Hvordan bestemmes højder? Hvordan bestemmes en sigteretning? Hvordan beregnes en hældning?... 11

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Hvordan bestemmes højder? Hvordan bestemmes en sigteretning? Hvordan beregnes en hældning?... 11"

Transkript

1 Hvordan bestemmes højder?... 6 Opgave 1: Højden af en lodret klippevæg (1)... 6 Opgave 2: Højden af en lodret klippevæg (2)... 6 Opgave 3: Højden af en pyramide... 7 Opgave 4: Højden af en pyramide beregnet ved brug af Pythagoras sætning... 7 Opgave 5: Afstand til et skib ude på havet... 8 Opgave 6: Hvor bred er floden?... 8 Opgave 7: To målinger er nok... 8 Opgave 8: Vandret niveau... 9 Hvordan bestemmes en sigteretning? Opgave 9: Afstandsmåling med sigteretninger (1) Opgave 10: Pythagoras sætning og den omvendte Pythagoras sætning Opgave 11: Afstandsmåling med sigteretninger (2) Opgave 12: Tunnelens virkelige forløb Hvordan beregnes en hældning? Opgave 13: Vandledningen Afslutning moderne positionsbestemmelse Opgave 14: Hvad er GPS?

2 Materialet i dette projekt omfatter ensvinklede trekanter, Pythagoras og den allerførste trigonometri. Projektet handler om udgravning af tunneler og drejer sig om følgende enkle spørgsmål: Hvordan kan man starte udgravningerne fra hver sin side og være sikker på at mødes på midten? Selv om der bruges megen moderne teknik, så er det grundlæggende samme spørgsmål, man altid har skullet løse ved udgravningen af tunneler. Tunnelbyggeri i stor stil kendes helt tilbage fra oldtiden. Det mest imponerende af sådanne bygningsværker har man fundet på den græske ø Samos. Figur 1. Det Ægæiske Hav. Bemærk at hovedbyen på øen har fået navn efter Pythagoras. Han blev nemlig født på denne ø omkring år 580 f.kr. Vores viden om Pythagoras er i øvrigt behæftet med megen usikkerhed; men man formoder, at han i sin ungdom var på rejse både til Ægypten og til Babylon i Mesopotamien. I disse lande havde flodkulturer allerede udviklet sig i flere tusinde år, og der var skabt en matematik og ingeniørkunst, som Pythagoras og andre grækere lærte om på deres rejser. Vi har således fundet små kileskrifttavler fra Mesopotamien der fortæller, at disse folk, 1000 år før Pythagoras besøgte landet, kendte til den sætning, vi i dag har givet Pythagoras navn. Figur 2. Pythagoras rejser. 2

3 Da Pythagoras vendte hjem til Samos, havde en af de lokale stormænd, Polykrates taget magten på hele øen, og han styrede samfundet med diktatorisk magt. Pythagoras reagerede tilsyneladende på dette ved at drage videre, og han endte med at bosætte sig et helt andet sted, i Kroton i Syditalien (på denne tid havde grækerne små kolonier overalt i middelhavsområdet). Men vi ved ikke, om han straks drog videre eller opholdt sig et stykke tid på Samos, og derfor ved vi heller ikke, om Pythagoras bidrog til det fantastiske ingeniørarbejde, som udgravningen af tunnelen var. Tunnelen blev nemlig, så vidt vi ved i dag, udgravet i Pythagoras levetid, mens Polykrates havde magten. Tunnelen er sammen med andre bygningsværker omtalt af en af oldtidens største historikere Herodot. Herodot skrev et værk, der simpelthen hedder Historien, hvori vi kan finde et større afsnit om Samos. Til slut heri hedder det: Jeg har opholdt mig forholdsvis længe ved samierne, fordi de tre største arbejder, der er udført af hellenere, findes hos dem. Igennem et bjerg, der er ca. 150 favne højt, er der lavet en udgravning, der begynder forneden ved bjergets fod og er åben i begge ender. Længden af denne udgravning af 7 stadier, højden og bredden begge 8 fod. Gennem hele denne tunnel er der ført en anden grav, som er 20 alen dyb og 3 fod i bredden, og herigennem ledes vandet fra en stor kilde og når frem til byen gennem rør. Ingeniøren for dette arbejde var Eupalinos, søn af Naustrofos, fra Megara. Dette er det ene af de tre arbejder. Det andet er et moleanlæg ude i vandet til beskyttelse af havnen; molen har en dybde af ikke mindre end 20 favne og længden af den er mere end to stadier. Deres tredje storværk er et tempel, det største jeg nogensinde har set. Dets første bygmester var Rhoikos, søn af Files, og født på Samos. Dette er grunden til, at jeg har opholdt mig så forholdsvis længe ved samierne. Herodot elskede at fortælle gode og af og til fantastiske historier, så en del betvivlede denne historie om en tunnel gravet tværs gennem et bjerg. Men i slutningen af forrige århundrede fandt man den ved et rent tilfælde, og i dag har man ryddet gangen for nedfalden materiale. Under oprydningen fandt man genstande, der viste, at tunnelen havde været kendt og sikkert også brugt både i romertiden omkring år 0 og i den byzantinske tid op mod år Det er i dag muligt at komme ind i tunnelen fra begge ender; men man kan dog ikke få lov at kravle helt igennem: Figur 3. Set mod sy gennem den smalle passage i retningen mod indgangen. Figur 4. Tunnelinteriør, set mod nord. Vandkanalen ligger langs den østlige kant. 3

4 Hvad er matematik? C, i-bog Tunnelen er bygget gennem et lille bjerg, der hedder Castro-bjerget, og formålet har været at sikre vandforsyningen til havnebyen. På den anden side af bjerget var der rigeligt med vand, og tunnelen, der lå godt skjult, kunne så forsyne byen under en eventuel belejring. Figur 5. Tunnelens linjeføring er den rette linje. Den slyngede linje er vandets løb udenfor tunnelen. Tunnelen var ca. 1 km lang, og godt 2 m bred og 2 m høj det meste af vejen. Figur 6. Skematisk billede af den planlagte tunnel. 4

5 De to billeder ovenfor illustrerer de tre afgørende spørgsmål, man skal besvare, før udgravningsholdene kan begynde fra hver sin side: Man skal starte i samme niveau over havets overflade. Man skal grave i en sådan retning, at de to hold mødes et sted midt inde under bjerget. Man skal i tunnelen lave en vandkanal med et lille fald, således at vandet flyder langsomt og ikke buldrer igennem og derved risikerer at ødelægge tunnelen. 5

6 Hvordan bestemmes højder? Hvordan bestemmer man højden af et bjerg eller et stort træ eller noget andet, hvor man ikke bare kan måle det? Et spørgsmål, der er beslægtet med dette, er følgende: Hvordan bestemmer man afstande, som man ikke kan måle, f.eks. afstanden over en flod eller en afgrund? Vi ved, at de gamle grækere var i stand til det. Der findes således fortællinger om, hvorledes græske matematikere bestemte højderne af pyramiderne. Vi går nu i deres fodspor. Opgave 1: Højden af en lodret klippevæg (1) Du sigter med øjet (eller lader solens skygge gøre det for dig) og har følgende situation: Klippen h p S A B Pinden p er 1,8 meter høj. Stykket SA er 3,2 meter langt. Afstanden fra pinden til foden af klippen er 162 meter, dvs. AB =162. Bestem højden h. Opgave 2: Højden af en lodret klippevæg (2) Situationen i opgave 1 gentages; men på et ganske bestemt tidspunkt af dagen, nemlig hvor solen står 45 over horisonten. Vi har da følgende situation: Forklar, hvorfor det bliver meget lettere at finde højden i denne situation. 6

7 Opgave 3: Højden af en pyramide Vi ønsker at bruge metoden i opgave 1 til at finde højden af en pyramide. Vi har derfor følgende situation: Forklar, hvad du har brug for at måle op for at kunne beregne pyramidens højde. Opgave 4: Højden af en pyramide beregnet ved brug af Pythagoras sætning Vi kan jo ikke direkte måle højden af pyramiden; men derimod kan vi kravle op ad den skrå kant og måle, hvor langt der er fra foden til toppen. Den græske matematiker har lavet denne prøvetegning: C E A D B Hvilke oplysninger skal han kende for at kunne beregne højden? Du får nu at vide, at AB er målt op til 116, og CD er målt op til 188. Bestem pyramidens højde. 7

8 Opgave 5: Afstand til et skib ude på havet Lad os antage, at vi ved, at højden af en næsten lodret klippe, der står ved havet er 80 meter. Vi ser et skib og foretager den måling, der er angivet på tegningen. Brug oplysningerne til at finde afstanden til skibet. 1,5 A B AB 4,8 h 80 Opgave 6: Hvor bred er floden? Vi står på den ene side af en flod og vurderer, hvor bred den er. Tæt ved bredden af den anden side står et træ, vi kan bruge som sigtepunkt. Vi måler nu en afstand hen til et punkt C, og fra C går vi vinkelret på linjen AC og måler stykket CB op. Resultaterne indtegnes på en prøvefigur, så vi har følgende skitse (størrelsesforholdene er ikke korrekte!): P B E A 4 C Hvor bred er floden? Opgave 7: To målinger er nok Forudsætningerne i opgave 1 var, at vi kunne måle afstanden helt hen til klippens fod; men det er sjældent tilfældet. I en gammel kinesisk matematikbog kan vi se, at de også har stillet sig dette spørgsmål, og deres svar er, at vi kan løse problemet, hvis vi laver to målinger. Vi ønsker at finde højden x af ST. Vi kalder stykket TA, som vi ikke kan måle, for y. Så foretager vi følgende målinger: h = 1, a 1 = 1,2, a 2 = 1,7 og afstanden mellem pindene AB = 50. 8

9 a) Find to store trekanter, der er ensvinklede med de to små, og opskriv ved brug af x og y en ligning for hver. b) Isolér y i hver ligning, og udnyt de to udtryk for y til at opstille en ligning, hvor x er eneste ubekendte, og løs denne. S T A B h h a1 a2 ST x TA y AB d Opgave 8: Vandret niveau Hvordan findes samme vandrette niveau rundt om et bjerg? Prøv at»lege ingeniører«, og forklar hvordan I ville kunne»bygge jer frem«til en løsning. 9

10 Hvordan bestemmes en sigteretning? Lad os nu sige, at vi har løst højdeproblemet. Vi er i samme højdeniveau på hver side af et lille bjerg. I det ene punkt findes vandkilden, i det andet er vi tæt ved byen. Opgave 9: Afstandsmåling med sigteretninger (1) A og B kan ikke se hinanden. Der skal graves en tunnel fra A til B. Vi ønsker at grave fra begge sider. Hvordan kan vi lægge en sigteretning de to steder, så vi er sikre på, at de to gravehold mødes? Det kræver, at vi kender den helt nøjagtige placering af A og B. Lad os sige, at vi i A har fastlagt en retning nord-syd og vinkelret på retningen øst-vest: N A V Ø Bjerg B (by) Tegn nu en vej uden om bjerget fra A til B, således at du kan måle op, hvor meget B ligger øst for A, og hvor meget B ligger syd for A. Forklar, hvordan du ud fra din vej vil måle de ønskede afstande. Opgave 10: Pythagoras sætning og den omvendte Pythagoras sætning Når vi ønsker at bevæge os efter to retninger, nord-syd og øst-vest, skal vi være i stand til at dreje præcis 90. Det kan vi bruge Pythagoras sætning til! Den almindelige udgave af sætningen siger, at hvis vinkel C i trekant ABC er ret, så gælder, at a 2 + b 2 = c 2 Den såkaldte omvendte Pythagoras sætning siger, at hvis formlen a 2 + b 2 = c 2 gælder i en trekant, så er vinklen C netop 90. a) Hvis en retvinklet trekant har de to kateter 8 og 6, hvor lang er da hypotenusen? b) Hvis en retvinklet trekant har en katete på 10 og en hypotenuse på 12, hvor lang er da den anden katete? c) Hvis en trekant har siderne 8, 7 og 11, er den så retvinklet, eller er den ikke retvinklet? d) Du har tre stykker snor, et er 60 cm, et er 80 cm, og et er 1 m. Beskriv hvorledes du ved hjælp af disse kan konstruere en linje vinkelret på en anden linje. Opgave 11: Afstandsmåling med sigteretninger (2) Vi vender tilbage til punkterne A og B, og lad os nu sige, at punktet B ligger 970 meter længere sydpå og 380 meter længere østpå end A. a) Konstruer en prøvefigur, hvor du indtegner den ønskede sigtelinje fra A til B (gennem bjerget), og hvor du har tegnet trekant ABC med de nævnte mål afsat. 10

11 b) Ved hjælp af ensvinklede trekanter skal du nu konstruere en lille trekant (uden for bjerget) ved punktet A, og som giver dig sigtelinjen fra A til B. Det samme skal du gøre ved B lave en lille trekant, som giver dig sigtelinjen fra B til A. Opgave 12: Tunnelens virkelige forløb Figur 7 Tunnelens virkelige forløb Planen viser tilnærmelsesvis zigzagkursen i den nordlige halvdel af tunnelen. Man ved ikke, hvorfor det ene hold er begyndt at grave i zigzag, mens det andet holdt kursen. Har du et bud på hvorfor? Hvordan beregnes en hældning? Opgave 13: Vandledningen Tunnelen består af en forholdsvis stor skakt, i tværsnit 2 meter 2 meter, samt udgravet langs den ene væg den vandledning, det hele drejer sig om. Vandledningen skråner svagt nedad fra punktet A til punktet B. Det samlede fald er 9 meter. Hvis tunnelen er 1036 meter lang, hvor stort er så faldet pr. meter? Hvor stort er det pr. 10 meter? Afslutning moderne positionsbestemmelse Tunnelen under den østlige del af Storebælt fører jernbanetrafikken gennem to parallelle rør fra Halsskov til Sprogø. Tunnelen er meter lang og blev boret ud fra hver sin side. Ved sådanne projekter anvendes i dag et system baseret på satellitmålinger til at fastslå den nøjagtige position af punkter som A og B. Systemet hedder GPS. Opgave 14: Hvad er GPS? Find i Encyklopædien eller på internettet en artikel om GPS, og giv en kort forklaring på idéen bag denne metode. 11

Tunnelen på Samos udgravning af tunneler før og nu

Tunnelen på Samos udgravning af tunneler før og nu Tunnelen på Samos udgravning af tunneler før og nu Side 1 af 8 Tunnelen på Samos udgravning af tunneler før og nu Projektet handler om udgravning af tunneler og drejer sig om følgende enkle spørgsmål:

Læs mere

Projekt Tunnelen på Samos udgravet for 2500 år siden

Projekt Tunnelen på Samos udgravet for 2500 år siden Projekt 6.11. Tunnelen på Samos udgravet for 2500 år siden Indhold Introduktion... 2 Herodots fortælling om tunellen... 3 Tunellens dimensioner... 3 1. Hvordan bestemmes højder?... 5 Opgave 1 Højden af

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Denne pdf-fil er downloadet fra Illustreret Videnskab Histories website (www.historie-net.dk) og må ikke videregives til tredjepart.

Denne pdf-fil er downloadet fra Illustreret Videnskab Histories website (www.historie-net.dk) og må ikke videregives til tredjepart. Kære bruger Denne pdf-fil er downloadet fra Illustreret Videnskab Histories website (www.historie-net.dk) og må ikke videregives til tredjepart. Af hensyn til copyright er nogle af billederne fjernet.

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Matematik for lærerstuderende klasse Geometri

Matematik for lærerstuderende klasse Geometri Matematik for lærerstuderende 4.-10. klasse Geometri Klassisk geometri (kapitel 6) Deduktiv tankegang Ræsonnementskompetence Mål med kapitlet: Erkender Thales sætning som fundament for afstandsberegning.

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Tema: Kvadrattal og matematiske mønstre:

Tema: Kvadrattal og matematiske mønstre: 2 Indholdsfortegnelse: Tema: Kvadrattal og matematiske mønstre: Side 4: Side 5: Side 9: Side 10: Side 12: Side 14: Side 15: Side 16: Side 19: Side 20: Side 21: Side 23: Problemformulering. En nem tilgang

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: 333247 2015 Projekt Matematik B-niveau Differentialregning Anders Jørgensen, Kirstine Irming, Mark Kddafi, Zehra Köse og Tobias Winberg Indledning I dette

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2st111-MAT/A-24052011 Tirsdag den 24. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses.

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses. 18-02-2009 16:13:02 Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: hyp 2 = kat 1 2 +kat 2 2 12 De oplyste tal indsættes; ligningen løses. hyp 2 = 5 2 +12 2 hyp 2 = 25 + 144 = 169 hyp

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Målebord. Målebord instrumentbeskrivelse og virkemåde

Målebord. Målebord instrumentbeskrivelse og virkemåde Målebord Målebordet består af en bordplade og et trebenet stativ. Tilbehør : en gaffel med lodsnor, en passer, hvidt papir (A3), en diopterlineal, en libelle (vaterpas) og evt. et kompas. Opstilling af

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde t system rod orden nøjagtig præcis

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Trigonometri og afstandsbestemmelse i Solsystemet

Trigonometri og afstandsbestemmelse i Solsystemet Trigonometri og afstandsbestemmelse i Solsystemet RT1: fstandsberegning (Fra katederet) 5 RT2: Bold og Glob 6 OT1:Bestemmelse af Jordens radius 9 OT2:Modelafhængighed 11 OT3:fstanden til Månen 12 OT4:Månens

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Analytisk plangeometri 1

Analytisk plangeometri 1 1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs101-matn/a-605010 Onsdag den 6 maj 010 kl 0900-1400 Opgavesættet er delt i to dele Delprøve 1: timer med autoriseret

Læs mere

Teodolit vejledning. Denne gradskala på teodolitten aflæses som 78( 24,5'

Teodolit vejledning. Denne gradskala på teodolitten aflæses som 78( 24,5' Teodolit vejledning En teodolit er beregnet til at måle vinkler med, både horisontalt (Hz) og vertikalt (V). Vinklerne aflæses gennem det lille mikroskop ved siden af kikkertens okular (øjelinse, oculus

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Kirsten Isager, perspektivkasse 1. Forudsætninger: øjet står 2 m foran rummet og rummet bliver 1,5 m dybt, men skal se ud som om det er 3,85 m dybt:

Kirsten Isager, perspektivkasse 1. Forudsætninger: øjet står 2 m foran rummet og rummet bliver 1,5 m dybt, men skal se ud som om det er 3,85 m dybt: Kirsten Isager, perspektivkasse 1 Projektopgave nr 2: Geoetri, Perspektivkasse. uet skal være et snydeperspektiv. Først tager vi ålene i det virkelige ålestoksforhold. Forudsætninger: øjet står 2 foran

Læs mere

TRIGONOMETRI, 4 UGER, 9.KLASSE.

TRIGONOMETRI, 4 UGER, 9.KLASSE. TRIGONOMETRI, 4 UGER, 9.KLASSE. FRA FÆLLES MÅL Målsætninger for undervisningsforløbet er opsat efter kompetence, færdigheds og vidensmål samt læringsmål i lærersprog. Geometri og måling Fase 3 Geometriske

Læs mere

Giza-pyramiderne. Oplæg til matematik. www.galapagos.dk. foto: Otto Nielsen & Søren Sørensen grafik: Brian Ravnborg udgave 1.

Giza-pyramiderne. Oplæg til matematik. www.galapagos.dk. foto: Otto Nielsen & Søren Sørensen grafik: Brian Ravnborg udgave 1. Giza-pyramiderne Oplæg til matematik Navn: Klasse: www.galapagos.dk af Brian Ravnborg foto: Otto Nielsen & Søren Sørensen grafik: Brian Ravnborg udgave 1.01 2007 Find mere om pyramiderne på www.galapagos.dk

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Kvadrant - instrumentbeskrivelse og virkemåde

Kvadrant - instrumentbeskrivelse og virkemåde Kvadrant instrumentbeskrivelse og virkemåde Kvadrant - instrumentbeskrivelse og virkemåde Kvadranterne i instrumentpakken fra geomat.dk er kopier af et instrument lavet af Georg Hartman i 1547. Originalen

Læs mere

Den pythagoræiske læresætning

Den pythagoræiske læresætning Den pythagoræiske læresætning 1. Udfyld skemaet herunder dvs. find den manglende hypotenuse ved a 2 + b 2 = c 2 : 1 20 21 2 12 35 3 28 45 4 56 33 5 119 120 6 168 95 7 52 165 8 207 224 9 315 572 10 627

Læs mere

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009 Lysets hastighed Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.1.009 Indholdsfortegnelse 1. Opgaveanalyse... 3. Beregnelse af lysets hastighed... 4 3.

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Matematik B. Studentereksamen. Tirsdag den 27. maj 2014 kl stx141-MAT/B

Matematik B. Studentereksamen. Tirsdag den 27. maj 2014 kl stx141-MAT/B Matematik B Studentereksamen 2stx141-MAT/B-27052014 Tirsdag den 27. maj 2014 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses.

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses. Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: hyp 2 = kat 1 2 +kat 2 2 12 De oplyste tal indsættes; ligningen løses. hyp 2 = 5 2 +12 2 hyp 2 = 25 + 144 = 169 hyp = 13,00 = 13,0 (idet

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Matematik B Klasse 1.4 Hjemmeopaver

Matematik B Klasse 1.4 Hjemmeopaver Matematik B Klasse 1.4 Hjemmeopaver 1) opgave 336, side 23 Opgaven går ud på at jeg skal finde ud af hvor gamle børnene højst kan være, når forældrene tilsammen er 65 år og de skal være 40 år ældre end

Læs mere

brikkerne til regning & matematik geometri basis+g preben bernitt

brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri, basis+g ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere

User s guide til cosinus og sinusrelationen

User s guide til cosinus og sinusrelationen User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Pythagoras Sætning. Frank Nasser. 20. april 2011

Pythagoras Sætning. Frank Nasser. 20. april 2011 Pythagoras Sætning Frank Nasser 20. april 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

1 Geometri & trigonometri

1 Geometri & trigonometri 1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

fs10 1 Cykeltyveri og forsikring 2 Cyklers stelstørrelse 3 Cykelmotion 4 Cykelkonkurrence 5 En stejl strækning 6 Retvinklede trekanter Matematik

fs10 1 Cykeltyveri og forsikring 2 Cyklers stelstørrelse 3 Cykelmotion 4 Cykelkonkurrence 5 En stejl strækning 6 Retvinklede trekanter Matematik fs10 10.-klasseprøven Matematik Ekstraordinær prøve juni 2014 1 Cykeltyveri og forsikring 2 Cyklers stelstørrelse 3 Cykelmotion 4 Cykelkonkurrence 5 En stejl strækning 6 Retvinklede trekanter 1 Cykeltyveri

Læs mere

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag [1] Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag 2009 Alinea København Kopiering af denne bog er kun tilladt ifølge aftale med COPY-DAN Forlagsredaktion: Heidi Freiberg

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2st101-MAT/B-01062010 Tirsdag den 1. juni 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

Projekt 3.7. Pythagoras sætning

Projekt 3.7. Pythagoras sætning Projekt 3.7. Pythagoras sætning Flere beviser for Pythagoras sætning... Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... Opgave 1: Et kinesisk og et indisk bevis for Pythagoras sætning...

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Jakobsstav instrumentbeskrivelse og virkemåde

Jakobsstav instrumentbeskrivelse og virkemåde Jakobsstav instrumentbeskrivelse og virkemåde En jakobsstav er et vinkelmålingsinstrument, hvis historie man kan følge tilbage til 1300-tallet. Den har været benyttet som både astronomiske instrument,

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Det første kapitel / hvorledes målestaven skal laves og tilvirkes.

Det første kapitel / hvorledes målestaven skal laves og tilvirkes. Petrus Apianus beskrivelse af jakobsstaven 1533 af Ivan Tafteberg Jakobsen Oversættelse i uddrag fra Petrus Apianus: Instrument Buch durch Petrum Apianum erst von new beschriben. Ingolstadii, 1533. [Findes

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel FP10 10.-klasseprøven Matematik December 2014 1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel 1 Huspriser

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 2 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 2 ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

Emnehæfte. Beregning af koter, fald, anlæg og rumfang. Kloakrørlæggeruddannelsen

Emnehæfte. Beregning af koter, fald, anlæg og rumfang. Kloakrørlæggeruddannelsen Efteruddannelsesudvalget for bygge/anlæg og industri (BAI) Emnehæfte Beregning af koter, fald, anlæg og rumfang Kloakrørlæggeruddannelsen Undervisningsministeriet. 12. september 2006. Materialet er udviklet

Læs mere

Projekt 3.8. Månens bjerge

Projekt 3.8. Månens bjerge Projekt 3.8. Månens bjerge Introduktion til hvordan man kan arbejde med dette projekt. Det følgende kan integreres i et projekt om verdensbilleder, hvor man både kommer ind på diskussioner om at opnå erkendelse,

Læs mere