MATRICER LINEÆRE LIGNINGER

Størrelse: px
Starte visningen fra side:

Download "MATRICER LINEÆRE LIGNINGER"

Transkript

1 MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad x x x x 3 udgave 03

2

3 FORORD Dette notat giver en gennemgang af de matrixoperationer, der er nødvendige for at løse lineære ligningssystemer, herunder også overbestemte ligningsystemer (regression) Regnemidler: I dette notat er der i eksemplerne vist hvorledes beregningerne skal foretages med lommeregneren TI89" og TI-Nspire-CAS Disse regnemidler kan foretage de sædvanlige matrixoperationer, hvilket betyder, at der ikke lægges vægt på at øve, hvorledes man beregner eksempelvis en invers matrix I et appendix er forklaret hvorledes beregningern kunne foretages med programmet Mathcad Ønskes bevis for en række af sætningerne i notatet kan henvises til lærebogssystemet B Hellesen, M Oddershede Larsen : Matematik for Ingeniører Bind 3 kapitlerne 6, 7 og 8, hvor man også i kapitel 9 kan finde en gennemgang af egenværdier mm Bøgerne kan i pdf-format findes på adressen wwwlarsen-netdk På denne adresse findes også en række bøger, der behandler forskellige emner indenfor såvel grundlæggende som videregående matematik og statistik maj 03 Mogens Oddershede Larsen i

4 INDHOLD Indledning Matricer 3 Regneregler for matricer 3 4 Matrixregning udført på TI89 og TI-Nsire 5 5 Ligningssystem hvor koefficientmatrix er invertibel 6 6 Lineære ligningssystemer 8 7 Determinant 4 8 Lineære ligningssystemer med parameter 5 9 Cramers sætning 7 0 Overbestemt ligningssystem 8 Grundlæggende operationer udført med anvendelse af Mathcad 3 Opgaver 5 Facitliste 33 Stikord 35 ii

5 Indledning Indledning Ved problemer, hvis løsning kræver, at man opererer med et større antal sammenhørende lineære ligninger (førstegradsligninger), kan man med fordel anvende matrixregning Da det matematiske problem i sådanne tilfælde alene er bestemt af de konstanter, der forekommer i ligningssystemet, og ikke af de betegnelser vi giver de variable, er det praktisk ved behandlingen af ligningssystemerne blot at se på skemaer (såkaldte matricer ) indeholdende konstanterne Eksempelvis vil man ved behandlingen af ligningssystemet 3x 4x3 x4 3x x 4x3 x4 x x3 x4 0 x 3x 3x4 med fordel kunne se på matricerne A 3 4 (ligningssystemets koefficientmatrix ) B (ligningssystemets højre side ) T (ligningssystemets totalmatrix ) Større systemer af ligninger forekommer feks ved mange procestekniske beregninger, hvor man opstiller et system af balanceligninger (stofbalancer, energibalancer, økonomiske balancer, osv), eller ved beregning af modstande og spændinger i elektriske kredsløb Et meget enkel eksempel herpå er følgende elektriske kredsløb:

6 Matricer og lineære ligninger Ved benyttelse af Kirchoffs strømlov fås I punktet P: i i i 3 0 I punktet Q: i i i 3 0 Højre kreds: 0i 5i 90 3 Venstre kreds: 0i 0i 80 Ligningssystemet der består af 4 ligninger med 3 ubekendte er så simpelt, at man umiddelbart kan løse det Lidt større kredsløb vil føre til flere ligninger med mange ubekendte, og her vil den følgende matrixteori være nødvendig Matricer Ved en matrix forstås et regulært skema bestående af tal eller bogstavsymboler: De enkelte symboler kaldes matricens elementer, og vil i denne bog være reelle tal Matricen A 3 4 har 4 rækker og 4 søjler Man siger kort, at den er en 4 gange 4 matrix (4 x 4) matrix Matricer, der som A har lige mange rækker og søjler kaldes kvadratiske Matricen B har 4 rækker og søjle (er en (4 x ) matrix) 0 Matricer, der som B kun har søjle, kaldes også for søjlematricer eller søjlevektorer Ombyttes rækker og søjler i en matrix C, ( række bliver til søjle, række bliver til søjle osv) fremkommer C s transponerede matrix C T Eksempelvis har matricen C den transponerede matrix C T T Af definitionen følger: ( A ) T A

7 3 Regneregler for matricer T Er A A kaldes A symmetrisk En symmetrisk matrix må nødvendigvis være kvadratisk a a a a a a Mere generelt skrives en matrix A a a a n n m m mn De enkelte symboler kaldes matricens elementer, og vil i dette notat være reelle tal I skemaets m (vandrette) rækker og n (lodrette) søjler indgår mn tal, nummererede med dobbelte indices, således at første index angiver rækkenummer, og andet index angiver søjlenummer Elementet a rs står således i den r`te række og den s`te søjle Man siger kort, at A er en m gange n matrix (skrives m x n) Elementerne a, a, a33, osv (dvs elementerne hvor rækkenummeret = søjlenummeret) siges at udgøre matricens diagonal 3 0 I C er c og diagonalen er, 6, D 5 6 er symmetrisk, da matricen er symmetrisk om diagonalen Regneregler for matricer Lighed To m x n matricer A og B kaldes ens (skrives A = B ), hvis tilsvarende elementer i de to matricer er ens Eksempelvis er A 3 og ens B Multiplikation af matrix med tal (skalar) For et vilkårligt reelt tal k og en vilkårlig matrix A defineres k A som en ny matrix, fremkommet ved at alle A`s elementer er multipliceret med k 6 3 Eksempelvis gælder

8 Matricer og lineære ligninger Addition af matricer Ved summen af to m x n matricer A og B forstås den m x n matrix, der fremkommer ved at tilsvarende elementer i A og B adderes Eksempelvis Det ses umiddelbart, at A + B = B + A (den kommutative lov gælder) og A + (B + C) = (A + B) + C (den associative lov gælder) Bemærk: Både A og B skal være m x n matricer Multiplikation af matricer Lad der være givet to matricer A og B, hvor antallet af søjler i A er lig antallet af rækker i B Elementerne i matricen C A B beregnes ved en række-søjle multiplikation, dvs hvis rækkerne i A opfattes som vektorer, og søjlerne i B ligeledes som vektorer, så fremkommer et element i C ved at rækkerne i A multipliceres skalært med søjlerne i B Følgende eksempel illustrerer dette Eksempel 3 Multiplikation af matricer 0 5 Lad A og B Beregn AB og BA, hvis det er muligt 3 7 Løsning: 5( ) ( ) 50( ) 5( ) ( ) ( ) AB 3 ( ) ( ) 7 ( ) B A ikke er defineret Den nedenfor viste opstilling af matricerne kan gøre regningerne mere overskuelige: Anden faktor Første faktor Produkt Det ses ved udregning, at der gælder A (B+C) = A B+A C (den distributive lov) De fleste af disse regneregler er ganske som regnereglerne for de reelle tal Bemærk dog, at der ikke gælder nogen kommutativ lov for multiplikation, dvs vi må normalt forvente, at A B B A 4

9 4 Matrixregning udført på TI89 og Mathcad 4 Matrixregning udført på TI89 og TI-Nspire Skal man eksempelvis løse 0 sammenhørende ligninger med 0 ubekendte, bliver matricerne meget store, og så er det nødvendigt at benytte et matrixprogram Selv om TI89 sagtens kan regnemæssigt kan behandle 0 ligninger, så er displayet så lille, at det bliver lidt besværligt at overskue løsningen Her kan det være en fordel at benytte PCprogrammerne TI-Nspire med en stor skærm Eksempel 4 Regning med matricer ved benyttelse af TI89 og TI-Nspire 0 5 Lad A og B Beregn AB og 3 7 A T Løsning: TI-Nspire Matricerne A og B indtastes: Vælg: Beregninger,Skriv a:=, Vælg Matricer og Vektorer,Opret,Matrix, antal rækker=, antal kolonner = 3,OK Udfyld skemaet med matricen A, ENTER Tilsvarende oprettes matricen B Beregn A B: Skriv ab Resultat som i eksempel 3 A T Beregn : Skriv a, Vælg i menu : Transponerer TI89 Matricerne A og B indtastes: APPS, Data/Matrix editor, New, Udfyld Type = Matrix, Variable = a, antal rækker= og søjler = 3, ENTER, ENTER Udfyld skemaet med matricen A, Home Nu er matricen A indtastet Tilsvarende oprettes matricen B Beregn A B: skriv A T Beregn a,math, Matrix, T, ENTER : Resultat: se eksempel 3 Bemærk: a) Ofte er matricerne så store, at man i Historik feltet ikke kan se alle resultater Så må man flytte feltet nedad ved at holde tasten pil opad (se øverste tastrække) nede samtidig med at man bruger piletasten nedad b) Hvis man i næste opgave ønsker igen at kalde en Matrix A, så må man i VAR-Link først slette den tidligere definerede matrix A 5

10 Matricer og lineære ligninger 5 Ligningssystem hvor koefficientmatrix er invertibel Vi vil i dette afsnit betragte lineære ligningssystemer, hvor der er lige mange ligninger og ubekendte, og som har netop én løsning Et eksempel på et sådant ligningssystem er 3x 4x3 x4 3x x 4x3 x4 x x3 x4 0 x 3x 3x4 Dette ligningssystem kan nu skrives x 3 4 x 0 x x4 eller kort K X = H, hvor K 3 4 er ligningssystemets koefficientmatrix x x X og H er ligningssystemets højreside x3 0 x4 K er kvadratisk, da den har lige mange rækker og søjler For at kunne løse en sådan ligning, ville det være godt, hvis der eksisterede en invers matrix A så A X B X A B Ligesom 0 ikke har noget inverst element i de reelle tal, findes der matricer, der ikke har en invers matrix Ved en invertibel matrix forstås en matrix, der har en invers matrix Ved en singulær matrix, forstås en matrix, der ikke har en invers matrix Vi vil i dette kapitel kun betragte ligningssystemer, hvor den kvadratiske koefficientmatrix er invertibel Sammenlignes med en sædvanlig førstegradsligning ax x a, a 0 ses, at man må indføre en matrix, som svarer til tallet 6

11 5 Ligningssystem hvor koefficientmatrix er invertibel DEFINITION af enhedsmatrix Ved en enhedsmatrix (skrives E eller ) forstås en kvadratisk n x n matrix, hvor alle elementer i diagonalen er og alle elementer udenfor diagonalen er Eksempelvis er E 4 en 4 4enhedsmatrix Ved direkte udregning ses, at for en vilkårlig n x n matrix A gælder enhedsmatricen reelle tal E n E n AE E A A, dvs spiller samme rolle i mængden af kvadratiske n x n matricer, som gør i de DEFINITION af invers (reciprok) matrix Matricen A, hvis A A A A E A A n kaldes invers matrix til matricen Man ser, at spiller samme rolle i forhold til A som f eks tallet gør i forhold til tallet ( ) Man kunne forestille sig, at en matrix kunne have flere forskellige inverse matricer Dette er imidlertid ikke tilfældet: Bevis: Antag, at B og C begge er inverse matricer til A Vi ville da få B BE B( AC) ( B A) C E C C A dvs B = C Ved håndregning at beregne en invers matrix er så tidskrævende, at man altid vil bruge et regneprogram (Håndregningsmetoden kan ses i Matematik for Ingeniører bind 3,kapitel 7 side 8 eksempel 73, hvis man vil vide hvordan) Eksempel 5 Invers matrix Find den inverse matrix til A Løsning TI89 + TI-Nspire Matricen A indtastes som angivet i eksempel t A, ^-, ENTER Resultat: Ønskes decimaltal vælges gul tast + ENTER (eller skriv et tal i A som decimaltal) Ønskes eksempelvis kun med decimaler TI-Nspire : Vælg Filer, Indstillinger, Dokumentindstillinger, Flydende 3 TI89: Mode, Display, Digits, Float n 7

12 Matricer og lineære ligninger A Har man først fundet er det hurtigt at finde løsningen til ligningssystemet A X = B, da AX B A AX A B EX A B X A B Eksempel 5 Løsning af ligningssystem 3x 4x3 x4 3x x 4x3 x4 Løs ligningssystemet x x3 x4 0 x 3x 3x4 Løsning: Vi har A X = B, hvor x A 3 4 x X og B 0 x x4 Matricerne A og B indtastes som angivet i eksempel 4 TI89+ TI-Nspire: X findes ved indtastning af A B Vi får X dvs x, x, x3 0, x4 0 X fremkommer i displayet 6 Lineære ligningssystemer At et ligningssystem er lineært betyder, at de ubekendte alle er af første grad Et ligningssystem hvori der forekommer x er således ikke lineært I kapitel 5 har vi løst ligningssystemer hvor koefficientmatrix var invertibel Vi vil nu benytte en mere generel metode, som ved såkaldt Gauss-elimination kan løse alle typer af lineære ligningssystemer uanset antallet af ligninger og ubekendte Et eksempel på et sådant ligningssystem er x 3x x3 0 x 6x 5x3 x4 3x5 5x3 0x4 5x5 5 x 6x 8x4 8x5 6 som har n = 4 ligninger med m = 5 ubekendte 8

13 Man starter nu med at opskrive ligningssystemets totalmatrix T T Lineære ligningssystemer Løsningsmetoden er, at man ved passende såkaldte rækkeækvivalente operationer simplificerer ligningssystemet til et system, hvoraf man let kan finde de ubekendte Rækkeækvivalente operationer Et lineært ligningssystems løsningsmængde ændrer sig ikke, hvis a) to ligninger ombyttes - svarende til rækkeombytning i totalmatricen T, b) en ligning multipliceres med en konstant k 0 - svarende til at en række i T multipliceres med k 0 c) en ligning L p erstattes af ligningen L p + k L q - svarende til at den q`te række i T multipliceres med k og adderes til den p`te række ( p q ) Dette kaldes en rækkeoperation i T og skrives kort r p + k r q To matricer A og B er rækkeækvivalente (skrives A B ), hvis de overføres i hinanden ved èn eller flere af de i punkterne a), b) og c) nævnte ændringer Echelon - matrix Ideen i den såkaldte Gauss elimination er, at man ved rækkeækvivalente operationer omdanner ligningssystemets totalmatrix til en såkaldt echelon-matrix, hvorefter ligningssystemets løsning er nem at finde En matrix af typen kaldes en echelon-matrix (echelon = trinvis opstilling med skrå front) En sådan matrix er karakteriseret ved ) at rækker, som består af lutter 0`er placeret nederst i matricen og for de øvrige rækker gælder ) at i en række er det første fra 0 forskellige tal i rækken et -tal Tallet kaldes for rækkens pivotelement, eller ledende -tal 3) at for to på hinanden følgende rækker vil pivotelementet i den nederste af de to rækker stå længere til højre end pivotelementet i den øverste af de to rækker Andre eksempler på echelon-matricer er ,, Bemærk: Ethvert pivotelement har lutter 0`er under sig 9

14 Matricer og lineære ligninger Gauss elimination Det følgende eksempel viser Gauss eliminationsmetode på et mindre ligningssystem: Eksempel 6 Gauss elimination Løs ligningssystemet x 6x 4x3 0 3x x 3x3 7x 0x 5x3 Da der er lige mange ligninger og ubekendte kunne man umiddelbart fristes til at finde den inverse matrix Forsøges dette fås udskriften ERR: SINGULAR MAT (Dette skyldes, at L3 L L, så reelt er der kun ligninger med 3 ubekendte) Vi reducerer nu totalmatrix til echelon-form r 3r r r3 7r r3 r r x 6x 4x3 0 x 3x x3 5 Vi har: 3x x 3x3 9 4 x x 3 7x 0x 5x3 Der er følgelig uendelig mange løsninger, idet en af de variable kan vælges frit Vælges som fri variabel fås x x, x 53 x x eller x 3 x x, x x3, x3 fri For større ligningssystemer er det meget tidsbesparende at benytte et program der kan omdanne en matrix til en echelon matrix Imidlertid er det her arbejdsbesparende at reducere matricen yderligere ved at skaffe 0'er også over pivotelementerne Metoden forkortes til rref ( reduced row echelon matrix) Vi viser dette på samme ligningssystemet som i eksempel 6 0

15 Eksempel 6 Gauss elimination ved TI89 og TI-Nspire Løs ligningssystemet x 6x 4x3 0 3x x 3x3 7x 0x 5x3 Løsning: Totalmatricen indtastes Lad matricens navn være T TI-Nspire: Skriv rref(t) (eller benyt Matrix og Vektorer, Reduceret række echelon form, t ) 0 5/ 3/ Der fremkommer følgende matrix: 0 9/ 4/ Lineære ligningssystemer heraf fås x x3, x x3, x fri altså samme facit som i eksempel 6 3 TI89: MATH, 4:MATRIX, ENTER, 4:rref, VAR-Link, T, ENTER, ), ENTER Facit som ovenfor Et lineært ligningssystem kan have netop løsning, uendelig mange løsninger, eller ingen løsninger Hvis koefficientmatrix K er invertibel (dvs K, der har en invers matrix ) så er der netop én løsning (jævnfør eksempel 5) Hvis K er singulær, så har ligningssystemet uendelig mange løsninger, eller ingen løsninger Hvis koefficienterne er konkrete tal som i eksempel 6 er det simpleste at omdanne totalmatrix til en rref-echelonmatrix, og på det grundlag løse ligningssystemet Det vil så umiddelbart fremgå hvad løsningsmængden er Indgår der i ligningssystemet en parameter kan man imidlertid komme til at overse et specialtilfælde Et eksempel herpå vises i eksempel 8 Eksempel 63 Ligningssystemers løsninger Lad der være fundet følgende echelonmatricer A= 03, B =, C =, D Angiv om det tilsvarende ligningssystem har løsning, ingen løsning eller uendelig mange løsninger Hvis der er uendelig mange løsninger skal angives antallet af frie variable (variable der kan angives frit)

16 Matricer og lineære ligninger Løsning: A: Netop én løsning, da der er et pivotelement i alle tre rækker i koefficientmatricen B: Uendelig mange løsninger, da antallet af ubekendte m = 3 er større end antallet af ligninger n = Antal parametre er m - n = (jævnfør eksempel 6) C: Ingen løsning, da en række har lutter 0 -er i koefficientmatricen, men et tal forskelligt fra nul på højre side ( 0 x = ) D: Uendelig mange løsninger, da antallet af ubekendte m = 4 er større end antallet af ligninger n = Antal frie variable er m - n = Rang af matrix Rangen af en matrix er lig med antallet af uafhængige rækker i matricen Rangen er derfor lig med antallet af ikke-nul rækker i en tilsvarende echelon-matrix Rangen af A skrives kort ( A) eller rang(a) Eksempel 63 (fortsat) ( A) =3 rang( koefficientmatrix) = 3, antal ubekendte=3 så netop løsning ( B) rang(koefficientmatrix)=, antal ubekendte =3 3 - = fri variabel ( C) 3 rang( koefficientmatrix) = : antal ubekendte =3 Da < 3 så L=Ø ( D) rang( koefficientmatrix) =: antal ubekendte = 4 4- = fri variable Vi vil illustrere de forskellige løsningsmuligheder ved yderligere tre eksempler Eksempel 64 Netop en løsning (= eksempel 5) 3x 4x3 x4 3x x 4x3 x4 Løs ligningssystemet x x3 x4 0 x 3x 3x4 Løsning: Totalmatrix T indtastes A rref(t) = Heraf ses, at x, x, x 0, x 3 4

17 6 Lineære ligningssystemer Eksempel 65 Uendelig mange løsninger Løs ligningssystemet x 3x x3 0 x 6x 5x3 x4 3x5 5x3 0x4 5x5 5 x 6x 8x4 8x5 6 Løsning: Totalmatricen er T Totalmatricen indtastes rref(t) = / Da rang(k) = rang(t) = 3 og antal ubekendte er 5, er der 5-3 = fri variable Vi får: x 5, x x x x, x 3x 4x4 0 x 3x 4x4 ( x, x, x, x, x ) ( 3x 4x, x, x, x, ) Eksempel 66 Ingen løsning Løs ligningssystemet x x x3 x 3x 3x3 4 x x3 x x x3 Løsning: Totalmatricen er T rref(t) = Da rang(k) = 3 < rang(t) = 4 har ligningssystemet ingen løsning (nederste ligning giver 0x ) 3 3

18 Matricer og lineære ligninger 7 Determinant Til enhver kvadratisk n n matrix A hører et tal kaldet determinanten for A Determinanten skrives kort det(a) eller A Vi kender allerede for en matrix determinanten, idet a a a a a a a a Vi kender også dens geometriske betydning, idet determinanten numeriske værdi er arealet af det a parallelogram der udspændes af de to rækkevektorer a og a a a a Hvis determinanten er 0, vil de to vektorer være parallelle, dvs a ka Det er overkommeligt på tilsvarende måde at udregne determinanten for en 3 3 determinant, hvis numeriske værdi er rumfanget af det parallelepipedum, der udspændes af de tre rækkevektorer Er determinanten 0 vil rumfanget være 0, dvs vektorerne ligger i samme plan, hvilket igen vil sige, at den ene vektor kan udtrykkes ved de to andre a k a k a 3 Man siger, at de 3 vektorer er lineært afhængige Generelt gælder, at hvis determinanten 0 er søjlevektorerne (og rækkevektorerne) lineært afhængige Beregningen af en determinant for en vilkårlig kvadratisk matrix kan principielt udføres på nedenfor beskrevne måde,(se eventuelt Matematik for Ingeniører bind 3, kapitel 8 for nærmere begrundelser), men er antal rækker stort, bliver regningerne så tidskrævende, at man må bruge et program Værdien af en determinant Værdien beregnes efter følgende forskrift: ) Man udvælger en bestemt række r eller en bestemt søjle s ) For hvert element i den valgte række eller søjle dannes et produkt af følgende 3 faktorer a rs a) Elementet a rs selv b) Elementets underdeterminant D rs, dvs den determinant der fremkommer ved at slette både den række og søjle, hvori elementet indgår c) Tallet ( ) r r r 3) det(a) ( ) ardr( ) ar Dr ( ) arn Drn 4) De fremkomne underdeterminanter opløses på tilsvarende måde, og sådan fortsættes til man når ned på determinanter,som kan udregnes direkte Eksempel 7 Beregning af determinant ved håndregning Beregn ved håndregning determinanten D = Løsning: Man finder en række eller søjle med mange 0-er Her vælges 3 række Vi har D = ( ) ( ) ( )

19 8 Lineære ligningssystemer med parameter De underdeterminanter efter henholdsvis 3 række og række (fordi der er et 0 i disse rækker) 3 D = ( ) ( ) ( ) ( ) ( ) ( ) ( ) Vi kan nu udregne de 4 determinanter 3( 8 4) 3( 8) ( 3) ( 9 ) ( 9 ) 60 ( 33 7) 0 D = Eksempel 7 Beregning af determinant med TI89 og TI-Nspire Beregn determinanten D = Løsning: Matricen indtastes Lad matricens navn være B TI-Nspire: Skriv det(b) TI89: MATH, 4:MATRIX, ENTER, : det( B, ) ENTER Resultat: 0 Det kan vises Sætning 7 Invertibel matrix A er invertibel det( A) 0 Denne sætning er nyttig til at afgøre om en kvadratisk matrix er invertibel ( benyttes i næste afsnit) 8 Lineære ligningssystemer med parameter Benytter man eksempelvis Laplacetransformation til løsning af et differentialligningssystem, fremkommer et lineært ligningssystem, hvor koefficienterne sædvanligvis vil indeholde parameteren s, altså ikke alle være reelle tal Ligningssystemer som indeholder én eller flere parametre vil ofte give anledning til, at der for visse værdier af parametrene vil være specielle løsninger, feks at der ingen løsninger er, eller der er uendelig mange Regner men i hånden skal man derfor i forbindelse med reduktion til en echelon-matrix være opmærksom på, om man for visse værdier af parameteren dividerer med 0, da det så giver anledning til en undtagelse Benyttes et program, og er der lige mange ligninger og ubekendte, vil det sikreste være først at finde de værdier af parametrene, hvor determinanten af koefficientmatrix K er nul, da det viser, hvor ligningssystemet er singulært (ikke regulært) Hvis man kun anvender rref-echelon-metoden, kan man risikere at overse en værdi af parameteren a, der gør K singulær Eksempelvis vil echelon-metoden reducere ( a) x4 5( a) x4 5 og derved vil man overse, at a = gør K singulær Dette illustreres i eksempel 8 5

20 Matricer og lineære ligninger Eksempel 8 Ligningssystem med parameter Find for enhver værdi af parameteren a løsningen til ligningssystemet x x ax3 x ax3 x 6x 4x3 3 Løsning: Da koefficientmatrix er kvadratisk, beregnes først determinanten for koefficientmatrix, for at finde de værdier af parameteren a for hvilke ligningssystemet er singulært a Koefficientmatrix K = 0 a indtastes på sædvanlig måde 6 4 Determinanten af K beregnes (som i eksempel 7): Resultat: K 8( a) Heraf ses, at K 0a Vi må derfor dele op i tilfælde a og a = Højre side B af ligningssystemet indtastes på sædvanlig måde Totalmatricen kan nu fås ved ordren augment (K,B) TI-Nspire Skriv rref(augment(k,b) Resultat: x 0 0 3/ ( a ) 0 0 ( a ) 0 0 ( a ) 3 x x ( a ), ( a ), ( a) 3 for a Sættes a = ind i totalmatricen (augment(k,b), fås analogt echelon-matricen Af nederste ligning 0x ses, at ligningssystemet ingen løsning har 3 Bemærk: Anvender man i stedet Algebra, Løs et system af ligninger, Løs et system af lineære ligninger giver det kun en fejlmelding, da systemet endeholder en parameter TI 89: rref(augment(k,b) ) augment findes under MATH, Matrix resultat som ovenfor 6

21 7 Cramers sætning At det virkeligt er nødvendigt først at se på diskriminanten ses af følgende eksempel Eksempel 8 Ligningssystem med parameter Til beregning af 4 størrelser x, x, x3og x 4 er opstillet følgende ligningssystem: x x ( a3) x3 ( a) x4 3 x x ( a) x3 a ( a) x ax ( a3) x4 a 3x x ( a) x3 x4 a Løs ligningssystemet for alle værdier af a Løsning: Først beregnes determinanten til koefficientmatrix K = a3 a a 0 a a 0 a3 3 a Koefficientmatrix K og højre side B indtastes på sædvanlig måde Man får det(k) = a( a) ( a ) Heraf ses, at K er singulær for a = 0, a= og a = - TI 89+TI-Nspire: Vi får nu totalmatricen T ved T:=augment(K,B) Vi får for a 0a a 3a 6 0 a a x a4 x ( ) ( ), ( a4) 8, x x aa ( ) aa ( ) aa ( ), 3 4 Som det ses ville vi her ikke opdage, at der er en singularitet for a = Vi indsætter nu a= 0 analogt som i eksempel 8 og finder :Ingen løsninger Derefter indsættes a = - og man finder igen Ingen løsninger 7 Endelig indsættes a= og man finder uendelig mange løsninger x, x t, x 5t, x t 4 a 3 9 Cramers sætning (determinantmetoden) I kapitel 4 løste vi et ligningssystem med lige mange ligninger og ubekendte hvor koefficientmatrix var invertibel Dette er den hurtigste metode, hvis man ønsker at finde alle de ubekendte Hvis man kun ønsker at finde en enkelt variabels værdi feks x 5 kan denne determinantmetode (Cramers metode) dog være velegnet Endvidere har den stor teoretisk interesse Cramers sætning Lad der være givet et ligningssystem A X = B, hvis det( A) 0 Den ubekendte findes som forholdet mellem determinanter Nævneren er determinanten af x k A og tælleren er determinanten af den matrix, som er A bortset fra, at den k te søjle er erstattet af ligningssystemets højre side 7

22 Matricer og lineære ligninger 0 Overbestemt ligningssystem Det følgende eksempel illustrerer metoden Eksempel 9 Determinantmetoden eller Cramers metode Find x af ligningssystemet x x x3 x4 x 3x 3x3 4 x x3 x4 x x 3x4 Løsning: x De to matricer svarende til tæller og nævner indtastes benævnes A og B Man beregner nu det(a)/det(b) Resultat x 0 Overbestemt ligningssystem I de foregående afsnit har vi antaget, at ligningssystemets konstanter er eksakte tal I tekniske anvendelser er tallene ofte behæftet med måleusikkerhed og lignende, og så vil løsningen naturligvis heller ikke blive eksakt For at mindske fejlen, benytter man ofte ekstra ligninger, som vist i følgende eksempel (og løser dem ved mindste kvadraters metode ) Eksempel 0 Overbestemt ligningssystem På et laboratorium analyseres en blanding af tre organiske stoffer kvantitativt ved måling af et ultraviolet spektrum Heraf fås følgende ligningssystem for koncentrationerne c, c og c 3 00 c 00 c 4 00c c 300 c 00 c c 00 c 0 00c (for overblikkets skyld er her valgt nemme tal) Ligningssystemet har netop én løsning, men da konstanterne er behæftet med uundgåelige småfejl (målefejl mm), ønsker man at forbedre nøjagtigheden af løsningen ved at foretage nogle ekstra målinger Lad os for simpelheds skyld antage, at der kun forekommer yderligere én ligning: 00 c 300 c 300 c3 000 Den sidste ligning burde være en linearkombination af de tre første, men på grund af målefejlene er dette sjældent tilfældet, så det samlede ligningssystem har normalt ingen eksakt løsning 8

23 0 Overbestemt ligningssystem Opgaven er nu at finde et talsæt ( c, c, c3), som tilfredsstiller ligningssystemet bedst muligt, dvs således at residualerne (resterne) r, r, r3 og r 4 givet ved r 00 c 00 c 4 00c r 00 c 300 c 00 c3 800 () r3 00 c 00 c 000 c3 400 r4 00 c 300 c 300 c3 000 bliver mindst mulige Ved mindste kvadraters metode skal talsættet vælges således, at RMS-fejlen r r r r bliver mindst mulig (RMS = root mean square error ) Bemærk, at RMS vedrører fejl på ligningerne og ikke fejl på løsningen ( c, c, c3) ADVARSEL: Det oprindelige ligningssystem må ikke ændres ved at man feks multiplicerer en ligning med 0, da det jo ganger residualet med 0 (ligningen indgår med en anden vægt ) SÆTNING 0 (løsning til overbestemt ligningssystem ) For et overbestemt ligningssystem A X B vil den løsning, som giver mindst mulig RMS-fejl på ligningssystemet, være en T T eksakt løsning til det såkaldte normalligningssystem A AX A B, dvs X A T T ( A) ( A B) Sætningen anføres uden bevis (se eventuelt Matematik for ingeniører bind 3 side 85-87) T I sætningen indgår A A Er A eksempelvis 4 3 fås A T Det ses, hvad gælder generelt, at matricen Beregning af A T : Se afsnit 4 Formlerne, der skal anvendes ved benyttelse af regnemidler er: T T Koefficienter C A A ( A B ) Residualer:D = A* C - B T det( D * D) RMS: RMS hvor n er antal rækker i B n D D er en matrix indeholdende kun et tal A A T A er kvadratisk og symmetrisk (om diagonalen) 9

24 Matricer og lineære ligninger 0 Overbestemt ligningssystem Eksempel 0 Overbestemt ligningssystem (fortsættelse af eksempel 0) ) Find den løsning til ligningssystemet 00 c 00 c 4 00c c 300 c 00 c c 00 c 0 00c c 300 c 300 c3 000 som giver mindst mulig RMS-fejl ) Find endvidere residualerne og RMS-fejlen Løsning: T T ) X A A ( A B) Koefficientmatrix A og højre side B indtastes T TI-Nspire: T A A T A B C: A A ( A B) TI89 ( ) STO C 9/ 5 Resultat: som er blevet gemt i matricen C 3/ 5 Heraf fås c 8, c, c 06 3 T ) Håndkraft Residualerne beregnes residualerne ved indsætning i de oprindelige ligninger: r r r r RMS 4 Regnemaskiner Residualer:D = A* C - B T det( D * D) RMS: RMS hvor n =4 er antal rækker i B n TI-Nspire D:=A*C-B RMS:Under matematikskabeloner findes, numerisk tegn * * TI89: A*C-B STO D RMS: (ABS(, Math,Matrix, det(d,math,matrix,t*d)/4) 0

25 0 Overbestemt ligningssystem Eksempel 03 Regressionsmodel Ved et fysisk forsøg har man målt følgende sammenhørende værdier af x og y x y Punkterne tegnes ind i et koordinatsystem I TI-Nspire:Indsæt lister og regneark, tal indtastes i to kolonner Marker begge lister ved at trykke på listebogstav (A), holde shift nede og brug pil mod højre Vælg data, hurtiggraf Der viser sig så nedenstående punktplot Punkterne ligger næppe på en ret snarere på en hyperbel Man vælger derfor modellen b y a x () Bestem ved mindste kvadraters metode konstanterne a og b Løsning: Indsættes punkterne i ligning () fås følgende 9 ligninger l i n i e, m e n

26 Matricer og lineære ligninger 0 Overbestemt ligningssystem b a 5 b a 34 b a 9 3 b a 7 4 b a 6 5 b a 5 6 b a 4 7 b a 3 8 b a 9 Koefficientmatrix A og højre side B indtastes, og man bestemmer a og b af det overbestemte T ligningssystem: X A A ( A B) Vi får: dvs kurven bliver y 9 35 x Grafen tegnes i TI-Ninspire sammen med punkterne Vælg Undersøg data, Plotfunktion, skriv funktionen Man ser, at punkterne ligger tilfældigt og tæt omkring kurven T At punkterne ligger tæt og tilfældigt omkring kurven kan også indses ved at beregne residualerne, og eventuelt RMS-fejlen Ti 89 og TI-Nspire har et udmærket statistikprogram, hvor man bla kan udføre regressionsanalyse på forskellige modeller

27 Grundlæggende operationer udført med Mathcad Grundlæggende operationer udført med anvendelse af Mathcad Indsæt menuer på skærm: Vælg View Toolbars Matrix, Evaluation Calculos mm Oprette en matrix A: Lad matricen have rækker og 3 søjler Skriv A: Vælg fra Matrix-paletten,matrix, Rows =, Column = 3, ENTER, indsæt tal Bemærk: Skal man anvende eksempelvis matricen A i et udtryk, skal udtrykket stå under A Et elememt i matricen A, der står i -række, søjle benævnes, da første række og søjle har numrene 0 A 0 angiver første søjle i A Gemme en matrix A under et andet navn T: Skriv T: A Skrives : dannes := så der står T:=A A 0, Samle matricer A og B til en matrix T: Skriv T: augment(a,b) Regning med Matricer Sum og produkt af matricer: Skriv på ny linie eksempelvis = Invers Matrix A - : Skriv A vælg på Matrix-paletten X - Skriv = hvis resultatet ønskes som decimalbrøk Vælg fra evaluation-paletten hvis der ønskes eksakte værdier (brøker) Determinant: Vælg på Matrix-paletten *X*, Indsæt A Transponeret matrix A T Skriv A, vælg på Matrix-paletten M T, Omdanne matrix totalmatrix T til echalon-matrix: rref(t) giver eksakte værdier eller rref(t)= giver decimalbrøk Funktion defineres :Skriv f(x,y): x 4 Skriv kun : så kommer := I et koordinatsystem tegne punkter og kurver (regressionsmodel som eksempel 03) Danne matrix A= 5 6 og angiv funktion f(x):=9+35/x Vælg på paletten Graf, x-y plot, Derved indsættes en objekt med en indre firkant som er koordinatsystemet og en ydre firkant, som er objektets afgrænsning Den indre firkant har to pladsholdere og den ydre firkant har tre håndtag skriv x, A <0> i den nederste pladsholder og skriv f(x),a <> i den venstre pladsholder I de yderste håndtag, kan man vælge de intervaller man ønsker at se grafen i Dobbeltklik på grafen Derved fås menuen Formatting Currently selected, hvor man sætte tekst på akser mv og specielt under fanebladet Traces definere, hvorledes de enkelte grafer ser ud Der fremkommer nu såvel punkter som graf 3

28 Matricer og lineære ligninger Differentiation af funktion af variable f(x,y) partiel afledet efter y i et punkt (a,b) skriv x := a y:=b d Nedenunder: Vælg fra menu Calculus Indsæt funktion, dvs dx Beregning af gennemsnit og spredning af n tal Opret en søjlematrix a med de n tal i søjlen Vælg fra værktøjslinien f(x): Catagory: Statistics, mean eller Stdev d dy ( f( x, y)) Resultater som eksakte tal eller decimaltal med et bestemt antal cifre: Vælg fra evaluation-paletten hvis du ønsker eksakte tal Skriv = hvis der ønskes decimalbrøk Dobbeltklik på facit hvis der ønskes et andet antal decimaler 4

29 OPGAVER Opgaver Opgave Idet A og, skal man undersøge om følgende relationer gælder: 0 B 0 ) ( A B) A AB B ) A B ( A B)( A B) Foretag beregningerne uden brug af lommeregner Opgave Lad A og 0 B 0 Beregn A 3B 5A B, A B T og A B uden brug af lommeregner Opgave 3 3 Lad A 3 Udregn A A 9A og A A 9E, hvor E er en 3 x 3 enhedsmatrix Opgave Lad A 3, B og C Vis, at A B A C ( trods det at B C ) Opgave 5 Lad A og Find og B 3 4 T T 3 A, B, ( AB ) ( BA T ) Opgave 6 0 Lad A 0 0 og B Find T T T AB, BA, AB, BA, A B, A, B, A og AB 5

30 Matricer og lineære ligninger Opgave 7 Find den inverse matrix til hver af de følgende matricer: 0 0 ) ) 3) Opgave Lad A Find og A A T Opgave Lad der være givet en invertibel matrix A Idet B, skal man løse matrixligningen AX B Opgave 0 På et laboratorium analyseres en blanding af 4 organiske stoffer kvantitativt ved måling af et ultraviolet-spektogram Heraf fås følgende ligningssystem for koncentrationerne c, c, c3 og c 4 ( millimol / liter ) : 500 c 00 c 00 c c 00 c3 00 c c 00 c 500 c c 00 c 500 c4 700 Find c, c, c3 og c 4 6

31 Opgave Løs ligningssystemet x x 5x3 x4 3 x x 4x3 x4 6 x 3x 3x3 x4 4 3x 3x 3x3 Opgave Mellem variablene x og y gælder den teoretiske sammenhæng y ABxCx 3 D x Fra laboratoriet er der kommet følgende måledata: x 0 3 y Opstil 4 ligninger til bestemmelse af konstanterne A, B, C, D og find derpå A, B, C og D Opgave 3 Løs ligningssystemet med håndkraft (uden brug af regnemidler) x x x3 0 x 3x 8x3 5 x 4x 3x 5 3 Opgave 4 x x x4 4 x x x3 3x4 Løs ligningssystemet x 3x 3x4 3 x x x3 x4 3 Opgave 5 Man ønsker at fremstille 0 ton af en næringsblanding bestående af 5 komponenter: komponent ønsket skummetmælk kartofler æbler sojamel blanding mængde (ton): x x x 3 x 4 0 kulhydrat pr 00 g protein pr 00 g C-vitamin pr 00 g For at kunne bestemme x, x, x3og x 4, således at den færdige blanding får det ønskede indhold af kulhydrater, protein og C-vitamin, opstilles ligningssystemet: mængde: x x x3 x4 0 kulhydrat: 5x 0x 0x3 5x4 50 protein: 3x 3x 36x4 60 C vitamin: x 0x 7x3 60 Løs ligningssystemet Opgaver 7

32 Matricer og lineære ligninger Opgave 6 Løs ligningssystemet Opgave 7 Løs ligningssystemet x 4 x x3 5 5x x 3x3 x x x3 x 5x 7 x4 x 3x3x4 3 x x x3 x4 3xx x33x4 4 7x x x33x4 4 Opgave 8 Indledningen (med petit) kan overspringes, da den ikke er nødvendig for opgavens løsning Indledning En fabrik får til opgave at fremstille et produkt, der bla skal indeholde 3 kg af stoffet I, 36 kg af stoffet II og 33 kg af stoffet III Råstoffernes A, B, C og D s procentiske indhold af I, II og III fremgår af nedenstående tabel A B C D I 0% 50% 30% 0 % II 0% 40% 30% 0% III 30% 0% 0% 50% Forudsat at alle råstofferne kan udnyttes, ønsker man at finde de antal kg x, x, x3og x 4 af henholdsvis A, B C og D, der skal benyttes ved fremstillingen Specielt ønskes angivet den af de mulige løsninger, der giver det mindste forbrug af det dyre råstof A x 5x 3x3 3 Givet ligningssystemet x 4x 3x3 x4 36 3x x3 5x4 33 ) Find den fuldstændige løsning til ligningssystemet ) Idet det antages, at x 0, x 0, x3 0, og x 4 0, skal man angive den løsning til ligningssystemet, der har den mindste værdi af x 8

33 Opgaver Opgave 9 En virksomhed fremstiller 4 typer produkter,, 3 og 4 Under tilblivelsesprocessen skal hvert produkt passere igennem alle virksomhedens 3 afdelinger, men beslaglægger her kapaciteten i forskellig grad: afdeling afdeling afdeling 3 enhed af type enhed af type enhed af type 3 enhed af type 4 5 % 0 % 0 % 5 % 0 % 5 % 0 % 5 % 0 % 0 % 5 % 0 % Lad x j betegne antal producerede enheder af type j i en uge Såfremt hver afdelings kapacitet skal udnyttes fuldt ud i denne uge, må der gælde: afdeling : 5x 0x 0x3 5x4 00 afdeling : 0x 5x 0x3 5x4 00 afdeling 3: 0x 0x 5x3 0x4 00 ) Vis, at ligningssystemet har en uendelighed af løsninger og angiv herunder den fuldstændige løsning ved hjælp af en parameter t Hvilke værdier af t kan forekomme i virkeligheden (husk, at x 0, x 0, x3 0, x 4 0 )? ) Hvad er det største antal emner af produkttype 3, som virksomheden kan fremstille pr uge, når der ikke må være ledig kapacitet i nogen af de 3 afdelinger? ( Bemærk: I det matematiske fag lineær programmering behandles sådanne problemtyper - gerne med mange flere variable, idet der benyttes specielle teknikker i forbindelse med edb ) Opgave 0 Find værdien af determinanten Opgave a) Beregn determinanten a a 3 a 0 4a a6 6 3a b) Løs ligningssystemet for alle værdier af parameteren a xx ax3 x4 ( a 3) xx ax3 ( 4a 7) xx ( a 6) x6x 3ax3 x4 6 9

34 Matricer og lineære ligninger Opgave a) Beregn determinanten a a 0 a 0 D = a b) Løs nedenstående ligningssystem for de værdier af a, for hvilke determinanten D er 0 ax x x3 ( a) x4 0 x ( a) x3 x x3 x4 x ax4 Opgave 3 Der er givet ligningssystemet ax x ( a 3) x3 7 ax 4x ( 3a 4) x3 3ax 5x ( a 4) x3 3 Løs ligningssystemet for de værdier af a, for hvilke ligningssystemet har netop én løsning Opgave 4 Benyt Cramers metode til at finde x af nedenstående ligningssystem xx x3 x4 xx x3 4 3xx 4x 6x 3x3 x4 Opgave 5 Benyt Cramers metode til at finde af nedenstående ligningssystem x 4 x x x3 x4 0 x 3x3 x x3 x4 x x4 Opgave 6 De tre vinkler i en trekant ABC er målt til 053, 34, og 3(radianer) A 053 Find den løsning til det overbestemte ligningssystem B 34 AB 3 som giver mindst mulig RMS-fejl Find endvidere residualerne og RMS-fejlen 30

35 Opgaver Opgave 7 Mellem de variable x, y, z, w gælder den teoretiske sammenhæng w AxByCz Fra laboratoriet er der kommet følgende måledata: x y z w ) Opstil 5 ligninger til bestemmelse af konstanterne A, B, C ) Find derpå konstanterne A, B, C, idet RMS-fejlen på de 5 ligninger skal være mindst mulig 3) Find endvidere residualerne og RMS-fejlen Opgave 8 To tryk p og p samt differencen p p er målt med samme nøjagtighed: p 0 p 5 p p 6 Find p og p bedst muligt Opgave 9 Der skal fremstilles ton af et produkt ved at blande 3 råvarer (alle tal er i vægt % ): råvare nr råvare nr råvare nr 3 ønsket produkt protein fedt kulhydrat 0 % 30 % 0 % 0 % 0 % 30 % 0 % 0 % 0 % 0 % 0 % 0 % Af råvarer bruges x ton af nr, x ton af nr og x x ton af nr 3 ) Opstil 3 ligninger til bestemmelse af x og x ) Find derpå x og x, idet RMS-fejlen på de 3 ligninger skal være mindst mulig 3) Find til sidst residualerne og RMS-fejlen Opgave 30 x x y Der foreligger følgende ligningssystem: x yz 3 yz ) Vis, at ligningssystemet ikke har nogen eksakt løsning ) Løs ligningssystemet bedst muligt, (dvs således at RMS-fejlen bliver mindst mulig ) 3

36 Matricer og lineære ligninger Opgave 3 For en bestemt proces, har man målt, at der gælder følgende overbestemte ligningssystem x y 00 yz 400 x z 500 x y 000 x z 00 a) Løs ligningssystemet bedst muligt, (dvs således at RMS-fejlen bliver mindst mulig ) b) Find RMS-fejlen for den i spørgsmål a) fundne løsning 3

37 Stikord Facitliste a) nej b) nej , 0 3, 0 0, 0,, 0 0, 0, ) ) 3) , (3, 5, 5, 0),,, (-6, 0,, ) 3 3, 9, 6 4 4,,, 5 (3, 5,, ) 6 Ø , eksempelvis x, x, 6 6 x4, x4 5 8 ) eksempelvis x4, x4, 7 3x4, x4 fri () , 0, 5, 5 9 ) eksempelvis x, x, 0 4x, x fri, x [ 4 ; 5] ) a) a( a) b) a a (0,, 0,0) a = 0: (0,, x 3, 0) : a : x4, x, x, x 3 a) a a b) eksempelvis a = : 3 x x x x x fria = , 4, 4, 4, 4 : 0, x, x, x

38 Matricer og lineære ligninger 3 3,,, a, a 0 a a a A=054, B = 34, r = r =r 3 = -006, RMS = (A, B, C ) = (0,, 0) r 0, r 0, r3 0, r4 0, r5 0 RMS = , ) - ) (0549, 0) 3) = ,, 30, 0 (,, ) 3 a) 3,, b) RMS = = r 0 086, r 0 07, r , RMS

39 STIKORD A addition af matricer 4 B C Cramers sætning 7 D determinant 4 E echelon matrix 9 enhedsmatrix 7 F facitliste 33 G Gaus elimination 0 H I invers matrix 7 invertibel matrix 6, 5 K koefficientmatrix, 6 kvadratisk matrix, 6 L ligningssystem hvor koefficientmatrix er invertibel 6 ligningssystem, netop en løsning uendelig antal løsninger 3 ingen løsninger 3 lineært ligningssystem 8 ligningssystem med parameter 5 M matrix transponeret echelon 9 enhedsmatrix 7 invers 7 kvadratisk, 6 Stikord rang regneregler 3 multiplikation 4 addition 4 Mathcad: Grundlæggende operationer 3 N normalligningssystem 9 O ophobningslov 7 overbestemt ligning 8 Opgaver 5 P pivotelement 0 R rang af matrix reciprok matrix 7 regression residual 9 RHF- fejl 9 række rref, reduced row echalon form rækkeækvivalente operationer 9 S singulær matrix 6 symmetrisk matrix 3 søjle T TI 89+ TI-Nspire AB og A T 5 A - 7 determinant 5 Gaus elimination ligningsystem med parameter 6, 7 overbestemt ligningssystem 0 regression totalmatrix transponeret matrix U uafhængige hændelser 7 35

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 4 udgave 04 FORORD Dette notat giver en gennemgang af de matrixoperationer,

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 4 4 0 0 0 4 x x x x 5 udgave 05 FORORD Dette notat viser hvorledes man kan dels kan løse lineære

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler

Læs mere

MATRICER LINEÆRE LIGNINGER. Usikkerhedsberegning

MATRICER LINEÆRE LIGNINGER. Usikkerhedsberegning MOGENS ODDERSHEDE LARSEN MATRICER LINEÆRE LIGNINGER Usikkerhedsberegning med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad 0 3 4 3 4 0 3 0 3 0 3 4 = x x x x. udgave 0 FORORD Dette

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan dels kan løse lineære ligningssystemer ved Gaussmetode (håndregning),

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

To ligninger i to ubekendte

To ligninger i to ubekendte Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

DesignMat Lineære ligningssystemer og Gauss-elimination

DesignMat Lineære ligningssystemer og Gauss-elimination DesignMat Lineære ligningssystemer og Gauss-elimination Preben Alsholm Uge Forår 010 1 Lineære ligningssystemer og Gauss-elimination 11 Om talrummet R n Om talsæt bestående af n tal R n er blot mængden

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

Matricer og Matrixalgebra

Matricer og Matrixalgebra enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Vektorer og rumgeometri med. TI-Interactive!

Vektorer og rumgeometri med. TI-Interactive! Vektorer og rumgeometri med TI-Interactive! Indtastning af vektorer Regning med vektorer Skalarprodukt og vektorprodukt Punkter og vektorer Rumgeometri med ligninger Jan Leffers (2007) Indholdsfortegnelse

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund mail@jesperlund.com http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

Undervisningsnotat. Matricer

Undervisningsnotat. Matricer Undervisningsnotat. Matricer januar, C Definition En matrix er en ordnet mængde tal opstillet i m rækker og n søjler. Matricen A kunne være defineret som vist nedenfor. Hvert element i matricen er forsynet

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Vektorrum. enote Generalisering af begrebet vektor

Vektorrum. enote Generalisering af begrebet vektor enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske

Læs mere

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Algebra med Bea Bea Kaae Smit nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende regler 7 3.1 Tal..........................

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet Forberedelsesmateriale frs-matn/a-270420 Onsdag den 27. april 20 Forberedelsesmateriale til stx-a-net MATEMATIK Der skal afsættes

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Introduktion til EXCEL med øvelser

Introduktion til EXCEL med øvelser Side 1 af 10 Introduktion til EXCEL med øvelser Du kender en almindelig regnemaskine, som kan være til stort hjælp, når man skal beregne resultater med store tal. Et regneark er en anden form for regnemaskine,

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

De fire elementers kostbare spejl

De fire elementers kostbare spejl Projekt.6 Lineær algebra moderne og klassisk kinesisk De fire elementers kostbare spejl "Som bekendt anses matematikken for at være en meget vigtig videnskab. Denne bog om matematik vil derfor være af

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

Indhold. 5. Vektorrum og matricer Koordinattransformationer

Indhold. 5. Vektorrum og matricer Koordinattransformationer Indhold Lineære afbildninger og matricer Talrummene R n, C n Matricer 8 3 Lineære afbildninger 4 Matrix algebra 8 5 Invers matrix 6 6 Transponeret og adjungeret matrix 9 Række- og søjleoperationer Lineære

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Modellering af elektroniske komponenter

Modellering af elektroniske komponenter Modellering af elektroniske komponenter Formålet er at give studerende indblik i hvordan matematik som fag kan bruges i forbindelse med at modellere fysiske fænomener. Herunder anvendelse af Grafregner(TI-89)

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain).

2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain). En introduktion til Maple i 1.g. 1. En første introduktion til Maple. Kommandoerne expand, factor og normal. 2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain). 3. Uligheder

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

Program for de næste 3 1/4 dobbeltlektion

Program for de næste 3 1/4 dobbeltlektion Matricer Program for de næste 3 1/4 dobbeltlektion Tirsdag 3. september 11.00 12.00: Afsnit 8.1, 8.2, 8.3 og 8.5 Torsdag 5. september 12.30 16.15 12.30 14.15: Opgaveregning lokale 261/409 14.30: Vi mødes

Læs mere

Introduktion til Calc Open Office med øvelser

Introduktion til Calc Open Office med øvelser Side 1 af 8 Introduktion til Calc Open Office med øvelser Introduktion til Calc Open Office... 2 Indtastning i celler... 2 Formler... 3 Decimaler... 4 Skrifttype... 5 Skrifteffekter... 6 Justering... 6

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

DesignMat Uge 11. Vektorrum

DesignMat Uge 11. Vektorrum DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden Brug af TI-83 Løsning af andengradsligninger med TI-83 Indtast formlerne for d, og rødderne og gem dem i formellagrene u,v eller w. Gem værdierne for a, b og c i lagrene A, B og C Nedenstående display

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Introduktion til TI-Nspire 1. Dokumentformat

Introduktion til TI-Nspire 1. Dokumentformat 1 Dokumentformat Åbn TI-Nspire. Første gang man åbner programmet vises som regel et skærmbillede fra en håndholdt lommeregner. Denne visning skiftes til Computer i menuen eller ved ALT-Shift-C. Denne indstilling

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere