Hypotese Start med at opstille et underbygget gæt på hvor mange ml olie, der kommer ud af kridt-prøven I får udleveret.

Størrelse: px
Starte visningen fra side:

Download "Hypotese Start med at opstille et underbygget gæt på hvor mange ml olie, der kommer ud af kridt-prøven I får udleveret."

Transkript

1 Forsøg: Indvinding af olie fra kalk Udarbejdet af Peter Frykman, GEUS En stor del af verdens oliereserver, bl.a. olien i Nordsøen findes i kalkbjergarter. 90 % af den danske olieproduktion kommer fra kalk i Nordsøen. I dette forsøg skal I undersøge/iagttage hvordan man kan få olie ud af kalken. Formål A. Finde ud af hvad kridt er for en bjergart og hvordan man kan bestemme porøsiteten og dermed den potentielle mængde olie, der kan være i kridtet. B. Undersøge hvor meget olie, der kan være i en bestemt mængde kridt. C. Lave et forsøg der illustrerer hvorledes indvindingsmetoder med vandinjektion i kalkreservoirer i Nordsøen fungerer. Metoden har en stor del af æren for at indvindingsgraden er steget gennem tiden. Hypotese Start med at opstille et underbygget gæt på hvor mange ml olie, der kommer ud af kridt-prøven I får udleveret. Materialer En kerneprøve af skrivekridt fra Stevns, ca. 66 mil år gammel. Kridtprøven er blevet fyldt med olie i et laboratorium, hvor den har ligget i et bæger med olie i et vacuum-kammer. Når luften lukkes ind igen trykkes olien ind i prøven. Kridtet er nu mættet med olie. Skrivekridt er 98 % calcit, og består udelukkende af meget små calcitkrystaller dannet af mikroskopiske kalkalger i Kridttidshavet. Calcit er et mineral der består af CaCO 3. Plastinjektionssprøjter, stor og lille En kerneprøve, der ikke er mættet med olie, som kan bruges til at beregne kridtets porøsitet. Når alle kerner er brugt kan der købes flere, til en favorabel pris, hos Peter Frykman ved GEUS (tlf.: e-post: - afd.: Reservoirgeolog). Et sæt består af 7 oliemættede prøver + en umættet og vil koste omkring 300,-kr.. Forsøg 1. Mål længde og diameter på kalkprøven med olie i. 2. Den oliemættede kridtprøve anbringes i en stor plast-injektionssprøjte, som fyldes med vand til prøven er dækket (hold en finger for enden). Stemplet sættes forsigtigt i mens sprøjten vendes med spidsen opad, sprøjten tømmes for luft og stilles i et stativ. Det ses, hvorledes olien spontant kommer ud, som følge af at vand suges ind i kalken pga de store kapillærkræfter i de meget små porer der er i kalken (hårrørs-virkning). Kridtet består af calcit, som af natur er vandvådt, dvs. mineraloverfladen tiltrækker vand. Olien lægger sig øverst i sprøjten, og kan suges op med en lille sprøjte og mængden kan aflæses. Afhængig af olietypen vil det tage nogle timer til et par døgn at få drevet det meste af olien ud. 1

2 Beregninger A. Af porøsiteten 1. Mål længde og diameter på kalkprøven uden olie i. 2. Vej prøven. 3. Beregn voluminet af porer i kalkprøven udfra totalvoluminet, vægten og densiteten af calcit som er 2,71 g/cm 3, idet vi går ud fra at der kun er calcit i prøven. Skriv op hvordan I laver beregningen. B. indvindingsprocenten 1. Mål mængden af olie der er kommet ud. 2. Tag den før målte længde og diameter og beregn volumen af prøven. 3. Antag at den har samme porøsitet som den prøve I har målt på uden olie i, og beregn indvindingsprocenten. Rapport I skal lave en individuel rapport. Den skal indeholde følgende punkter: 1. Formål 2. Teori: Besvar de to spørgsmål. A) Forklar hvordan kridt og olie dannes. Lav meget gerne tegninger til. B) Forklar hvordan det indgår i det globale kulstofkredsløb. 3. Hypotese: Opskriv jeres bud på hvor mange ml olie I forventede, der kom ud af kridtet. 4. Fremgangsmåde: Beskriv hvad I har gjort. Lav gerne tegninger til. 5. Resultater: Omfatter dels en beskrivelse (evt. et billede eller en tegning af hvad der skete med kernen med olie i). Endvidere jeres beregninger af porøsiteten og indvindingsprocenten. 6. Diskussion og konklusion Kommenter resultaterne, sammenhold jeres hypotese med resultatet og konkluder på hvad I fagligt er blevet klogere på ved at lave dette forsøg. Læsestof Geologiportalen: 2

3 Kridt Skrivekridt er 98 % calcit, og består udelukkende af meget små calcitkrystaller dannet af mikroskopiske kalkalger i Kridttidshavet. Calcit er et mineral der består af CaCO 3. 2 mikrometer Scanning-mikroskop-billede af et stykke kridt fra Stevns som viser coccolith plader der er skeletrester fra kalkalger, og de meget små calcitkrystaller som de er opbygget af. Læg mærke til de meget små porer som olien skal igennem. 3

4 coccolit 20 mikrometer = 0.02 mm Scanning-mikroskop-billede af et menneske hår med en enkelt coccolith på. 4

5 Beregningsskema til olieudvinding fra kridt A. Beregning af porøsiteten i kridt-prøven uden olie 1. Vej prøven vægt = g 2. Udregn hvor mange cm 3 kalk det svarer til, idet vægtfylden af ren kalk er 2.71 g/cm 3 Vægt/2.71 = cm 3 = v 3. Beregn så prøvens aktuelle rumfang V ved at måle diameter og højde Diameter: cm beregn radius r = (D/2) cm Højde = h : cm Beregn rumfanget V ud fra formlen: π r 2 h = cm 3 = V (π = 3.14) 4. Forskellen på de to rumfang skyldes at der er masser af små hulrum indeni prøven, så volumen af porer = V-v= p cm 3 D.v.s. porøsiteten i procent er (p *100)/V = % B. Beregning af indvindingsgrad fra kridtprøven med olie Indvindingsgraden er den andel af olien der er i prøven fra starten som vi kan få ud med vand-metoden 1. Beregn prøvens aktuelle rumfang Vs ved at måle diameter og højde Diameter: cm beregn radius r = (D/2) cm Højde = h : cm Beregn rumfanget V ud fra formlen: π r 2 h = cm 3 Vs (π = 3.14) 2. Beregn olie-indholdet i prøven ved at antage den har samme porøsitet som den første prøve, og at den er helt fyldt med olie. (Vs* porøsitet)/100 = cm 3 olie 3. Mål hvor meget olie der er kommet ud = U cm 3 idet 1 ml=1 cm 3 4. Beregn indvindingsgraden = (U*100)/olie = % 5

6 Måleopstilling og beregning Seismik En forenklet tegning af en seismisk undersøgelse ser således ud: Figur 1: Ved et hammerslag udsendes en seismisk bølge. Bølgeudbredelsen beskrives vha. strålebaner, som står vinkelret på bølgefronterne. Figur 2: Strålebaner i to-lags model, hvor V 2 > V 1. Bølger, som løber langs strålebaner, der rammer lag 2 med den kritiske vinkel, i c, danner kritisk refrakterede bølger, som løber langs laggrænsen ml. lag 1 og 2 med hastigheden i lag 2, V 2. Den kritisk refrakterede bølge sender energi tilbage mod jordoverfladen langs strålebaner med en vinkel på i c i forhold til normalen på grænsefladen. Ved hjælp af geofonerne vil man nu kunne registrere, hvornår bølgen fra den seismiske kilde når frem til de enkelte geofoner. Man vil kunne se at bølgen først ankommer til geofonen, der står tættest på den seismiske kilde og 6

7 senere til de andre. Ved at plotte tiden for bølgeankomsten som funktion af afstanden for den seismiske kilde, vil man kunne få en graf der fx ser således ud: Figur 3: Eksempel på plottede tider for en seismisk måling. Vis xc, hvor Linie 2 starter. Linje 2 bør stiples fra xc og ind til x=0. Tiden, som det tager en bølge at bevæge sig igennem et ensartet materiale, er lineær. På grafen kan vi se, at punkterne ikke er lineære. Til gengæld kan vi lave to linier (den røde linie 1 og 2). Det betyder, at der er to forskellige lag. Linie 2 er den refrakterede bølges løbetidskurve. X c er den mindste afstand, hvor den refrakterede bølge kan detekteres og kaldes den kritiske afstand. 7

8 Afstanden (dybden) ned til laggrænsen mellem de to lag kan findes via formlen: 1 z = ν 2 1t i cosθ c Hvor: z = dybden ν 1 = hastigheden i det øverste lag t i = skæring med tidsaksen for den ekstrapolerede linie 2 Ө= den kritiske brydningsvinkel ν 1 kan findes v.h.a. hældningen af Linie1, ά1. v1 beregnes som 1/ά1. På samme måde kan v2 findes v.h.a. hældningskoefficienten for Linie2, ά2: v2=1/ά2. Өc kan herefter findes ved at benytte brydningsloven: sin Өc =v1/v2 t i aflæses på grafen. Ud fra ovenstående løbetidskurver og formler er det således muligt at bestemme de seismiske hastigheder og finde dybden til laggrænsen i en tolags jordmodel, hvor lagene er ensartede og grænsen mellem de to lag ikke hælder. Disse forudsætninger er forsimplinger, som almindeligvis ikke er opfyldt. Til trods for dette giver ovenstående simple relationer ofte meget brugbare resultater i praksis. I Tabel 1 er typiske seismiske P-bølgehastigheder for nogle udvalgte materialer gengivet. For en mere detaljeret gennemgang af ovenstående se appendiks A. Materiale (bjergart) P-bølge hastighed (m/s) Sand/grus (tørt) Sand/grus (vandmættet) Sandsten Ler Kalk Granit Tabel 1: Bemærk: Seismiske hastigheder stiger normalt med voksende dybde pga. tiltagende kompaktion af bjergarterne. 8

Bestemmelse af hydraulisk ledningsevne

Bestemmelse af hydraulisk ledningsevne Bestemmelse af hydraulisk ledningsevne Med henblik på at bestemme den hydrauliske ledningsevne for de benyttede sandtyper er der udført en række forsøg til bestemmelse af disse. Formål Den hydrauliske

Læs mere

ELEVOPGAVER Quest for Oil. Elevopgaver Side 1

ELEVOPGAVER Quest for Oil. Elevopgaver Side 1 ELEVOPGAVER Quest for Oil Elevopgaver Side 1 Elevopgaver Side 2 A. Indholdsfortegnelse Elevopgaver 1. Spilopgaver... 3 2. Temaopgaver 2.1 Temaet Sedimentologi (opgave 1-6)... 5 2.2 Temaet Seismik (opgave

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Naturvidenskabeligt grundforløb

Naturvidenskabeligt grundforløb Før besøget i Tivoli De fysiologiske virkninger af g-kræfter. Spørgsmål der skal besvares: Hvorfor er blodtrykket større i fødderne større end blodtrykket i hovedet? Hvorfor øges pulsen, når man rejser

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD

MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD Kuglestød er en af atletikkens kastediscipliner, hvor man skal forsøge at støde en metalkugle længst muligt. Historisk set kan kuglestød føres tilbage til antikkens

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Rapporter og opgaver - geografi C LAB-kursus

Rapporter og opgaver - geografi C LAB-kursus Rapporter og opgaver - geografi C LAB-kursus Rapporter Jordbundsrapport (jordbundsprofil og laboratorieforsøg) Klimarapport (Det globale klima - hydrotermfigurer og klimamålinger) Opgaver Stenbestemmelse

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014 Vejledning til udvalgte opgave fra Matematik B, sommer 2014 Opgave 7 Størrelsen og udbudsprisen på 100 fritidshuse på Rømø er indsamlet via boligsiden.dk. a) Grafisk præsentation, der beskriver fordelingen

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER

SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER De supplerende aktiviteter er ikke nødvendige for at deltage i Masseeksperimentet, men kan bruges som et supplement til en undervisning, der knytter an til Masseeksperimentet

Læs mere

Beregninger Microsoft Excel 2010 Grundforløb Indhold

Beregninger Microsoft Excel 2010 Grundforløb Indhold Indhold Arealberegning... 2 Kvadrat/rektangulær... 2 Rektangel... 2 Kvadrat... 2 Cirkel... 2 Omkredsberegning... 3 Kvadrat/rektangulær... 3 Rektangel... 3 Kvadrat... 3 Cirkel... 3 Rumfangsberegning...

Læs mere

Berlin eksempel på opgavebesvarelse i Word m/mathematics

Berlin eksempel på opgavebesvarelse i Word m/mathematics Berlin eksempel på opgavebesvarelse i Word m/mathematics 1.1 Gennemsnitsfarten findes ved at dividere den kørte strækning med den forbrugte tid i decimaltal. I regnearket bliver formlen =A24/D24. Resultatet

Læs mere

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist.

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Forudsætninger: funktioner (matematik) og primære vindsystemer

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008

Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008 ROSKILDE TEKNISKE GYMNASIUM Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008 Louise Regitze Skotte Andersen, Klasse 2.4 Lærer: Ashuak Jacob France 2 Indhold Indledning... 3 Materialeliste...

Læs mere

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver Blandede opgaver (2) 1: Tegningen viser et værelse med skråvæg. To af væggene kaldes A og B. a: Find arealet af væg A. b: Find arealet af væg B. A B 1 m 465 cm 4 m c: Tegn væggene i målestoksforhold 1:50.

Læs mere

I denne opgave arbejder vi med følgende matematiske begreber:

I denne opgave arbejder vi med følgende matematiske begreber: I denne opgave arbejder vi med følgende matematiske begreber: En meter: 1 m. En kvadratmeter: 1 m. 1 m 2 1 m. En kubikmeter: 1 m 3 Radius-beregning af træet Find omkredsen af træet, mål i brysthøjde. Ca.

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

Dyr i bevægelse Arbejdsark til eleverne

Dyr i bevægelse Arbejdsark til eleverne Måling af iltforbrug hos rotte eller hamster i aktivitet Tanker før forsøget I atmosfærisk luft er der ca. 21% ilt. Hvad bruger levende dyr ilt til? Forklar kort iltens vej fra indånding til udånding hos

Læs mere

Matematik A eksamen 14. august Delprøve 1

Matematik A eksamen 14. august Delprøve 1 Matematik A eksamen 14. august 2014 www.matematikhfsvar.page.tl Delprøve 1 Info: I denne eksamensopgave anvendes der punktum som decimaltal istedet for komma. Eks. 3.14 istedet for 3,14 Opgave 1 - Andengradsligning

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx131-MAT/A-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Hårde nanokrystallinske materialer

Hårde nanokrystallinske materialer Hårde nanokrystallinske materialer SMÅ FORSØG OG OPGAVER Side 54-59 i hæftet Tegnestift 1 En tegnestift er som bekendt flad i den ene ende, hvor man presser, og spids i den anden, hvor stiften skal presses

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Differentialregning. Et oplæg Karsten Juul L P

Differentialregning. Et oplæg Karsten Juul L P Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene

Læs mere

Dyr i bevægelse. Måling af iltforbrug hos pattedyr eller krybdyr i hvile. Arbejdsark til eleverne. Naturhistorisk Museus Århus

Dyr i bevægelse. Måling af iltforbrug hos pattedyr eller krybdyr i hvile. Arbejdsark til eleverne. Naturhistorisk Museus Århus Måling af iltforbrug hos pattedyr eller krybdyr i hvile Tanker før forsøget I atmosfærisk luft er der ca. 21% ilt. Hvad bruger levende dyr ilt til? Forklar kort iltens vej fra indånding til udånding hos

Læs mere

TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 254 + 568 = 13. 29,85 2. 756 239 = 14. 88,16 3. 3 515 =

TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 254 + 568 = 13. 29,85 2. 756 239 = 14. 88,16 3. 3 515 = AEU december 010 Navn: CPR: TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 54 + 568 = 13. 9,85. 756 39 = 14. 88,16 3. 3 515 = 4. 390 : 5 = Løs ligningen 5. x + 8 = 6 x = 6. 6x = 16 x = 7. 35 %

Læs mere

Tryk. Tryk i væsker. Arkimedes lov

Tryk. Tryk i væsker. Arkimedes lov Tryk. Tryk i væsker. rkimedes lov 1/6 Tryk. Tryk i væsker. rkimedes lov Indhold 1. Definition af tryk...2 2. Tryk i væsker...3 3. Enheder for tryk...4 4. rkimedes lov...5 Ole Witt-Hansen 1975 (2015) Tryk.

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

NATIH OLIE FELTET. Forhistorien

NATIH OLIE FELTET. Forhistorien NATIH OLIE FELTET Forhistorien Forfatteren til denne artikel har tidligere fortalt (Geologisk Nyt nr. 1,2003) om overflade geologien for Natih antiklinalen i Oman. I den forbindelse blev det nævnt at antiklinalen

Læs mere

Differential- ligninger

Differential- ligninger Differential- ligninger Et oplæg 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der kan gennemgås før man går i gang med en lærebogs fremstilling af emnet differentialligninger Læreren skal

Læs mere

Skifergas i Danmark en geologisk analyse

Skifergas i Danmark en geologisk analyse Skifergas i Danmark en geologisk analyse Niels H. Schovsbo Reservoir geolog De Nationale Geologiske Undersøgelser for Danmark og Grønland Klima-,Energi- og Bygningsministeriet Måske Måske ikke Artikel

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Matematik B. Højere forberedelseseksamen. Skriftlig prøve (4 timer) Fredag den 11. december 2009 kl. 9.00-13.00 HFE093-MAB

Matematik B. Højere forberedelseseksamen. Skriftlig prøve (4 timer) Fredag den 11. december 2009 kl. 9.00-13.00 HFE093-MAB Matematik B Højere forberedelseseksamen Skriftlig prøve (4 timer) HFE093-MAB Fredag den 11. december 2009 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Profil af et vandløb. Formål. Teori

Profil af et vandløb. Formål. Teori Dato Navn Profil af et vandløb Formål At foretage systematiske feltobservationer og målinger omkring en ås dynamik At udarbejde faglige repræsentationsformer, herunder tegne et profiludsnit At måle strømningshastighed

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3 Gaslovene SH ver. 1.2 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Vejledende løsninger kapitel 9 opgaver

Vejledende løsninger kapitel 9 opgaver KAPITEL 9 OPGAVE 1 a) Hypoteser H 0 : Der er uafhængighed (ingen sammenhæng) i kontingenstabellen H 1 : Der er afhængighed (sammenhæng) i kontingenstabellen Observerede værdier Ny metode Gammel metode

Læs mere

STUDENTEREKSAMEN AUGUST-SEPTEMBER 2005 SPROGLIG LINJE NATURFAG. Fredag den 12. august 2005 kl. 9.00-13.00

STUDENTEREKSAMEN AUGUST-SEPTEMBER 2005 SPROGLIG LINJE NATURFAG. Fredag den 12. august 2005 kl. 9.00-13.00 2005-17-2 STUDENTEREKSAMEN AUGUST-SEPTEMBER 2005 SPROGLIG LINJE NATURFAG Fredag den 12. august 2005 kl. 9.00-13.00 Opgavesættet består af 8 opgaver med tilsammen 20 spørgsmål. De stillede spørgsmål indgår

Læs mere

D1 1 Partikelformede bjergarter

D1 1 Partikelformede bjergarter D1 1 Partikelformede bjergarter Af Kurt Kielsgaard Hansen Sigteanalyse Kornstørrelser kan defineres ved hjælp af sigter med trådvæv med kvadratiske masker. Et korn, som ved en nærmere specificeret forsøgsprocedure

Læs mere

Rumfang af væske i beholder

Rumfang af væske i beholder Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

Måling af spor-afstand på cd med en lineal

Måling af spor-afstand på cd med en lineal Måling af spor-afstand på cd med en lineal Søren Hindsholm 003x Formål og Teori En cd er opbygget af tre lag. Basis er et tykkere lag af et gennemsigtigt materiale, oven på det er der et tyndt lag der

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-1stx131-mat/a-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

Algedråber og fotosyntese

Algedråber og fotosyntese Algedråber og fotosyntese Fotosyntesen er en utrolig kompleks proces, som kan være svær at forstå. Heldigvis kan fotosyntesen illustreres på en måde, så alle kan forstå, hvad der helt præcist foregår i

Læs mere

Brydningsindeks af vand

Brydningsindeks af vand Brydningsindeks af vand Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 15. marts 2012 Indhold 1 Indledning 2 2 Formål

Læs mere

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA GUX Matematik A-Niveau August 05 Kl. 9.00-4.00 Prøveform a GUX5 - MAA Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne til 0 med i alt 5 spørgsmål. De 5 spørgsmål indgår med lige vægt

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

Årsprøve i matematik 1y juni 2007

Årsprøve i matematik 1y juni 2007 Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25

Læs mere

Teori og øvelsesvejledninger til geografi C LAB-kursus

Teori og øvelsesvejledninger til geografi C LAB-kursus Teori og øvelsesvejledninger til geografi C LAB-kursus Indhold Teori - klima- og plantebælter... 2 Klimazoner og plantebælter... 2 Hydrotermfigurer... 4 Vejledning Klimamålinger... 7 Teori jordbund...

Læs mere

1st April 2014 Task A. Alt om olivenolie. - Svarark -

1st April 2014 Task A. Alt om olivenolie. - Svarark - 1st April 2014 Task A Alt om olivenolie - Svarark - Country and Team No. Denmark Team: Name Signature Name Signature Name Signature OPGAVE A1: Undersøgelse af fordampning Biologi - Svarark (TOTAL MARKS

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

Drengenes viden om pyramider

Drengenes viden om pyramider Fibonacieprojekt Pyramider - Matematik 7. klasse - Lundergårdskolen 1. Elevernes observationer: Eleverne startede med at sidde alene og skrive hvad de vidste om pyramider. Eleverne var delt i en drenge-

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Øvelsesvejledning FH Stående bølge. Individuel rapport

Øvelsesvejledning FH Stående bølge. Individuel rapport Teori Stående bølge Individuel rapport Betragt en snøre udspændt mellem en vibrator og et fast punkt. Vibratorens svingninger får en bølge til at forplante sig hen gennem snøren. Så snart bølgerne når

Læs mere

INDVINDING AF OLIE FRA DE DANSKE KALKFELTER

INDVINDING AF OLIE FRA DE DANSKE KALKFELTER Stevns Klint. Øverst ses bryozokalk, hvor undersiden bølger svagt; i lavningerne mellem bølgetoppene findes visse steder et tyndt lag ler, "fiskeleret". Fiskeleret vidner om betydeligt ændrede geologiske

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Rapporter og opgaver - geografi C LAB-kursus

Rapporter og opgaver - geografi C LAB-kursus Rapporter og opgaver - geografi C LAB-kursus Her på siden er en oversigt over de 2 rapporter og 4 opgaver, I skal aflevere efter kurset. Rapporterne og opgaverne er nærmere beskrevet i dette kompendium.

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Solindstråling på vandret flade Beregningsmodel

Solindstråling på vandret flade Beregningsmodel Solindstråling på vandret flade Beregningsmodel Formål Når solens stråler rammer en vandret flade på en klar dag, består indstrålingen af diffus stråling fra himlen og skyer såvel som solens direkte stråler.

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Våben på volden (Elevark)

Våben på volden (Elevark) () Bum-Bum Zacharias I 1849 var der i Fredericia var der ved artilleriet en sergent, der havde to store interesser - kanoner og brændevin. Da han også havde et dybt had til slesvig-holstenerne, afreagerede

Læs mere

Vejledning i test af nedsivningsevne

Vejledning i test af nedsivningsevne Vejledning i test af nedsivningsevne Etablering af nedsivningsanlæg i haver Hvis du ønsker at nedsive dit regnvand i din have, kan du selv beregne, hvor stort dit nedsivningsanlæg skal være, og hvordan

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Respiration og stofskifte

Respiration og stofskifte Respiration og stofskifte I Zoo skal I måle organismers respiration vha. to forskellige metoder, og derudfra beregne organismernes stofskifte. Formålet med forsøgene er at undersøge, hvad organismernes

Læs mere

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken.

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken. I alle opgaver er der afrundet til det antal betydende cifre, som oplysningen med mindst mulige cifre i opgaven har. Opgave 1 Færdig Spændingsfaldet over varmelegemet er 3.2 V, og varmelegemet omsætter

Læs mere

Brugen af seismik og logs i den geologiske modellering

Brugen af seismik og logs i den geologiske modellering Brugen af seismik og logs i den geologiske modellering Med fokus på: Tolkningsmuligheder af dybereliggende geologiske enheder. Detaljeringsgrad og datatæthed Margrethe Kristensen GEUS Brugen af seismik

Læs mere

I Indledning. I Indledning Side 1. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

I Indledning. I Indledning Side 1. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Side 1 0101 Beregn uden hjælpemidler: a) 2 9 4 6+5 3 b) 24:6+4 7 2 13 c) 5 12:4+39:13 d) (1+4 32) 2 55:5 0102 Beregn uden hjælpemidler: a) 3 6+11 2+2½ 10 b) 49:7+8 11 3 12 c) 4 7:2+51:17 d) (5+3 2) 3 120:4

Læs mere

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009 Lysets hastighed Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.1.009 Indholdsfortegnelse 1. Opgaveanalyse... 3. Beregnelse af lysets hastighed... 4 3.

Læs mere

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 STUDENTEREKSAMEN MAJ 2005 2005-11-2 SPROGLIG OG MATEMATISK LINJE HØJERE FORBEREDELSESEKSAMEN MAJ 2005 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 FRANSK BEGYNDERSPROG

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 1 Introduktion... side 3 2 Grundlæggende færdigheder... side 4 2a Finde konstanterne a og b i en formel... side

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Referencelaboratoriet for måling af emissioner til luften

Referencelaboratoriet for måling af emissioner til luften Referencelaboratoriet for måling af emissioner til luften Notat Titel Om våde røggasser i relation til OML-beregning Undertitel - Forfatter Lars K. Gram Arbejdet udført, år 2015 Udgivelsesdato 6. august

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 2 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 2 ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Det store energikørekort

Det store energikørekort Blik- og Rørarbejderforbundet - i forbund med fremtiden El- og Vvs-branchens Uddannelsessekretariat - Højnæsvej 71-2610 Rødovre - tlf.: 36 72 64 00 www.vvs-uddannelse.dk/folkeskole - E-mail: folkeskole@vvsu.dk

Læs mere