Opgave 1: Sommereksamen maj Spørgsmål 1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet:

Størrelse: px
Starte visningen fra side:

Download "Opgave 1: Sommereksamen maj 2000. Spørgsmål 1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet:"

Transkript

1 Dette opgavesæt indeholder løsningsforslag til opgavesættet: Sommereksamen maj 2000 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der skal findes frem til et bestemt tal. I disse situationer skal der helst være enighed om resultaterne. Mange af opgaverne er problembaserede opgaver, hvor løsningen i høj grad vil være afhængig af den argumentation, der bruges i opstillingen af løsningen. I disse situationer vil der kunne opnås andre løsninger, der er lige så tilfredsstillende som dette løsningsforslag eller mere tilfredsstillende, hvis vægten lægges på andre parametre end dem jeg bruger. Opgaverne, der er afleveret er rettet med den udsendte rettevejlednings vejledende vægtning af de enkelte spørgsmål. Opgave : Spørgsmål.: Illustrer afsætningsmulighederne i et diagram, bestem priselasticiteten ved en pris på 400 kr. og forklar efter en indtegning af grænseomsætnings- og grænseomkostningsfunktionerne, om prisen på 400 kr. er optimal. Den grafiske løsning er vist i bilag. Af grafen fremgår det, at groms = gromk på det lodrette stykke ved en mængde på stk. Priselasticiteten må være forskellig i opadgående og nedadgående retning, når der er et knæk på afsætningskurven i dette punkt: e p( ved _ prisstigning) = = eller p 400 ep = = = 4 p b og ved faldende priser: Brian Nielsen Side af

2 e p( ved _ prisfald) = = eller p 400 ep = = = 2 p b Det ses, at den nederste måde i begge tilfælde er den letteste at beregne. For en god ordens skyld beregnes dækningsbidraget, så jeg har noget at sammenligne resultatet i.2 med. Omsætning * 400 kr/stk Variable omkostninger * 225 kr./stk Dækningsbidrag Spørgsmål.2 Bestem optimalprisen og beregn dækningsbidraget ud fra de ændrede forudsætninger Den nye grænseomkostning på 75 kr. er indtegnet i bilag. Da mængden ikke kan aflæses særlig præcis, beregnes den her: p = GROMS = m = m m = p = = 387, Dækningsbidraget kan så beregnes til: Omsætning * 387,50 kr/stk Variable omkostninger * 75,00 kr./stk Dækningsbidrag Det vil sige, at ved at følge salgsdirektørens råd og sænke prisen, så har vi tjent kr. mere ende de ekstra økonomidirektøren forventede. Brian Nielsen Side 2 af 2

3 Spørgsmål.3: Beregn den årlige kapitaltjeneste (afskrivninger og renter) af den foreslåede samlede investering Kapitaltjeneste: Bygninger: *α 25 0% Maskiner: *α 0 0% Spørgsmål.4 Bestem optimalprisen og beregn dækningsbidraget under forudsætning af, at investeringen gennemføres Den nye grænseomkostning på 00 kr. er indtegnet i bilag. Selv om mængden og prisen kan aflæses rimeligt præcist til stk og 350 kr, bekræftes den her: p = m GROMS = m = m = p = = Dækningsbidraget kan så beregnes til: Omsætning * 350 kr/stk Variable omkostninger * 00 kr./stk Dækningsbidrag Spørgsmål.5: Ud fra en sammenligning af resultaterne i de foregående spørgsmål bedes du forklare, hvad du på det foreliggende grundlag vil anbefale. Mer-DB ved investeringen: DB fra opgave.4: DB fra opgave.2: Mer-DB: Brian Nielsen Side 3 af 3

4 Det ses, at merdækningsbidraget ikke kan dække kapitaltjenesten af investeringen i nye bygninger og maskiner. Investeringen er således ikke fordelagtig. Da dækningsbidraget ved outsourcing er højere end det nuværende dækningsbidrag, foreslås det at foretage outsourcingen og sænke prisen til 387,50 kr./stk. Spørgsmål.6: Illustrer afsætnings- og grænseomsætningsfunktionerne i et diagram og bestem den optimale pris og mængde efter indtegningen af de relevante grænseomkostningsfunktioner. Grafen er indtegnet i bilag 2. Som det ses af grafen, har vi nu en afsætningskurve med 3 knæk. Det undersøges om dette giver nogen forskel med de to mulige grænseomkostningskurver. Først Outsourcing: Grænseomsætningskurven skærer grænseomkostningskurven tre gange. De to gange, den skærer nedad er interessante, idet Groms > gromk går til groms < gromk Den første gang groms = gromk svarer til løsningen i spm..2. Anden (dvs egentlig tredje) gang kurverne skærer, ses det af figuren, at arealet under gromk-kurven er større end arealet over gromk-kurven. Det kan således ikke betale sig at gennemføre denne løsning. (DB kan beregnes til kr, der er lavere end DB(.2) på kr.) Ved outsourcing svarer løsningen altså til løsningen fra.2. Ved egenproduktion må det undersøges om sænkningen af grænseomkostningen til kr. 00 bliver rentabel. Løsningen i.2 er jo allerede forkastet i.5 som værende dårligere end outsourcing. Ingen her skærer gromk groms tre gange. Vi undersøger de to gange, hvor groms skærer gromk på vej nedad. Det første skæringspunkt svarer til resultatet fra.4, der allerede er forkastet som mulighed. Det andet (tredje) skæringspunkt ligger ved en mængde på enheder og en pris på 250 kr. kr./stk. Brian Nielsen Side 4 af 4

5 p = GROMS = m = m m = p = = Denne løsning giver et dækningsbidrag på: Omsætning * 250 kr/stk Variable omkostninger * 00 kr./stk Dækningsbidrag Nu er DB ( =) kr. større end løsningen fra.2 og dermed større end kapitaltjenesten af investeringen. Det vil sige, at vi skal investere i bygninger og maskiner og så har vi et bundresultat, der er kr. bedre. Spørgsmål.7: Beregn hvad der nu vil være det økonomisk optimale for Fosdann. Det ses af grafen i bilag.2, hvor grænseomsætningen ved salg i Kina er indtegnet, at nu kan der kun med fordel sælges stk. i Europa og resten af mængden op til kapacitetsgrænsen på stk., altså stk i Kina. Dette giver et DB på: Omsætning Europa: *400 kr/stk Kina: *200 kr/stk Variable omkostninger *00 kr./stk Dækningsbidrag Investeringens kapitalværdi stigning i faste omkostninger Nettoresultat Som det ses er resultatet bedre end de foregående beregninger. Spørgsmål.8: Udarbejd et mindre notat, hvori du trækker en række langsigtede strategiske forhold frem, som du mener bør indgå i beslutningsprocessen, før der træffes endelig beslutning i Fosdann. I det omfang du har integreret disse overvejelser i dine besvarelser af de foregående spørgsmål, skal du ikke gentage dem. Brian Nielsen Side 5 af 5

6 Når vi er i en oligopolsituation med en knækket afsætningskurve bør der være overvejelser om: Hvis vi sænker priserne, hvordan reagerer konkurrenterne så? Hvis vi sænker priserne til under 300 kr. så bliver der tale om et reelt duopol. Hvordan reagerer Peresa så? Hvilke fordele er der ved outsourcing? Frigjort plads Udnyttelse af underleverandørers ekspertise Hvilke ulemper er der? Fyring af medarbejdere Leveringssikkerhed Kompetencen lægges ud til en underleverandør Bindinger i kontrakter. Salg i Kina Er Kina for langt væk til at undgå parallelimport? Hvordan reagerer vore normale marked i Europa på at vi fastholder vore priser med et nyt stort produktionsanlæg? Er branchen så gennemsigtig, at det kommer til kundernes kendskab? Hvor sikker er ordren fra Kina? Hvilken indflydelse har det igangværende politiske systemskift i Kina? Og sikkert mange andre ting. Opgave 2: Spørgsmål 2.: Bestem den optimale seriestørrelse og beregn hvor meget man sparer årligt ved at ændre fra de nuværende 4 serier pr. år (en for hver variant) til det optimale. Wilsons formel bruges til at bestemme den optimale seriestørrelse: 2* D* S 2* *5.000 Q 0 = = = D C * H *( ) 40*0%*( ) P Den optimale seriestørrelse er altså på enheder. Besparelsen pr. år kan beregnes som Brian Nielsen Side 6 af 6

7 *5.000 T( ) = * *40*0% + = *5.000 T(25.000) = * *40*0% + = Besparelse = 4*( T T ) = ( ) (25.000) Spørgsmål 2.2: Giv en økonomisk vurdering af denne merinvestering. Hvis omstillingsomkostningerne falder bort, så er der ingen begrundelse for at producere serier større end enhed. Herved bortfalder lageromkostningerne også og der vil være en årlig besparelse på 4* kr. til at dække omkostningerne ved investeringen. Investeringens kapitaltjeneste er: *α 0 0% Man kan også se på, at investeringen betaler sig hjem på,6 år (statisk pay-back-metode) eller hvis vi tager den dynamiske metode,78 år. Opgave 3: Spørgsmål 3.: Vis produktionsmulighederne for magnetventiler (x) og varmevekslere (y) i et diagram og bestem den optimale produktion af de to produkter. Først opstiles kriterierne for formlerne til begrænsningslinierne: Magnetventil Varmeveksler Kapacitet X Y Anlæg A 0 min 5 min t min Anlæg B 2 min 6 min t min DB Dette giver for maskine A: 0x + 5y y x Og for maskine B: Brian Nielsen Side 7 af 7

8 2x + 6y y 2x og for ISO-DB-linien: 200x + 200y = k( kons tan t, _ der _ maksimeres) y = x + k Herefter kan man beregne støttepunkter til diagrammet: A B ISO-DB X Y Grafen er indtegnet i bilag 3. Af grafen ses det, at der skal produceres: stk. x Magnetventiler og stk. y Varmevekslere. Dette kunne også løses matematisk ved at sætte de to begrænsningslinier lig med hinanden og finde skæringspunktet: 2 x = 2x x = y = * = Da jeg skal bruge det økonomiske resultat til at sammenligne med i 3.2 beregnes dækningsbidraget her: Dækningsbidrag: X: *200 = Y: *200 = Dækningsbidrag Spørgsmål 3.2: Beregn, hvilken indflydelse det får på produktionssammensætningen og det økonomiske resultat i afdelingen. For maskine B fås nu: Brian Nielsen Side 8 af 8

9 2x + 6y y 2x og A B ISO-DB X Y Det ses af tallene, at den nye begrænsningslinie for B ligger uden for begrænsningslinien for A (og den kan ikke være på min tegning fra før), så anlæg A-begrænsningslinien er nu det gældende. Det ses af grafen fra opgave 3., at det optimale så bliver en produktion på x og 0 y. DB bliver så: Dækningsbidrag *200 = Spørgsmål 3.3: Beregn den optimale produktion af x, y og z og det dertil svarende dækningsbidrag. Da A er en knap faktor, må dækningsbidraget pr time på A maksimeres. Dette gøres ved at prioritere produktionen efter differensdækningsbidrag pr. time. Først beregnes differensdækningsbidragene for x og y. Da det er A, der er den knappe faktor, gøres det ud fra produktionstiderne på A: Differens-DB/time(x): 6*200 =.200 kr/time Differens-DB/time(y): 4*200 = 800 kr/time Og for z opstilles en tabel beregning af differensdækningsbidrag pr. time: Pris Afsætning DOMS Differens-DB/stk (eller pr. time Herefter kan resultaterne prioriteres i følgende skema: Brian Nielsen Side 9 af 9

10 Differensdækningsbidrag/time ændr x ændr y ændr z timer sum timer Sum Dækningsbidraget bliver så: X: *200 = Y: *200 = Z: 4.000*( ) = Dækningsbidrag: Opgave 4: Spørgsmål 4.: Beregn det optimale udskiftningstidspunkt: Her bruges den på side 58 i bogen viste kombination af grænse- og totalbetragtningen til at beregne grænseomkostninger og gennemsnitsomkostninger: Scrapværdi Service og Grænseomkostning Akkumuleret Gennemsnitlig År ultimo Afskrivning Rente reparation Nutidsværdi nutidsværdi betaling Som det ses, er det mest fordelagtigt at beholde bilen i 4 år og udskifte den ultimo år 4, da vi her har den laveste kapitaltjeneste, her svarende til den laveste gennemsnitlige årlige omkostning. Salgskonsulenten glemmer småting som forrentning, der kan betyde en afgørende forskel med et renteniveau på 0%. Brian Nielsen Side 0 af 0

Opgave 1: Sommereksamen 2. juni 1997. Spørgsmål 1.1: Spørgsmål 1.2: Dette opgavesæt indeholder løsningsforslag til opgavesættet:

Opgave 1: Sommereksamen 2. juni 1997. Spørgsmål 1.1: Spørgsmål 1.2: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Sommereksamen 2. juni 1997 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor

Læs mere

Opgaverne, der er afleveret er rettet med den udsendte rettevejlednings vejledende vægtning af de enkelte spørgsmål.

Opgaverne, der er afleveret er rettet med den udsendte rettevejlednings vejledende vægtning af de enkelte spørgsmål. Omprøve 1997 Løsningsforslag Dette opgavesæt indeholder løsningsforslag til opgavesættet: Omprøve 8. august 1997 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene

Læs mere

Beregn den optimale pris- og mængdekombination og illustrer løsningen grafisk.

Beregn den optimale pris- og mængdekombination og illustrer løsningen grafisk. Dette opgavesæt indeholder løsningsforslag til opgavesættet: Sommereksamen juni 999 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der

Læs mere

Opgave 1: Sommereksamen 29. maj 2001. Spørgsmål 1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet:

Opgave 1: Sommereksamen 29. maj 2001. Spørgsmål 1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Sommereksamen 29. maj 2001 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor

Læs mere

Opgave 1: Omprøve 12. august 2003. Spørgsmål 1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet:

Opgave 1: Omprøve 12. august 2003. Spørgsmål 1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Omprøve. august 003 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der

Læs mere

Udfra en lønsomhedsvurdering af de tre produkter bedes du opstille en produktionsplan og et dækningsbidragsbudget for det kommende år.

Udfra en lønsomhedsvurdering af de tre produkter bedes du opstille en produktionsplan og et dækningsbidragsbudget for det kommende år. Dette opgavesæt indeholder løsningsforslag til opgavesættet: Stedprøve 10. maj 2005 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der

Læs mere

Opgave 1: Omprøve august 2005. Spørgsmål 1.1: Spørgsmål 1.2: Dette opgavesæt indeholder løsningsforslag til opgavesættet:

Opgave 1: Omprøve august 2005. Spørgsmål 1.1: Spørgsmål 1.2: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Omprøve august 2005 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der

Læs mere

Opgave 1: Sommereksamen 28. maj 2003. Spørgsmål 1.1: Dette er et løsningsforslag til opgavesættet:

Opgave 1: Sommereksamen 28. maj 2003. Spørgsmål 1.1: Dette er et løsningsforslag til opgavesættet: Dette er et løsningsforslag til opgavesættet: Sommereksamen 28. maj 2003 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der skal findes

Læs mere

Bestem den optimale pris og mængde, illustrer løsningen grafisk og beregn det årlige dækningsbidrag. 0 50000 100000 150000 200000 250000 Mængde

Bestem den optimale pris og mængde, illustrer løsningen grafisk og beregn det årlige dækningsbidrag. 0 50000 100000 150000 200000 250000 Mængde Dette opgavesæt indeholder løsningsforslag til opgavesættet: Sommereksamen 3. maj 007 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor

Læs mere

ERHVERVSØKONOMI maj 2000 Skriftlig eksamen (4 timer) Alle skriftlige hjælpemidler er tilladte

ERHVERVSØKONOMI maj 2000 Skriftlig eksamen (4 timer) Alle skriftlige hjælpemidler er tilladte 2/1 Aalborg Universitet HD-studiet l.del Side 1 af 6 ERHVERVSØKONOMI maj 2000 Skriftlig eksamen (4 timer) Alle skriftlige hjælpemidler er tilladte Dette opgavesætbestår af 4 opgaver, der vejledende forventes

Læs mere

Opgave 1: Sommereksamen 24. maj 2004. Spørgsmål 1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet:

Opgave 1: Sommereksamen 24. maj 2004. Spørgsmål 1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Sommereksamen 4 Dette opgavesæt indeholder løsningsforslag til opgavesættet: Sommereksamen 24. maj 4 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver,

Læs mere

Opgave 1: Stedprøve 13. marts 1997. Spørgsmål 1.1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet:

Opgave 1: Stedprøve 13. marts 1997. Spørgsmål 1.1.1: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Dette opgavesæt indeholder løsningsforslag til opgavesættet: Stedprøve 13. marts 1997 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor

Læs mere

Det skal her understreges, at der er tale om et løsningsforslag.

Det skal her understreges, at der er tale om et løsningsforslag. Sommereksamen 29. maj 996 Det skal her understreges, at der er tale om et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der skal findes frem til et bestemt tal. I disse situationer

Læs mere

1.1 Beregn priselasticiteten for de to produkter ved de givne priser og vis v.h.a. monopolprisformlen om priserne er optimale.

1.1 Beregn priselasticiteten for de to produkter ved de givne priser og vis v.h.a. monopolprisformlen om priserne er optimale. Opgave 1 1.1 Beregn priselasticiteten for de to produkter ved de givne priser og vis v.h.a. monopolprisformlen om priserne er optimale. Liniens ligning for strømper: p = am + b To tal på linien: Nuværende

Læs mere

Stedprøve Marts 1999, opgave 1 (40%):

Stedprøve Marts 1999, opgave 1 (40%): Stedprøve Marts 999, samlet Stedprøve Marts 999, opgave (4%): Spørgsmål.: Giv en vurdering af de to prisfastsættelsesmetoder, man har anvendt i de foregående to år. Metoden der blev anvendt for to år siden

Læs mere

Opgave 1. Sommereksamen 29. maj 2002. Spørgsmål 1.1: Sommereksamen 29. maj 2002. Dette sæt indeholder løsningsforslag til:

Opgave 1. Sommereksamen 29. maj 2002. Spørgsmål 1.1: Sommereksamen 29. maj 2002. Dette sæt indeholder løsningsforslag til: Soereksaen 9. aj 00 Dette sæt indeholder løsningsforslag til: Soereksaen 9. aj 00 Det skal her understreges, at der er tale o et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx111-mat/a-305011 Mandag den 3. maj 011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Virksomheden beskæftiger ca. 80 ansatte i produktionen og ca. 15 personer ink!. ledelsen i administrationen.

Virksomheden beskæftiger ca. 80 ansatte i produktionen og ca. 15 personer ink!. ledelsen i administrationen. Hoegaarden A/S er en virksomhed i sund økonomisk udvikling. Virksomheden fremstiller lette og vedligeholdelsesfrie produkter i glasfiber. Virksomheden beskæftiger ca. 80 ansatte i produktionen og ca. 15

Læs mere

ERHVERVSØKONOMI august 2001 Eksamen (4 timer) Alle skriftlige hjælpemidler er tilladte

ERHVERVSØKONOMI august 2001 Eksamen (4 timer) Alle skriftlige hjælpemidler er tilladte .., 122 l Aalborg Universitet HD-studiet l.del ERHVERVSØKONOMI august 2001 Eksamen (4 timer) Alle skriftlige hjælpemidler er tilladte Dette opgavesætbestår af 4 opgaver, der vejledende forventes at indgåi

Læs mere

Skriftlig eksamen i faget Økonomistyring

Skriftlig eksamen i faget Økonomistyring Skriftlig eksamen i faget Økonomistyring 4 timers skriftlig prøve Dette opgavesæt består af 4 delopgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige vægte: Opgave

Læs mere

Matematik A Delprøven uden hjælpemidler

Matematik A Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2009 HHX092-MAA Matematik A Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Vejledende løsningsforslag til. Eksamensopgaven 26. februar 2010. i faget. Økonomistyring. på Akademiuddannelsen

Vejledende løsningsforslag til. Eksamensopgaven 26. februar 2010. i faget. Økonomistyring. på Akademiuddannelsen Emner SIde 1 af 11 Vejledende løsningsforslag til Eksamensopgaven 26. februar 2010 i faget Økonomistyring på Akademiuddannelsen Emner i opgavesættet: opgave 1 opgave 2 opgave 3 opgave 4 opgave 5 Optimering

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/a-19122011 Mandag den 19. december 2011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er

Læs mere

Bruges til at føre 1 krone n antal terminer tilbage i tiden ved

Bruges til at føre 1 krone n antal terminer tilbage i tiden ved KAPITEL 14 Investering Rentetabel 1: For mel : Anvendelse: Eksempel: (1 + r) n Bruges til at føre 1 krone n antal terminer frem i tiden ved renten r (udtrykt som decimaltal f.eks. er 8 % = 0,08) Hvis der

Læs mere

HD-studiet l.del ERHVERVSØKONOMI. 31.maj 2006. eksamen (4 timer) Alle skriftlige hjælpemidler er tilladte

HD-studiet l.del ERHVERVSØKONOMI. 31.maj 2006. eksamen (4 timer) Alle skriftlige hjælpemidler er tilladte 20J' 1 HD-studiet l.del ERHVERVSØKONOMI 31.maj 2006 eksamen (4 timer) Alle skriftlige hjælpemidler er tilladte Dette opgavesætbeståraf4 opgaver, der vejledende forventes at indgå i bedømmelsen afden samlede

Læs mere

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x =

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x = MAT B GSK august 009 delprøven uden hjælpemidler Opg 1 For en vare er sammenhængen mellem pris og efterspørgsel bestemt ved funktionen d() = + 1 0 1 hvor angiver den efterspurgte mængde og d() angiver

Læs mere

Afsætningsmæssig sammenhæng mellem to produkter

Afsætningsmæssig sammenhæng mellem to produkter Afsætningsmæssig sammenhæng mellem to produkter TDC Download free books at TDC Afsætningsmæssig sammenhæng mellem to produkter 2008 TDC & Ventus Publishing ApS ISBN 978-87-781-378-9 Indholdsfortegnelse

Læs mere

begreber og grundmodeller i driftsøkonomien Aage U. Michelsen

begreber og grundmodeller i driftsøkonomien Aage U. Michelsen begreber og grundmodeller i driftsøkonomien Aage U. Michelsen 1 ISBN 978-87-89359-16-8 Aage U. Michelsen: Begreber og grundmodeller i driftsøkonomien Udgiver: Bodano Publishing & Communication ApS Copyright

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 15. august 2011 kl. 9.00-14.00. kl. 9.00-10.00. hhx112-mat/a-15082011

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 15. august 2011 kl. 9.00-14.00. kl. 9.00-10.00. hhx112-mat/a-15082011 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx11-mat/a-1508011 Mandag den 15. august 011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Tillæg til opgavesamlingen Økonomistyring for AkademiMerkonomer

Tillæg til opgavesamlingen Økonomistyring for AkademiMerkonomer Tillæg til opgavesamlingen Økonomistyring for AkademiMerkonomer 4. Grundlæggende lagerteori Opgave 4.1 Handelsvirksomheden A/S CRABEN, Frederikshavn Man forhandler i denne virksomhed bl.a. dressingen AROMATIC.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august 2010. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august 2010. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh10-mat/a-1608010 Mandag den 16. august 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består af

Læs mere

Erhvervsøkonomi Efterår 2006 Afleveringsopgave nr. 1

Erhvervsøkonomi Efterår 2006 Afleveringsopgave nr. 1 Erhvervsøkonoi Efterår 006 Afleveringsopgave nr. Opgave : Sko-Let Aps Opgave 8.3 Sko-Let A/S i Økonoistyring og budgettering af Jens Oksen Jensen og Ole Christensen. Spørgsål.: Hvad er det forventede breakeven-punkt

Læs mere

Driftsøkonomiseminar HA 3. semester. Gruppe 13

Driftsøkonomiseminar HA 3. semester. Gruppe 13 Driftsøkonomiseminar Efterår 2004 Side 1 af 18 Titelblad Dato: Efterår 2004 Berglind Thorsteinsdottir Charlotta Rosenquist Daniel Dock Skogemann Lise Pedersen Maria Rasmussen Susanne Lund Olesen Side 2

Læs mere

Skriftlig eksamen i faget Økonomistyring

Skriftlig eksamen i faget Økonomistyring Skriftlig eksamen i faget Økonomistyring 4 timers skriftlig prøve Dette opgavesæt består af 4 delopgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige vægte: Opgave

Læs mere

INDHOLDSFORTEGNELSE: Bilag 1. INVESTERINGSTEORI SIDE OM INVESTERINGER GENERELT FUNDAMENTALPRINCIP 1. Betalinger som enkeltbeløb

INDHOLDSFORTEGNELSE: Bilag 1. INVESTERINGSTEORI SIDE OM INVESTERINGER GENERELT FUNDAMENTALPRINCIP 1. Betalinger som enkeltbeløb Bilag 1. INDHOLDSFORTEGNELSE: SIDE OM INVESTERINGER GENERELT FUNDAMENTALPRINCIP 1 Betalinger som enkeltbeløb Betalinger som annuiteter FUNDAMENTALPRINCIP 2 Betalinger som enkeltbeløb Betalinger som annuiteter

Læs mere

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014 Matematik B Højere handelseksamen hhx143-mat/b-15122014 Mandag den 15. december 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i

Læs mere

Skriftlig eksamen i faget Erhvervsøkonomi

Skriftlig eksamen i faget Erhvervsøkonomi Skriftlig eksamen i faget Erhvervsøkonomi 4 timers skriftlig prøve Dette opgavesæt består af 4 delopgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige vægte: Opgave

Læs mere

KAPITEL 10 flere eksempler

KAPITEL 10 flere eksempler KAPITEL 10 flere eksempler Afsnit 10.3 Matematik i virksomhedsøkonomiske problemstillinger E3a GROMS og GROMK til bestemmelse af optimale afsætning, hvis salgsprisen er konstant I eksempel 3 i kapitel

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh101-mat/a-27052010 Torsdag den 27. maj 2010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time. Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006 05-B-2-U Typeopgave 2 Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består af 5 opgaver, der indgår

Læs mere

Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi

Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi Claus Thustrup Kreiner OPGAVE 1 1.1 Forkert. En isokvant angiver de kombinationer af inputs, som resulterer i en given

Læs mere

Skriftlig eksamen i faget Økonomistyring

Skriftlig eksamen i faget Økonomistyring Skriftlig eksamen i faget Økonomistyring 4 timers skriftlig prøve Dette opgavesæt består af 5 delopgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige vægte: Opgave

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 2015 Institution International Business College, Kolding Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

2. Angiv den optimale pris, hvis der reklameres. Undersøg dernæst, om den nævnte reklameindsats er fordelagtig.

2. Angiv den optimale pris, hvis der reklameres. Undersøg dernæst, om den nævnte reklameindsats er fordelagtig. Sommereksamen 1995 it pgave 1 (Vægt 80%) Virksomheden ARINC producerer en vare X, der udelukkende afsættes på hjemmemarkedet. Da virksomheden i sin tid lancerede denne vare, var den alene på markedet,

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Vejledende løsningsforslag til. Eksamensopgaven 25. marts 2010. i faget. Økonomistyring. på Akademiuddannelsen

Vejledende løsningsforslag til. Eksamensopgaven 25. marts 2010. i faget. Økonomistyring. på Akademiuddannelsen Emner Side 1 af 11 Vejledende løsningsforslag til Eksamensopgaven 25. marts 2010 i faget Økonomistyring på Akademiuddannelsen Emner i opgavesættet: opgave 1 opgave 2 opgave 3 opgave 4 Investering (optimal

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh121-mat/a-04062012 Mandag den 4. juni 2012 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 14/15 IBC-Fredericia

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 11. Denne

Læs mere

Kom godt i gang med DLBR INVE

Kom godt i gang med DLBR INVE Kom godt i gang med DLBR INVE Dette hæfte giver en introduktion til det internetbaserede investeringsprogram DLBR INVE, som du kan finde på www.inve.dk I DLBR INVE kan du også finde hjælp ved at klikke

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Lantbruksforetagets växt Problemer og udfordringer set fra Danmark

Lantbruksforetagets växt Problemer og udfordringer set fra Danmark Lantbruksforetagets växt Problemer og udfordringer set fra Danmark Af Svend Rasmussen Institut for Fødevare- og Ressourceøkonomi, Københavns Universitet (KU) Disposition Danske landbrugsbedrifter Behov

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Erhvervsskolernes Forlag, Logistik i virksomheden Fig. 4.1

Erhvervsskolernes Forlag, Logistik i virksomheden Fig. 4.1 Erhvervsskolernes Forlag, Logistik i virksomheden Fig. 4.1 Erhvervsskolernes Forlag, Logistik i virksomheden Fig. 4.2 Variable omkostninger Materialer i alt 90,00 kr. Timeløn pr. produkt 26,00 kr. + Kapacitetsomkostninger

Læs mere

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014 Matematik B Højere handelseksamen hhx142-mat/b-18082014 Mandag den 18. august 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Markedskommentar august: Black August vækstnedgang i Kina giver aktienedtur

Markedskommentar august: Black August vækstnedgang i Kina giver aktienedtur Nyhedsbrev Kbh. 3. sep. 2015 Markedskommentar august: Black August vækstnedgang i Kina giver aktienedtur Uro i Kina sætte sine blodrøde spor i aktiemarkederne i august måned. Vi oplevede de største aktiefald

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2stx131-MAT/B-29052013 Onsdag den 29. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Skriftlig eksamen i Økonomistyring

Skriftlig eksamen i Økonomistyring Skriftlig eksamen i Økonomistyring 4 timers skriftlig prøve Dette opgavesæt består af 4 delopgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige vægte: Opgave 1 30%

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx141-mat/a-305014 Fredag den 3. maj 014 kl. 9.00-14.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen

Læs mere

Hjemmeopgave 2. Afleveringsfristen ses på opgaveoversigten. For sent afleverede opgaver rettes ikke.

Hjemmeopgave 2. Afleveringsfristen ses på opgaveoversigten. For sent afleverede opgaver rettes ikke. Hjemmeopgave 2 Hjemmeopgave 2 består af i alt fem tidligere eksamensopgaver, der skal afleveres: Opgave 1 DV 2013, opgave 2 DV 2013 og opgave 3 DV 2013 (Investeringsteori på Diplom i Valuar) samt opgave

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER I oldtiden regnede man med 7 underværker, hvilket var seværdigheder, som man fremhævede på grund af deres størrelse, skønhed og udseende. Kun et enkelt af disse

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Integrerede producenter

Integrerede producenter Integrerede producenter De integrerede producenter havde i gennemsnit et driftsresultat på knap en halv mio. kr. > > Niels Vejby Kristensen, Videncenter for Svineproduktion Driftsøkonomien for integrerede

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh123-mat/b-17122012 Mandag den 17. december 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Konverter til FlexLån, hvis du har flytteplaner

Konverter til FlexLån, hvis du har flytteplaner 6. august 2008 Konverter til FlexLån, hvis du har flytteplaner Går du med flytteplaner, har du et 4 % eller 5 % lån og tror på, at renten falder? Så bør du konvertere nu. Årsagen er, at renterne ikke skal

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

Beregningsopgave om bærende konstruktioner

Beregningsopgave om bærende konstruktioner OPGAVEEKSEMPEL Indledning: Beregningsopgave om bærende konstruktioner Et mindre advokatfirma, Juhl & Partner, ønsker at gennemføre ændringer i de bærende konstruktioner i forbindelse med indretningen af

Læs mere

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal Delprøven uden hjælpemidler Opgave 1 a) Se graf: Opgave 2 a) f (x)= 25000x + 475000 År hvor værdien er 150000: 25000x + 475000 = 150000 25000x = 325000 x = 13 I år 2025 vil værdien være faldet til 150000

Læs mere

fsa 1 Befolkningen i København i 2007 2 Københavns folketal i fremtiden 3 Turen går til København 4 Amalienborg 5 Overnatninger i København i 2007

fsa 1 Befolkningen i København i 2007 2 Københavns folketal i fremtiden 3 Turen går til København 4 Amalienborg 5 Overnatninger i København i 2007 fsa Folkeskolens Afgangsprøve Matematisk problemløsning december 2009 Som bilag til dette opgavesæt er vedlagt et svarark 1 Befolkningen i København i 2007 2 Københavns folketal i fremtiden 3 Turen går

Læs mere

1. Spørgsmål til PRÆKVALIFIKATIONSMATERIALET

1. Spørgsmål til PRÆKVALIFIKATIONSMATERIALET Sagsnr. 1-23-4-101-8-13 Spørgsmål og svar skema Prækvalifikation på udbud af kontormøbler til 4 regioner 1. Spørgsmål til PRÆKVALIFIKATIONSMATERIALET 1 Prækvalifikationsbilag 11. Det publicerede dokument

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0. Opgave 6 Vi sætter P = 1000 og isolerer x i ligningen Se Bilag 2! P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.6 ( 10 y 0.4 )1 /0.6 = x 10 1 /0.6 y 0.4 /0.6 = x x = 10 5 /3

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

VisiRegn: En e-bro mellem regning og algebra

VisiRegn: En e-bro mellem regning og algebra Artikel i Matematik nr. 2 marts 2001 VisiRegn: En e-bro mellem regning og algebra Inge B. Larsen Siden midten af 80 erne har vi i INFA-projektet arbejdet med at udvikle regne(arks)programmer til skolens

Læs mere

2. Matematiske modeller og grafiske løsninger

2. Matematiske modeller og grafiske løsninger Tillæg til lærebogen Økonomistyring for AkademiMerkonomer Dette tillæg dækker sammen med lærebogen Økonomistyring for AkademiMerkonomer af Jørgen Waarst og Knud Erik Bang den justerede fagmodulplan og

Læs mere

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07. Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.54 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve 1: 2

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

AVU trin 2 prøver i matematik Facitforslag Dec. 2005. ISBN: 87-90652-65-7 ISSN: 1603-9432 EH-Mat 2006

AVU trin 2 prøver i matematik Facitforslag Dec. 2005. ISBN: 87-90652-65-7 ISSN: 1603-9432 EH-Mat 2006 Denne udgave på internettet er ment som en gennemsynsudgave. Ønsker du at anvende materialet, kan du købe materialet i en trykt version. Et VUC eller en anden undervisningsinstitution kan købe en digital

Læs mere

Matematik B. Studentereksamen. Torsdag den 31. maj 2012 kl. 9.00-13.00. 2stx121-MAT/B-31052012

Matematik B. Studentereksamen. Torsdag den 31. maj 2012 kl. 9.00-13.00. 2stx121-MAT/B-31052012 Matematik B Studentereksamen stx11-mat/b-310501 Torsdag den 31. maj 01 kl. 9.00-13.00 Side 1 af 6 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

HVEM ER JEG? Una Consulting

HVEM ER JEG? Una Consulting HVEM ER JEG? -Lene Rasmussen Danapak (Emballage) -Elev - økonomichef - international koncerncontroller - implementeret ERP EG A/S -Forretningsanalyser -ERP implementering -Økonomisk rådgivning for kunder

Læs mere