjle har numrene 0 A 0 angiver første søjle i A Gemme en matrix A under et andet navn T: Skriv T: A Skrives : dannes := så der står T:=A A 0, Samle matricer A og B til en matrix T: Skriv T: augment(a,b) Regning med Matricer Sum og produkt af matricer: Skriv på ny linie eksempelvis = Invers Matrix A - : Skriv A vælg på Matrix-paletten X - Skriv = hvis resultatet ønskes som decimalbrøk Vælg fra evaluation-paletten hvis der ønskes eksakte værdier (brøker) Determinant: Vælg på Matrix-paletten *X*, Indsæt A Transponeret matrix A T Skriv A, vælg på Matrix-paletten M T, Omdanne matrix totalmatrix T til echalon-matrix: rref(t) giver eksakte værdier eller rref(t)= giver decimalbrøk Funktion defineres :Skriv f(x,y): x 4 Skriv kun : så kommer := I et koordinatsystem tegne punkter og kurver (regressionsmodel som eksempel 03) Danne matrix A= 5 6 og angiv funktion f(x):=9+35/x Vælg på paletten Graf, x-y plot, Derved indsættes en objekt med en indre firkant som er koordinatsystemet og en ydre firkant, som er objektets afgrænsning Den indre firkant har to pladsholdere og den ydre firkant har tre håndtag skriv x, A <0> i den nederste pladsholder og skriv f(x),a <> i den venstre pladsholder I de yderste håndtag, kan man vælge de intervaller man ønsker at se grafen i Dobbeltklik på grafen Derved fås menuen Formatting Currently selected, hvor man sætte tekst på akser mv og specielt under fanebladet Traces definere, hvorledes de enkelte grafer ser ud Der fremkommer nu såvel punkter som graf 3

28 Matricer og lineære ligninger Differentiation af funktion af variable f(x,y) partiel afledet efter y i et punkt (a,b) skriv x := a y:=b d Nedenunder: Vælg fra menu Calculus Indsæt funktion, dvs dx Beregning af gennemsnit og spredning af n tal Opret en søjlematrix a med de n tal i søjlen Vælg fra værktøjslinien f(x): Catagory: Statistics, mean eller Stdev d dy ( f( x, y)) Resultater som eksakte tal eller decimaltal med et bestemt antal cifre: Vælg fra evaluation-paletten hvis du ønsker eksakte tal Skriv = hvis der ønskes decimalbrøk Dobbeltklik på facit hvis der ønskes et andet antal decimaler 4

29 OPGAVER Opgaver Opgave Idet A og, skal man undersøge om følgende relationer gælder: 0 B 0 ) ( A B) A AB B ) A B ( A B)( A B) Foretag beregningerne uden brug af lommeregner Opgave Lad A og 0 B 0 Beregn A 3B 5A B, A B T og A B uden brug af lommeregner Opgave 3 3 Lad A 3 Udregn A A 9A og A A 9E, hvor E er en 3 x 3 enhedsmatrix Opgave Lad A 3, B og C Vis, at A B A C ( trods det at B C ) Opgave 5 Lad A og Find og B 3 4 T T 3 A, B, ( AB ) ( BA T ) Opgave 6 0 Lad A 0 0 og B Find T T T AB, BA, AB, BA, A B, A, B, A og AB 5

30 Matricer og lineære ligninger Opgave 7 Find den inverse matrix til hver af de følgende matricer: 0 0 ) ) 3) Opgave Lad A Find og A A T Opgave Lad der være givet en invertibel matrix A Idet B, skal man løse matrixligningen AX B Opgave 0 På et laboratorium analyseres en blanding af 4 organiske stoffer kvantitativt ved måling af et ultraviolet-spektogram Heraf fås følgende ligningssystem for koncentrationerne c, c, c3 og c 4 ( millimol / liter ) : 500 c 00 c 00 c c 00 c3 00 c c 00 c 500 c c 00 c 500 c4 700 Find c, c, c3 og c 4 6

31 Opgave Løs ligningssystemet x x 5x3 x4 3 x x 4x3 x4 6 x 3x 3x3 x4 4 3x 3x 3x3 Opgave Mellem variablene x og y gælder den teoretiske sammenhæng y ABxCx 3 D x Fra laboratoriet er der kommet følgende måledata: x 0 3 y Opstil 4 ligninger til bestemmelse af konstanterne A, B, C, D og find derpå A, B, C og D Opgave 3 Løs ligningssystemet med håndkraft (uden brug af regnemidler) x x x3 0 x 3x 8x3 5 x 4x 3x 5 3 Opgave 4 x x x4 4 x x x3 3x4 Løs ligningssystemet x 3x 3x4 3 x x x3 x4 3 Opgave 5 Man ønsker at fremstille 0 ton af en næringsblanding bestående af 5 komponenter: komponent ønsket skummetmælk kartofler æbler sojamel blanding mængde (ton): x x x 3 x 4 0 kulhydrat pr 00 g protein pr 00 g C-vitamin pr 00 g For at kunne bestemme x, x, x3og x 4, således at den færdige blanding får det ønskede indhold af kulhydrater, protein og C-vitamin, opstilles ligningssystemet: mængde: x x x3 x4 0 kulhydrat: 5x 0x 0x3 5x4 50 protein: 3x 3x 36x4 60 C vitamin: x 0x 7x3 60 Løs ligningssystemet Opgaver 7

32 Matricer og lineære ligninger Opgave 6 Løs ligningssystemet Opgave 7 Løs ligningssystemet x 4 x x3 5 5x x 3x3 x x x3 x 5x 7 x4 x 3x3x4 3 x x x3 x4 3xx x33x4 4 7x x x33x4 4 Opgave 8 Indledningen (med petit) kan overspringes, da den ikke er nødvendig for opgavens løsning Indledning En fabrik får til opgave at fremstille et produkt, der bla skal indeholde 3 kg af stoffet I, 36 kg af stoffet II og 33 kg af stoffet III Råstoffernes A, B, C og D s procentiske indhold af I, II og III fremgår af nedenstående tabel A B C D I 0% 50% 30% 0 % II 0% 40% 30% 0% III 30% 0% 0% 50% Forudsat at alle råstofferne kan udnyttes, ønsker man at finde de antal kg x, x, x3og x 4 af henholdsvis A, B C og D, der skal benyttes ved fremstillingen Specielt ønskes angivet den af de mulige løsninger, der giver det mindste forbrug af det dyre råstof A x 5x 3x3 3 Givet ligningssystemet x 4x 3x3 x4 36 3x x3 5x4 33 ) Find den fuldstændige løsning til ligningssystemet ) Idet det antages, at x 0, x 0, x3 0, og x 4 0, skal man angive den løsning til ligningssystemet, der har den mindste værdi af x 8

33 Opgaver Opgave 9 En virksomhed fremstiller 4 typer produkter,, 3 og 4 Under tilblivelsesprocessen skal hvert produkt passere igennem alle virksomhedens 3 afdelinger, men beslaglægger her kapaciteten i forskellig grad: afdeling afdeling afdeling 3 enhed af type enhed af type enhed af type 3 enhed af type 4 5 % 0 % 0 % 5 % 0 % 5 % 0 % 5 % 0 % 0 % 5 % 0 % Lad x j betegne antal producerede enheder af type j i en uge Såfremt hver afdelings kapacitet skal udnyttes fuldt ud i denne uge, må der gælde: afdeling : 5x 0x 0x3 5x4 00 afdeling : 0x 5x 0x3 5x4 00 afdeling 3: 0x 0x 5x3 0x4 00 ) Vis, at ligningssystemet har en uendelighed af løsninger og angiv herunder den fuldstændige løsning ved hjælp af en parameter t Hvilke værdier af t kan forekomme i virkeligheden (husk, at x 0, x 0, x3 0, x 4 0 )? ) Hvad er det største antal emner af produkttype 3, som virksomheden kan fremstille pr uge, når der ikke må være ledig kapacitet i nogen af de 3 afdelinger? ( Bemærk: I det matematiske fag lineær programmering behandles sådanne problemtyper - gerne med mange flere variable, idet der benyttes specielle teknikker i forbindelse med edb ) Opgave 0 Find værdien af determinanten Opgave a) Beregn determinanten a a 3 a 0 4a a6 6 3a b) Løs ligningssystemet for alle værdier af parameteren a xx ax3 x4 ( a 3) xx ax3 ( 4a 7) xx ( a 6) x6x 3ax3 x4 6 9

34 Matricer og lineære ligninger Opgave a) Beregn determinanten a a 0 a 0 D = a b) Løs nedenstående ligningssystem for de værdier af a, for hvilke determinanten D er 0 ax x x3 ( a) x4 0 x ( a) x3 x x3 x4 x ax4 Opgave 3 Der er givet ligningssystemet ax x ( a 3) x3 7 ax 4x ( 3a 4) x3 3ax 5x ( a 4) x3 3 Løs ligningssystemet for de værdier af a, for hvilke ligningssystemet har netop én løsning Opgave 4 Benyt Cramers metode til at finde x af nedenstående ligningssystem xx x3 x4 xx x3 4 3xx 4x 6x 3x3 x4 Opgave 5 Benyt Cramers metode til at finde af nedenstående ligningssystem x 4 x x x3 x4 0 x 3x3 x x3 x4 x x4 Opgave 6 De tre vinkler i en trekant ABC er målt til 053, 34, og 3(radianer) A 053 Find den løsning til det overbestemte ligningssystem B 34 AB 3 som giver mindst mulig RMS-fejl Find endvidere residualerne og RMS-fejlen 30

35 Opgaver Opgave 7 Mellem de variable x, y, z, w gælder den teoretiske sammenhæng w AxByCz Fra laboratoriet er der kommet følgende måledata: x y z w ) Opstil 5 ligninger til bestemmelse af konstanterne A, B, C ) Find derpå konstanterne A, B, C, idet RMS-fejlen på de 5 ligninger skal være mindst mulig 3) Find endvidere residualerne og RMS-fejlen Opgave 8 To tryk p og p samt differencen p p er målt med samme nøjagtighed: p 0 p 5 p p 6 Find p og p bedst muligt Opgave 9 Der skal fremstilles ton af et produkt ved at blande 3 råvarer (alle tal er i vægt % ): råvare nr råvare nr råvare nr 3 ønsket produkt protein fedt kulhydrat 0 % 30 % 0 % 0 % 0 % 30 % 0 % 0 % 0 % 0 % 0 % 0 % Af råvarer bruges x ton af nr, x ton af nr og x x ton af nr 3 ) Opstil 3 ligninger til bestemmelse af x og x ) Find derpå x og x, idet RMS-fejlen på de 3 ligninger skal være mindst mulig 3) Find til sidst residualerne og RMS-fejlen Opgave 30 x x y Der foreligger følgende ligningssystem: x yz 3 yz ) Vis, at ligningssystemet ikke har nogen eksakt løsning ) Løs ligningssystemet bedst muligt, (dvs således at RMS-fejlen bliver mindst mulig ) 3

36 Matricer og lineære ligninger Opgave 3 For en bestemt proces, har man målt, at der gælder følgende overbestemte ligningssystem x y 00 yz 400 x z 500 x y 000 x z 00 a) Løs ligningssystemet bedst muligt, (dvs således at RMS-fejlen bliver mindst mulig ) b) Find RMS-fejlen for den i spørgsmål a) fundne løsning 3

37 Stikord Facitliste a) nej b) nej , 0 3, 0 0, 0,, 0 0, 0, ) ) 3) , (3, 5, 5, 0),,, (-6, 0,, ) 3 3, 9, 6 4 4,,, 5 (3, 5,, ) 6 Ø , eksempelvis x, x, 6 6 x4, x4 5 8 ) eksempelvis x4, x4, 7 3x4, x4 fri () , 0, 5, 5 9 ) eksempelvis x, x, 0 4x, x fri, x [ 4 ; 5] ) a) a( a) b) a a (0,, 0,0) a = 0: (0,, x 3, 0) : a : x4, x, x, x 3 a) a a b) eksempelvis a = : 3 x x x x x fria = , 4, 4, 4, 4 : 0, x, x, x

38 Matricer og lineære ligninger 3 3,,, a, a 0 a a a A=054, B = 34, r = r =r 3 = -006, RMS = (A, B, C ) = (0,, 0) r 0, r 0, r3 0, r4 0, r5 0 RMS = , ) - ) (0549, 0) 3) = ,, 30, 0 (,, ) 3 a) 3,, b) RMS = = r 0 086, r 0 07, r , RMS

39 STIKORD A addition af matricer 4 B C Cramers sætning 7 D determinant 4 E echelon matrix 9 enhedsmatrix 7 F facitliste 33 G Gaus elimination 0 H I invers matrix 7 invertibel matrix 6, 5 K koefficientmatrix, 6 kvadratisk matrix, 6 L ligningssystem hvor koefficientmatrix er invertibel 6 ligningssystem, netop en løsning uendelig antal løsninger 3 ingen løsninger 3 lineært ligningssystem 8 ligningssystem med parameter 5 M matrix transponeret echelon 9 enhedsmatrix 7 invers 7 kvadratisk, 6 Stikord rang regneregler 3 multiplikation 4 addition 4 Mathcad: Grundlæggende operationer 3 N normalligningssystem 9 O ophobningslov 7 overbestemt ligning 8 Opgaver 5 P pivotelement 0 R rang af matrix reciprok matrix 7 regression residual 9 RHF- fejl 9 række rref, reduced row echalon form rækkeækvivalente operationer 9 S singulær matrix 6 symmetrisk matrix 3 søjle T TI 89+ TI-Nspire AB og A T 5 A - 7 determinant 5 Gaus elimination ligningsystem med parameter 6, 7 overbestemt ligningssystem 0 regression totalmatrix transponeret matrix U uafhængige hændelser 7 35

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund mail@jesperlund.com http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Introduktion til EXCEL med øvelser

Introduktion til EXCEL med øvelser Side 1 af 10 Introduktion til EXCEL med øvelser Du kender en almindelig regnemaskine, som kan være til stort hjælp, når man skal beregne resultater med store tal. Et regneark er en anden form for regnemaskine,

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain).

2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain). En introduktion til Maple i 1.g. 1. En første introduktion til Maple. Kommandoerne expand, factor og normal. 2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain). 3. Uligheder

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Introduktion til Calc Open Office med øvelser

Introduktion til Calc Open Office med øvelser Side 1 af 8 Introduktion til Calc Open Office med øvelser Introduktion til Calc Open Office... 2 Indtastning i celler... 2 Formler... 3 Decimaler... 4 Skrifttype... 5 Skrifteffekter... 6 Justering... 6

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Kom godt i gang. Sluttrin

Kom godt i gang. Sluttrin Kom godt i gang Sluttrin Kom godt i gang Sluttrin Forfatter Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard, Finn Egede Rasmussen,

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Hint: Man kan alternativt benytte genvejstasterne ctrl+6/cmd+6 for at sprede applikationerne og ctrl+4/cmd+4 for at samle applikationer.

Hint: Man kan alternativt benytte genvejstasterne ctrl+6/cmd+6 for at sprede applikationerne og ctrl+4/cmd+4 for at samle applikationer. [OPGAVER I NSPIRE] 1 Opgave 1) Opgaver og sider - dokumentstyring Start et nyt Nspire dokument. Følg herefter nedenstående trin. a) Opret to opgaver i dokumentet, hvor første opgave består to sider, og

Læs mere

Vektorregning. Vektorer som lister

Vektorregning. Vektorer som lister 10 Vektorregning Vektorer som lister En vektor laves nemmest som en liste på TI-89 Titanium / Voyage 200. I nedenstående skærmbillede ser du, hvordan man definerer vektorer og laver en simpel udregning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

VEUD ekstraopgave Opgave nr. 62-11

VEUD ekstraopgave Opgave nr. 62-11 Opgavens art: Opgaveformulering: Fagområde: Opgavens varighed: Teoretisk Gennemgang af lommeregner Sprøjtestøbning 4 lektioner Niveau, sammenlignet med uddannelsen: Henvisning til hjælpemidler: Grunduddannelse

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling Om brugen af matematiske tegn og objekter i en god matematisk fremstilling af Petur Birgir Petersen Et særpræg ved matematik som videnskab er den udstrakte brug af symboler. Det er vigtigt at symbolerne

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

Indholdsfortegnelse. Regneark for matematiklærere

Indholdsfortegnelse. Regneark for matematiklærere Indholdsfortegnelse Forord... 3 Diskettens indhold... 4 Grafer i koordinatsystemet... 5 Brug af guiden diagram... 5 Indret regnearket fornuftigt... 9 Regneark hentet på Internettet... 15 Læsevenlige tal

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

Lineær programmering. med Derive. Børge Jørgensen

Lineær programmering. med Derive. Børge Jørgensen Lineær programmering med Derive Børge Jørgensen 1 Indholdsfortegnelse. Forord ---------------------------------------------------------------------------------- 2 Introduktion til lineær programmering

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics)

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) DANMARKS TEKNISKE UNIVERSITET 6 udgave 005 FORORD Dette notat kan læses på baggrund af en statistisk viden

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. I. De komplekse tals historie. Historien om 3. grads ligningerne

Institut for Matematik, DTU: Gymnasieopgave. I. De komplekse tals historie. Historien om 3. grads ligningerne De komplekse tals historie side 1 Institut for Matematik, DTU: Gymnasieopgave I. De komplekse tals historie Historien om 3. grads ligningerne x 3 + a x = b, x 3 + a x 2 = b, - Abraham bar Hiyya Ha-Nasi,

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole læseplan for matematik. Formål for faget matematik Formålet med

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Kom godt i gang. Mellemtrin

Kom godt i gang. Mellemtrin Kom godt i gang Mellemtrin Kom godt i gang Mellemtrin Forfatter Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard, Finn Egede Rasmussen,

Læs mere

Emne Tema Materialer

Emne Tema Materialer 32 36 Uge 35 Fag: Matematik Hold: 20 Lærer: Trine Koustrup Undervisningsmål 9. klasse Læringsmål Faglige aktiviteter Emne Tema Materialer Målsætningen med undervisningen er at eleverne udvikler deres kunnen,opnår

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Kom i gang med... Kapitel 11 Math: Formelredigering med OpenOffice.org. OpenOffice.org

Kom i gang med... Kapitel 11 Math: Formelredigering med OpenOffice.org. OpenOffice.org Kom i gang med... Kapitel 11 Math: Formelredigering med OpenOffice.org OpenOffice.org Rettigheder Dette dokument er beskyttet af Copyright 2005 til bidragsyderne som er oplistet i afsnittet Forfattere.

Læs mere

Velkommen til TI-Nspire CAS 2.0 (Lærerversion)

Velkommen til TI-Nspire CAS 2.0 (Lærerversion) Velkommen til TI-Nspire CAS 2.0 (Lærerversion) Når du åbner for TI-Nspire CAS i en standardopsætning ser brugerfladen således ud (hvis ikke, så vælg Dialogboks > Indlæs standardområdet): I midterpanelet

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

VisiRegn: En e-bro mellem regning og algebra

VisiRegn: En e-bro mellem regning og algebra Artikel i Matematik nr. 2 marts 2001 VisiRegn: En e-bro mellem regning og algebra Inge B. Larsen Siden midten af 80 erne har vi i INFA-projektet arbejdet med at udvikle regne(arks)programmer til skolens

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 ISBN: 978-87-92488-28-2 1. udgave som E-bog 2006 by bernitt-matematik.dk Kopiering af

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Excel-1: kom godt i gang!!

Excel-1: kom godt i gang!! Excel-1: kom godt i gang!! Microsoft Excel er et såkaldt regneark, som selvfølgelig bliver brugt mest til noget med tal men man kan også arbejde med tekst i programmet. Excel minder på mange områder om

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter Fag: Matematik Hold: 26 Lærer: Harriet Tipsmark Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter 33-35 Målet for undervisningen er, at eleverne tilegner sig gode matematiske færdigheder og at

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner FUNKTIONER del Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner -klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse FUNKTIONSBEGREBET... 3 Funktioner beskrevet ved mængder...

Læs mere

How to do in rows and columns 8

How to do in rows and columns 8 INTRODUKTION TIL REGNEARK Denne artikel handler generelt om, hvad regneark egentlig er, og hvordan det bruges på et principielt plan. Indholdet bør derfor kunne anvendes uden hensyn til, hvilken version

Læs mere