Hvordan Kepler fandt sine love

Størrelse: px
Starte visningen fra side:

Download "Hvordan Kepler fandt sine love"

Transkript

1 Hvordan Kepler fandt sine love stronomerne forstod ikke at overmande denne krigsgud (Mars). Men den fortræffelige hærfører Tycho har under 0 års nattevågen udforsket al hans krigslist; og jeg omgik ved hjælp af den moderlige jords omløb selv alle hans krumninger (Johannes Kepler, ) Kepler drømte om at finde planeternes sande baner. Han var klar over at det eneste sted han kunne få adgang til præcise data var hos den danske astronom Tycho Brahe (! ), der havde tilbragt tyve år på øen Hven med at udføre omhyggelige målinger af stjernernes og planeternes postioner. I februar 1600 blev Kepler ansat som matematisk assistent hos Tycho Brahe og fik overdraget arbejdet med at udarbejde en beskrivelse for Mars bane, der var lige så præcis som Tycho Brahes målinger, dvs. den skulle kunne gengive Mars position med en nøjagtighed på 4 buesekunder. Kepler bekendtgjorde i sit overmod, at det ville tage ham 8 dage at løse denne opgave. Det skulle imidlertid komme til at tage ham 6 år at løse problemet med at finde en præcis beskrivelse af den sande bane for Mars. Første trin i løsningen af opgaven er en omhyggelig beregning af udvalgte Mars postioner rundt langs banen. Udgangspunktet er omløbstiden for Mars omkring en, som blev fastlagt til 687 dage. Hver gang der går 687 dage er Mars altså tilbage i den samme position i forhold til en. Ved at slå op i Tycho Brahes tabeller med 687 dages mellemrum kunne Kepler derfor finde retningen til såvel en som til Mars på sådanne sammenhørende datoer. Men dermed kunne han også beregne vinklen mellem en og Mars på sådanne sammenhørende datoer: Jorden Mars en Jorden 687 dage senere Keplers bestemmelse af Marspositioner Dermed har han to uafhængige sigtelinjer til Mars set fra Jordens to positioner og kan dermed bestemme Mars position i forhold til Jordens to positioner. Forudsætningen for at kunne gennemføre en sådan beregning er derfor, at Kepler kender Jordens position i forhold til en de pågældende datoer (idet han nok kan slå vinklen op i Tycho Brahes tabeller, men Jordens bane er ikke cirkelformet, så han mangler at kende afstanden). Kepler tog her udgangs punkt i en simpel men velprøvet model for Jordens bane omkring en. I denne model er Jordens bane omkring en nok cirkelformet, men en ligger ikke i centrum for banen. I stedet flyttes en ud til et punkt som ligger 0,018 astronomiske enheder fra centrum. Forholdet mellem ens afstand til centrum og Jordens afstand til centrum er altså 0,018. Dette kaldes ens excentricitet e. (Den moderne værdi for excentriciteten er e 0,0167). 1

2 Jord radius astronomisk enhed 0,018 E C Vinklen vokser jævnt Keplers model for Jordens bane Lige modsat en ligger ens antipunkt, og det er omkring dette punkt Jorden roterer med konstant vinkelhastighed. Herved opnåede Kepler, at Jorden bevæger sig hurtigst, når den er tættest på en (i perihelet) og langsomst, når den er fjernest fra en (i aphelet). Modellen gør også rimeligt rede for forskellen i længden af de fire årstider. Selvom vi nu ved, at modellen er forkert, var den altså i så god overensstemmelse med Tycho Brahes data at den ikke forstyrrede de følgende beregninger. På basis af denne model for Jordens bane som altså tillod Kepler at finde Jordens position i forhold til en på et vilkårligt tidspunkt bestemte Kepler nu en lang række positioner for Mars rundt langs banen. Med disse positioner som udgangspunkt blev det klart, at Mars ikke følger en cirkelbane, men nok en oval bane med to symmetriakser og et centrum: Mars b 0,99573a 0,096a a 1,5 E Keplers ovalbane for Mars Forholdet mellem lilleaksen b og storeaksen a kunne Kepler bestemme til b a 0,99573

3 Ydermere stod det klart fra begyndelsen at en ikke lå i centrum for den ovale bane, men forskudt langs storeaksen med en excentricitet givet ved e 0,096, dvs. forholdet mellem ens afstand til centrum og den halve storeakse a er netop givet ved dette tal: e SC a (Den moderne værdi er givet ved 0,0934). I begyndelsen prøvede Kepler nu sig frem med forskellige former for banebeskrivelser baseret på ideen om epicykler, dvs. han lod et fiktivt centrum C * bevæger sig rundt på ovalens omskrevne cirkel og lod så Mars bevæge sig rundt på en eller flere cirkler med centrum i C *. C* Mars Keplers epicykelmodel for Marsbanen 3

4 Keplers første lov: Den første ligning Keplers originaltegning af modellen for Marsbanen Efter fire års forgæves beregninger måtte han imidlertid indse, at han ikke kunne komme videre med epicyklerne. f kringlede omveje gjorde han nu i stedet en bemærkelsesværdig iagttagelse i sin jagt på at forstå ovalens form. Mars b 0,99573a 0,096a Keplers første bemærkelsesværdige iagttagelse Ved at beregne afstanden fra en til Mars på det tidspunkt, hvor Mars krydser lilleaksen opdagede han at afstanden fra en til Mars var endog meget tæt på den halve storeakse: SM (0,096a) + (0,99573a) 1, 00003a a 4

5 Men det er en meget vigtig ledetråd, for blandt alle ovalerne er ellipsen karakteriseret ved at afstanden fra brændpunktet til lilleaksens toppunkt netop er den halve storeakse. Det kunne derfor pege på at baneformen i virkeligheden var elliptisk med en i det ene brændpunkt. Kepler overbeviste nu sig selv om, at ellipsebanen var den søgte kandidat til Marsbanen ved endnu et inspireret gæt: Kepler antog, at det fiktive center C * netop ville passere lilleaksen samtidigt med Mars: C* Mars Keplers anden bemærkelsesværdige iagttagelse Men så er projektionen af forbindelsesstykket mellem en og det fiktive center, dvs. SC * på radius for det fiktive center, dvs. CC * netop lig med den halve storeakse a, dvs. det samme som afstanden fra en til Mars. Kepler fik nu det lykkelige indfald at gætte på, at dette ville være tilfældet overalt langs Mars bane! Projektionen af forbindelsesstykket fra en til det fiktive center C * er netop lig med afstanden fra en til Mars. Kaldes retningsvinklen for den fiktive radius for θ (Keplervinklen) ser vi derfor, at afstanden fra en til Mars er givet ved den simple ligning C* Mars r aecos(θ) θ ae r a ae cos(θ) (Keplers første ligning) 5

6 Spørgsmålet er så blot hvad der fastlægger retningen fra en til Mars. Efter kringlede og endnu flere fejlslagne forsøg gættede Kepler til sidst på, at Mars netop lå på den linje fra det fiktive center C *, der står vinkelret på storeaksen: C* M (a cos(θ), a sin(θ)) (a cos(θ), b sin(θ)) θ S v Keplers model for det fiktive center C * Til sin store glæde opdagede han nemlig, at dette passede perfekt med at banen var en ellipse med en i det ene brændpunkt. I så fald er afstanden fra en til Mars nemlig lig med længden af den tilhørende brændstråle. Men der kender vi jo en simpel formel: r a ex a ea cos(θ) i perfekt overensstemmelse med Keplers første ligning. Vi har her udnyttet, at ellipsen er en fladtrykt cirkel, hvorfor det fiktive center har koordinaterne Mars får så koordinaterne dvs. vi har netop C * ( a cos( θ), a sin( θ)) M ( a cos( θ), b sin( θ)) x a cos(θ) Kepler checkede nu sin ellipsemodel mod Tycho Brahes Marsdata og opdagede at de endelig passede. Overbevist om sin teoris storslåethed overførte han derefter stort set uden videre undersøgelser sin model til alle de øvrige planetbaner, inklusive Jordens bane! Dermed var han nået frem til den første af sine berømte planetlove: 6

7 Keplers første lov: Planeterne bevæger sig i ellipseformede baner omkring en med en i det ene brændpunkt. C* M θ r S fstanden fra en til planeten er givet ved Keplers første ligning r a ae cos(θ) hvor θ er Keplervinklen, dvs. retningsvinklen for den fiktive radius. Bemærkning: I vore dage ville man nok ikke hæfte sig så meget ved den fiktive radius og den tilhørende retningsvinkel θ. I stedet ville man udtrykke afstanden fra en til planeten direkte ved planetens egen retningsvinkel v i forhold til storeaksen. Hertil lægger vi mærke til, at vi har to formler for x-koordinaten til planeten. Dels kan den udtrykkes direkte ved retningsvinklen: x ae + r cos(v) Dels kan den som før udtrykkes ved hjælp af Keplervinklen θ, dvs. der gælder også: Der gælder derfor sammenhængen: x a cos(θ) ae + r cos( v) a cos( θ) r cos( v) a cos( θ) ae er cos( v) aecos( v) ae Sammenligner vi det med Keplers første lov: r a ae cos(θ) ser vi, at de minder meget om hinanden, idet leddet aecos(θ) optræder i dem begge, men med modsat fortegn. Vi kan derfor nemt eliminere dette led: er cos( v) + r ae cos( θ) ae Men så er det jo trivielt at isolere r: + a ae cos( θ) a(1 e ) 7

8 a(1 e ) r 1+ e cos( v) Denne formel har ydermere den fordel at den også gælder for hyperbelbaner og passende omskrevet endda også for parabelbaner. Hertil bemærker vi, at når v 90, så er der netop tale om den halve bredde, dvs. p. Samtidigt er cos(v) 0, hvorfor vi slutter at der må gælde p a(1 e Dermed kan formlen for ellipsen også skrives på formen ) p r 1+ e cos( v) og det er på denne form, den kan anvendes på alle keglesnit! Men som vi skal se er den ikke til nogen hjælp, når vi kommer til Keplers anden lov! 8

9 Keplers anden lov: Den anden ligning Det lykkedes også for Kepler gennem kringlede omveje at fastlægge dynamikken for banebevægelsen. Udgangspunktet var hans primitive cirkelmodel for Jordens bevægelse, der i første omgang også blev brugt på planeterne: Planet Vinklen vokser jævnt C En simpel model for planetdynamik Udgangspunktet var en excentrisk sol med et modsat antipunkt, hvor vinklen til planeten med udgangspunkt i antipunktet vokser jævnt. Det fører til, at planeten bevæger sig langsomst i det fjerneste punkt fra en, dvs. aphelet, og tilsvarende hurtigst i det nærmeste punkt, dvs. perihelet. Det passede fint med en generel observation om planethastighederne, ifølge hvilken de synes at bevæge sig langsommere, jo længere væk de var fra en. Kepler kiggede nu nærmere planetens bevægelse lige i nærheden af aphelet og tilsvarende lige i nærheden af perihelet. I stedet for at kigge på vinklen fra antipunktet, betragtede han nu forbindelseslinjen fra planeten til en: H θ C θ Planet h Kepler opdager arealloven 9

10 Kepler vidste nu, at planeten i det samme lille tidsrum t ville overstryge den samme lille vinkel θ set fra antipunktet. Men så vil de to små retvinklede trekanter (med fælles toppunkt i ) være ligedannede, dvs. højderne h og H vil forholde sig som afstandene til antipunktet: h H R R Re + Re R(1 e) R(1 + e) 1 e 1+ e Ser vi i stedet på forbindelseslinjen til en, ser vi derfor at de tilsvarende retvinklede trekanter (med fælles toppunkt i ens centrum), har samme areal: 1 e 1+ e 1 ½h G ½h R (1 + e) ½H R (1 + e) ½H R (1 e) ½ H g De arealer, der overstryges af forbindelseslinjen til en er derfor lige store. Selv om Kepler kun havde argumenteret for reglen i forbindelse med meget små tidsrum lige omkring aphelet og perihelet udvidede han den til vilkårlige tidsrum overalt langs banen. I stedet for vinklen set fra antipunktet er det altså arealet set fra en, der vokser jævnt. Og selv om cirkelbanen i virkeligheden er er forkert og må erstattes med en ellipsebane, flyttede han blot beskrivelsen med sig over til ellipsen (hvor antipunktets rolle overtages af det andet brændpunkt), og nåede på den måde til sidst frem til den berømte anden lov. Keplers anden lov: Hvis en, der befinder sig i det ene brændpunkt, forbindes med planeten, så vil det overstrøgne areal vokse jævnt med tiden. Da hele ellipsens areal er πab, vil det overstrøgne areal derfor være givet ved formlen overstrøget πab t T hvor T er omløbstiden og t er den tid, der er gået siden planeten startede i perihelet (svarende til retningsvinklen v 0 ). 10

11 Kepler fandt nu en formel for det overstrøgne areal. Keplers arealberegning Først udvides det overstrøgne areal til en hel centralsektor med toppunkt i ellipsens centrum. Det sker ved at tilføje den viste trekant. Dernæst udnyttes det, at ellipsen er en fladtrykt cirkel med fladtrykningsfaktoren a b, hvorfor der må gælde ellipsesektor b a cirkelsektor b a θ π πa 1 θab Det samme gælder for trekanterne: ellipsetre kant b b 1 1 cirkeltrek ant a ae sin( θ) abe sin( θ) a a lt i alt finder vi derfor det følgende udtryk for det overstrøgne areal: overstrøge t 1 1 ellipse trekant θab abe sin( θ) Kombinerer vi de to fundne udtryk for det overstrøgne areal finder vi hermed Keplers anden ligning: πab t T 1 1 π θab abe ( θ) t θ esin( θ) T Læg mærke til at den giver tiden t (fra perihelpassagen) som funktion af Keplervinklen θ. Det ville selvfølgelig være endnu bedre, om vi kunne have fundet Keplervinklen θ som funktion af tiden t. Men det lader sig desværre ikke gøre, da ligningen ikke kan løses eksplicit med hensyn til θ. 11

12 Som det ses af ligningen bevæger det fiktive center C * sig ikke jævnt rundt på cirklen, idet der er en lille korrektion e sin(θ), der skal trækkes fra. Men forskellen er så lille, fordi excentriciteten e er så lille, at vi kan løse ligningen iterativt: θ π t + e sin( θ) T Hvis vi for eksempel vil finde Keplervinklen hørende til en kvart periode, fås derfor i første omgang: π T θ π T 4 Indsættes det nu i den itereative formel fås i første omgang: θ π π π + e sin( ) + e I næste omgang fås så: θ π π + e sin( + e) π + e cos( e) osv. I løbet af gangske få iterationer vil værdien nu stabilisere sig på et bestemt decimaltal. Med e 0,096 fås således: ltså er Keplervinklen givet ved θ (målt i radianer!). Det fiktive center C * befinder sig nu i punktet (a cos(θ), a sin(θ)), mens planeten befinder sig i punktet (a cos(θ), b sin(θ)), og vi er derfor nu i stand til at regne sig frem i hvilken retning set fra Jorden vi skal kigge for at få øje på planeten en kvart periode efter at den har passeret perihelet. Dermed var Kepler nået frem til kronen på sit værk: Han kunne nu opstille planettabeller over ens, månens og planeternes fremtidige positioner med hidtil uset nøjagtighed. Det er yderst bemærkelsesværdigt, at Kepler nåede frem til både at finde en korrekt beskrivelse af baneformen, og af dynamikken for planetens bevægelse rundt i ellipsebanen, på et tidspunkt, hvor den moderne differentialregning ikke var opfundet. Det blev Newton, der senere hen skulle såvel opfinde differentialregningen, som bruge den i forbindelse med sin berømte gravitationslov til at udlede Keplers love på et fysisk grundlag. Men det er en anden historie. 1

Keplers love og Epicykler

Keplers love og Epicykler Keplers love og Epicykler Jacob Nielsen Keplers love Johannes Kepler (57-60) blev i år 600 elev hos Tyge Brahe (546-60) i Pragh, og ved sidstnævntes død i 60 kejserlig astronom. Kepler stiftede således

Læs mere

Trigonometri og afstandsbestemmelse i Solsystemet

Trigonometri og afstandsbestemmelse i Solsystemet Trigonometri og afstandsbestemmelse i Solsystemet RT1: fstandsberegning (Fra katederet) 5 RT2: Bold og Glob 6 OT1:Bestemmelse af Jordens radius 9 OT2:Modelafhængighed 11 OT3:fstanden til Månen 12 OT4:Månens

Læs mere

Venus relative størrelse og fase

Venus relative størrelse og fase Venus relative størrelse og fase Steffen Grøndahl Planeten Venus er værd at studere i teleskop. Med blot en forstørrelse på 20-30 gange, kan man se, at Venus ikke er punktformet og at den ligesom Månen

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Mellem stjerner og planeter

Mellem stjerner og planeter Mellem stjerner og planeter Et undervisningsmateriale for folkeskolens 8. til 10. klassetrin om Tycho Brahes målinger af stjernepositioner samt ændringen af verdensbilledet som følge af målingerne. Titelbladet

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Mellem stjerner og planeter

Mellem stjerner og planeter Mellem stjerner og planeter Et undervisningsmateriale for folkeskolens 4. til 7. klassetrin om Tycho Brahes målinger af stjernepositioner Titelbladet fra Tycho Brahes bog De Nova Stella, udgivet i 1573.

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Mellem stjerner og planeter

Mellem stjerner og planeter Mellem stjerner og planeter Et undervisningmateriale for gymnasieklasser om begrebet parallakse og statistik. Titelbladet fra Tycho Brahes bog De Nova Stella, udgivet i 1573. Oversat fra latin står der

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

. Verdensbilledets udvikling

. Verdensbilledets udvikling . Verdensbilledets udvikling Vores viden om Solsystemets indretning er resultatet af mange hundrede års arbejde med at observere himlen og opstille teorier. Stjernerne flytter sig ligesom Solen 15' på

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Kvadratrodsberegning ved hjælp af de fire regningsarter

Kvadratrodsberegning ved hjælp af de fire regningsarter Kvadratrodsberegning ved hjælp af de fire regningsarter Tidligt i historien opstod et behov for at beregne kvadratrødder med stor nøjagtighed. Kvadratrødder optræder i forbindelse med retvinklede trekanter,

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Formalia Fy/hi opgave pa Svendborg Gymnasium og HF

Formalia Fy/hi opgave pa Svendborg Gymnasium og HF Formalia Fy/hi opgave pa Svendborg Gymnasium og HF På SG har vi i slutningen af 1.g en mulighed for at lave en mindre skriftlig opgave i historie i samarbejde med et andet af klassens fag. Formålet med

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Afstande Afstande i universet

Afstande Afstande i universet Side 1 Til læreren i universet Her får man en fornemmelse af rummeligheden i universet at stjernerne ikke, som antaget i Middelalderen, sidder på indersiden af en kugleflade, men i stedet er spredt i rummet

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

Anvendelser af integralregning

Anvendelser af integralregning Anvendelser af integralregning I 1600-tallet blev integralregningen indført. Vi skal se, hvor stærkt et værktøj det er til at løse problemer, som tidligere forekom uoverstigelige. I matematik-grundbogen

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Modul 11-13: Afstande i Universet

Modul 11-13: Afstande i Universet Modul 11-13 Modul 11-13: Afstande i Universet Rumstationen ISS Billedet her viser Den Internationale Rumstation (ISS) i sin bane rundt om Jorden, idet den passerer Gibraltar-strædet med Spanien på højre

Læs mere

To-legemeproblemet Michael Andrew Dolan Møller Rosborg Gymnasium og Hf-kursus November 2012 Trykfejl rettet 14. oktober 2013

To-legemeproblemet Michael Andrew Dolan Møller Rosborg Gymnasium og Hf-kursus November 2012 Trykfejl rettet 14. oktober 2013 To-legemeproblemet Michael Andrew Dolan Møller Rosborg Gymnasium og Hf-kursus November 01 Trykfejl rettet 14. oktober 013 To-legemeproblemet af Michael A. D. Møller. November 01. side 1/0 Indholdsfortegnelse

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Benyt evt. programmeringsguiden Kør frem vælg sekunder i stedet for rotationer.

Benyt evt. programmeringsguiden Kør frem vælg sekunder i stedet for rotationer. Lego Mindstorms Education NXT nat1 nat april 2014 Dette dokument ligger på adressen: http://www.frborg-gymhf.dk/eh/oev/legonxtnat1nat2014.pdf Følgende er en introduction til Lego Mindstorms NXT. Her er

Læs mere

Solindstråling på vandret flade Beregningsmodel

Solindstråling på vandret flade Beregningsmodel Solindstråling på vandret flade Beregningsmodel Formål Når solens stråler rammer en vandret flade på en klar dag, består indstrålingen af diffus stråling fra himlen og skyer såvel som solens direkte stråler.

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2013-forår 2014 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)

Læs mere

Den ældste beskrivelse af en jakobsstav (o.1340)

Den ældste beskrivelse af en jakobsstav (o.1340) Den ældste beskrivelse af en jakobsstav (o.1340) af Ivan Tafteberg Jakobsen Jakobsstaven er opfundet af den jødiske lærde Levi ben Gerson, også kendt under navnet Gersonides eller Leo de Balneolis, der

Læs mere

Matematisk modellering: Hvor tidligt står Venus op?

Matematisk modellering: Hvor tidligt står Venus op? Matematisk modellering: Hvor tidligt står Venus op? Kasper Bjering Søby Jensen, ph.d. studerende i matematikkens didaktik ved Roskilde Universitet I LMFK bladet 2/2012 bragtes artiklen Anvendelse og modellering

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Svingninger. Erik Vestergaard

Svingninger. Erik Vestergaard Svingninger Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2009. Billeder: Forside: Bearbejdet billede af istock.com/-m-i-s-h-a- Desuden egne illustrationer. Erik Vestergaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Enkelt og dobbeltspalte

Enkelt og dobbeltspalte Enkelt og dobbeltsalte Jan Scholtyßek 4.09.008 Indhold 1 Indledning 1 Formål 3 Teori 3.1 Enkeltsalte.................................. 3. Dobbeltsalte................................. 3 4 Fremgangsmåde

Læs mere

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side VisiRegn ideer 5 Eksperimenter med areal og rumfang Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Areal og Rumfang 2 Red burhønsene. Vejledn. 3-7 Største

Læs mere

Transit af XO-2b. Jonas Bregnhøj Nielsen. Lars Fogt Paulsen

Transit af XO-2b. Jonas Bregnhøj Nielsen. Lars Fogt Paulsen Transit af XO-2b Udarbejdet af: Kasper Lind Jensen Jonas Bregnhøj Nielsen Lars Fogt Paulsen Indholdsfortegnelse Baggrund... 3 XO-2b... 4 Beskrivelse af observationer... 4 Datareduktion... 5 Diskussion...

Læs mere

Verdensbilleder. Oldtidskundskab C og Fysik B Jens Jensen 3x Rungsted Gymnasium

Verdensbilleder. Oldtidskundskab C og Fysik B Jens Jensen 3x Rungsted Gymnasium Verdensbilleder Oldtidskundskab C og Fysik B Jens Jensen 3x Rungsted Gymnasium 1 Indholdsfortegnelse Indhold Problemformulering... 3 Underspørgsmål... 3 Materialer, metoder og teorier... 3 Delkonklusioner...

Læs mere

Bevægelse i to dimensioner

Bevægelse i to dimensioner Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

GeoGebra 3.0.0.0 Quickstart. det grundlæggende

GeoGebra 3.0.0.0 Quickstart. det grundlæggende GeoGebra 3.0.0.0 Quickstart det grundlæggende Grete Ridder Ebbesen frit efter GeoGebra Quickstart af Markus Hohenwarter Virum, 28. februar 2009 Introduktion GeoGebra er et gratis og meget brugervenligt

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Triangulering af Danmark.

Triangulering af Danmark. Triangulering af Danmark. De tidlige Danmarkskort De ældste gengivelser af Danmark er fra omkring 200 e.kr. Kortene er tegnet på grundlag af nogle positionsangivelser af de danske landsdele som stammer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 2013 Institution ZBC Ringsted Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Jacob Debel 12HTX11 Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07. Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.54 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve 1: 2

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven):

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven): Kære matematiklærer Formålet med denne materialekasse er, at eleverne med konkrete materialer og it får mulighed for at gøre sig erfaringer, der kan føre til, at de erkender de sammenhænge, der gør sig

Læs mere

Projekt 4.6 Didaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer

Projekt 4.6 Didaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer rojekt.6 idaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer

Læs mere

Evaluering af matematikundervisningen december 2014

Evaluering af matematikundervisningen december 2014 Evaluering af matematikundervisningen december 0 Evalueringen er udarbejdet på baggrund af et ønske om dokumentation for elevernes udbytte af matematikundervisningen. Af forskellige årsager er evalueringen

Læs mere

Mennesket og Universet. En historisk rejse i Kosmos med Louis Nielsen

Mennesket og Universet. En historisk rejse i Kosmos med Louis Nielsen Mennesket og Universet En historisk rejse i Kosmos med Louis Nielsen Big Bang Det voksende Univers Kunst-illustrationer af Universets begyndelse og udvikling Forskellige Verdensbilleder Fra Den flade Jord

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Storcirkelsejlads. Nogle definitioner. Sejlads langs breddeparallel

Storcirkelsejlads. Nogle definitioner. Sejlads langs breddeparallel Storcirkelsejlads Denne note er et udvidet tillæg til kapitlet om sfærisk geometri i TRIPs atematik højniveau 1, ved Erik Vestergaard. Nogle definitioner I dette afsnit skal vi se på forskellige aspekter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Studieretningsprojekter i machine learning

Studieretningsprojekter i machine learning i machine learning 1 Introduktion Machine learning (ml) er et område indenfor kunstig intelligens, der beskæftiger sig med at konstruere programmer, der kan kan lære fra data. Tanken er at give en computer

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Vinkelmåling med sekstant

Vinkelmåling med sekstant Vinkelmåling med sekstant I dette lille projekt skal vi se på princippet i hvordan man måler vinkler med en sekstant, og du skal forklare hvorfor det virker! Hvis du er i besiddelse af en sekstant, eventuelt

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Bemærkninger til den mundtlige årsprøve i matematik

Bemærkninger til den mundtlige årsprøve i matematik Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n =

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n = Opgave 6 a) Se Bilag 2! b) Variablen n isoleres ( L = 2 z 1 α 2 ) 2 L = 2 z 1 α 2 L = 2 z 1 α 2 n = ( ˆp (1 ˆp) n ˆp (1 ˆp) n ˆp (1 ˆp) ( n ( ˆp (1 ˆp) ) 1/2 ) 2 L 2 z 1 α 2 n ) 1/2 Opgave 7 n = 4ˆp (1

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Berlin eksempel på opgavebesvarelse i Word m/mathematics

Berlin eksempel på opgavebesvarelse i Word m/mathematics Berlin eksempel på opgavebesvarelse i Word m/mathematics 1.1 Gennemsnitsfarten findes ved at dividere den kørte strækning med den forbrugte tid i decimaltal. I regnearket bliver formlen =A24/D24. Resultatet

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

Først falder den med 20% af 100 = 20 kr, dernæst stiger den med 30% af 80 = 24 kr.

Først falder den med 20% af 100 = 20 kr, dernæst stiger den med 30% af 80 = 24 kr. FORKLARINGER TIL LOGIK & TAL KORT 121 2 ud af 3 deltagere må være børn, da der er dobbelt så mange børn som voksne. Derfor er der i alt 48 børn med på skovturen. 2 ud af 3 børn må være piger, da der er

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Læringsprogram. Christian Hjortshøj, Bjarke Sørensen og Asger Hansen Vejleder: Karl G Bjarnason Fag: Programmering Klasse 3.4

Læringsprogram. Christian Hjortshøj, Bjarke Sørensen og Asger Hansen Vejleder: Karl G Bjarnason Fag: Programmering Klasse 3.4 Læringsprogram Christian Hjortshøj, Bjarke Sørensen og Asger Hansen Vejleder: Karl G Bjarnason Fag: Programmering Klasse 3.4 R o s k i l d e T e k n i s k e G y m n a s i u m Indholdsfortegnelse FORMÅL...

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I denne test skal I finde ud af, hvilket transportmiddel, I kan køre hurtigst på? Hypotese Hvilket transportmiddel tror I, I kan køre hurtigst på? Hvorfor? Det skal I bruge:

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Vektorregning. Vektorer som lister

Vektorregning. Vektorer som lister 10 Vektorregning Vektorer som lister En vektor laves nemmest som en liste på TI-89 Titanium / Voyage 200. I nedenstående skærmbillede ser du, hvordan man definerer vektorer og laver en simpel udregning

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Jeg ønsker at aflægge prøve på nedenstående eksaminationsgrundlag. Jeg har foretaget ændringer i vejlederens fortrykte forslag: nej ja Dato: Underskrift HUSK at

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 1 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 1 ISBN: 978-87-92488-08-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2012 Roskilde

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007 07-0-6-U Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution Uddannelsescenter Herning, afd. HHX-Ikast Uddannelse Fag og niveau Lærer(e) Hold

Læs mere