Egenskaber ved Krydsproduktet
|
|
|
- Frederik Bech
- 9 år siden
- Visninger:
Transkript
1 Egenskaber ved Krydsproduktet Frank Nasser 12. april 2011 c Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en arkiveret udgave af dokumentet som muligvis ikke er den nyeste tilgængelige.
2 Indhold 1 Introduktion 1 2 Grundlæggende egenskaber Antikommutativitet Distributivitet og homogenitet med skaleringer Krydsprodukt af to parallelle vektorer Tripelprodukter Retningen af krydsproduktet 11 4 Længden af krydsproduktet Det udspændte parallellogram Parallelle vektorer
3 Resumé I dette dokument beviser vi nogle sætninger om krydsproduktet (også kendt som vektorproduktet) af vektorer i rummet. 1 Introduktion Vi skal bevise nogle af de vigtigste egenskaber ved krydsproduktet af tredimensionelle vektorer. Lad os starte med at minde om definitionen af krydsproduktet: Definition 1 Hvis og v = w = er to vektorer i rummet, så defineres krydsproduktet eller vektorproduktet af v og w som vektoren: v w = x 1 y 1 z 1 x 2 y 2 z 2 x 1 y 1 z 1 x 2 y 2 z 2 = y 1 z 2 y 2 z 1 z 1 x 2 z 2 x 1 x 1 y 2 x 2 y 1 side 1
4 Forudsætninger For at læse dette dokument får du brug for at kende til tredimensionelle vektorer 1. Du skal især kende til prikproduktet og de resultater som gælder om dette. 2 Grundlæggende egenskaber Alle resultater i dette afsnit er kun interessante ud fra et teoretisk synspunkt. Det betyder at de meget sjældent er nyttige i praksis når man regner med konkrete vektorer. Men til gengæld kan de bruges til at bevise andre (nyttige) sætninger om generelle vektorer. Derfor kalder vi alle sætninger i dette afsnit for lemmaer altså hjælpesætninger. 2.1 Antikommutativitet Det første generelle resultat er i virkeligheden en ikke regel. Det viser sig nemlig at den allermest almindelige regneregel som vi kender fra andre produkter (f.eks. prikproduktet eller produktet af to reelle tal), nemlig den kommutative lov, ikke gælder for krydsproduktet. Lemma 1 Hvis v og w er to tredimensionelle vektorer, så er: v w = w v Med andre ord: Hvis man bytter om på faktorerne i et krydprodukt, så skifter resultatet fortegn. Eftersom resultatet er en vektor betyder det at den vender den modsatte retning. 1 Læs om vektorer i rummet her. side 2
5 Bevis. Dette bevis er meget let, fordi man overhovedet ikke har brug for nogen ideer. Til gengæld er fremgangsmåden meget typisk for de fleste beviser i dette afsnit, så derfor tager vi det alligevel i alle detaljer. Vi navngiver koordinaterne i de to vektorer: og Dermed er pr. definition: x 1 v w = y 1 z 1 v = w = x 2 y 2 z 2 x 1 y 1 z 1 x 2 y 2 z 2 = Mens den omvendte udregning giver: x 2 x 1 w v = y 2 y 1 = z 2 z 1 y 1 z 2 y 2 z 1 z 1 x 2 z 2 x 1 x 1 y 2 x 2 y 1 y 2 z 1 y 1 z 2 z 2 x 1 z 1 x 2 x 2 y 1 x 1 y 2 Og nu er det tydeligt at se at alle koordinaterne ganske enkelt skifter fortegn ved at vi bytter om på de to vektorer. En direkte konsekvens af antikommutativiteten er følgende: Lemma 2 Hvis v er en tredimensionel vektor, så giver dens krydsprodukt med sig selv altid nulvektor: v v = 0 side 3
6 Bevis. Hvis man bytter om på de to faktorer (som er ens), så giver det på den ene side nøjagtigt den samme beregning (og derfor samme resultat), men på den anden side skal resultatet skifte fortegn ifølge lemma 1. Så: v v = (v v) Den eneste vektor som er uændret når man skifter fortegn på den er nulvektoren. Derfor må vi have at: v v = 0 (Man kunne selvfølgelig også bevise denne egenskab ved at navngive koordinaterne i v og se hvad udregningen giver.) 2.2 Distributivitet og homogenitet med skaleringer De to næste egenskaber kender vi allerede fra alle andre produkter. Den første siger at vi må gange ind i parenteser : Lemma 3 (Den distributive lov) Hvis u, v og w er tredimensionelle vektorer, så er: u (v + w) = u v + u w Bevis. Hvis vi navngiver de tre vektorers koordinater og udregner både venstresiden og højresiden, så kan vi se at de er ens hvis man husker at reelle tal kan ganges ind i parenteser. Det vil vi ikke gøre, fordi det er dødkedeligt og meget nemt. (Når du har læst beviserne for de næste hjælpesætninger, vil du være enig.) side 4
7 Den anden siger at skaleringer kan flyttes rundt i forhold til krydsprodukter som man har lyst til: Lemma 4 (Homogenitet med skalering) Hvis v og w er tredimensionelle vektorer og r er en skalar, så er: (r v) w = r (v w) = v (r w) Bevis. Dette bevis springer vi også over fordi jeg er så umådeligt doven. Det er igen bare et spørgsmål om at navngive koordinaterne i de to vektorer, skrive alle tre udregninger op ved hjælp af disse koordinater og konstatere at de giver det samme. Øvelse 1 Nej, nu må det være nok! Bevis lige et af de to lemmaer i dette afsnit ved at følge den opskrift som er angivet. (Lemma 4 er det nemmeste). Så lover jeg til gengæld at jeg ikke springer flere beviser over. 2.3 Krydsprodukt af to parallelle vektorer Med regnereglerne fra det sidste afsnit kan vi udvide reglen fra lemma 2 til noget som du sikkert allerede har indset: Lemma 5 Hvis v og w er to parallelle vektorer i rummet, så er: v w = 0 side 5
8 Bevis. Hvis v og w er parallelle, så findes enten 2 en skalar r sådan at: v = r w eller sådan at: w = r v Vi tager udgangspunkt i det første tilfælde, men det andet tilfælde håndteres på nøjagtigt samme måde. Vi beregner: v w = (r w) w = r (w w) = r 0 = 0 Til allersidst i dette dokument kan vi bevise at logikken også går den anden vej: Hvis et krydsprodukt af to vektorer giver nul, så er de nødvendigvis parallelle. 2.4 Tripelprodukter Nu kommer der to små hjælpesætninger som virkelig kan forekomme sære. Og beviserne er oven i købet et frygteligt bogstavrod. Men du vil opdage styrken i disse hjælpesætninger når du ser hvor nemt vi til gengæld kan bevise hovedsætningerne i de næste afsnit. Det handler om hvad man kan finde på hvis man har tre vektorer som man vil gange med hinanden. Lemma 6 Hvis u, v og w er tre vektorer i rummet, så er: u (v w) = (u v) w 2 Den eneste grund til at vi tillader to muligheder er at den ene vektor kunne være nulvektor, og den anden forskellig fra nulvektor. I dette tilfælde er det kun en af de to muligheder som kan lade sig gøre. side 6
9 Den kræver lige lidt forklaring: Hvis man først laver et krydsprodukt (hvilket giver en vektor) og derefter prikker resultatet med en tredje vektor, så kan man åbenbart flytte parentesen hvis man samtidigt bytter om på de to produkter. Bemærk at det ikke ville give mening hvis man kun flyttede parentesen, eftersom prikproduktet ville give et tal som resultat, og det kan ikke indgå i et krydsprodukt med en tredje vektor. Beviset for denne regel er lige ud ad landevejen, men det bliver efterhånden temmeligt rodet. Sørg for at holde øje med hvor de enkelte bogstaver kommer fra, og prøv endelig ikke på at lære beviset uden ad. Bevis. Vi navngiver de tre vektorers koordinater: og u = v = w = x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 og regner begge sider af lighedstegnet ud. Først venstresiden: side 7
10 u (v w) = x 1 y 1 z 1 og så højresiden: (u v) w = y 2 z 3 y 3 z 2 z 2 x 3 z 3 x 2 x 2 y 3 x 3 y 2 = x 1 (y 2 z 3 y 3 z 2 ) + y 1 (z 2 x 3 z 3 x 2 ) + z 1 (x 2 y 3 x 3 y 2 ) = x 1 y 2 z 3 x 1 y 3 z 2 + y 1 z 2 x 3 y 1 z 3 x 2 + z 1 x 2 y 3 z 1 x 3 y 2 y 1 z 2 y 2 z 1 z 1 x 2 z 2 x 1 x 1 y 2 x 2 y 1 = (y 1 z 2 y 2 z 1 ) x 3 + (z 1 x 2 z 2 x 1 ) y 3 + (x 1 y 2 x 2 y 1 ) z 3 x 3 y 3 z 3 = y 1 z 2 x 3 y 2 z 1 x 3 + z 1 x 2 y 3 z 2 x 1 y 3 + x 1 y 2 z 3 x 2 y 1 z 3 Men hvis man tager brillerne ordentligt på og kigger efter, så er det præcis de samme led der kommer frem i begge udregninger (og med de samme fortegn). Jeg har farvelagt leddene for at gøre det lidt nemmere at opdage hvem der hører sammen. Den næste sætning er endnu værre. Den handler i stedet om hvad der sker hvis man først udregner et krydsprodukt og derefter laver krydsprodukt mellem resultatet og en tredie vektor. Regnereglen er kendt under navnet Laplace identiteten, og den bliver faktisk brugt ofte i fysik når man arbejder med f.eks. elektromagnetiske felter. side 8
11 Lemma 7 Hvis u, v og w er tre vektorer i rummet, så er: u (v w) = (u w) v (u v) w Beviset er helt forfærdeligt. Men vi bliver glade for lemmaet senere, så vi må hellere få det overstået: Bevis. Vi navngiver koordinaterne i de tre vektorer: og u = v = w = og regner begge sider af lighedstegnet ud. Først venstresiden: x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 side 9
12 u (v w) = = = = x 1 y 1 z 1 x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 y 2 z 3 y 3 z 2 z 2 x 3 z 3 x 2 x 2 y 3 x 3 y 2 y 1 (x 2 y 3 x 3 y 2 ) (z 2 x 3 z 3 x 2 ) z 1 z 1 (y 2 z 3 y 3 z 2 ) (x 2 y 3 x 3 y 2 ) x 1 x 1 (z 2 x 3 z 3 x 2 ) (y 2 z 3 y 3 z 2 ) y 1 y 1 x 2 y 3 y 1 x 3 y 2 z 2 x 3 z 1 + z 3 x 2 z 1 # # (Jeg har undladt at skrive de to nederste koordinater fordi jeg er doven). Nu til højresiden: (u w) v (u v) w = (x 1 x 3 + y 1 y 3 + z 1 z 3 ) (x 1 x 2 + y 1 y 2 + z 1 z 2 ) Igen er jeg doven og nøjes med at udregne den første koordinat. Det giver: x 2 y 2 z 2 x 3 y 3 z 3 x 1 x 3 x 2 + y 1 y 3 x 2 + z 1 z 3 x 2 (x 1 x 2 x 3 + y 1 y 2 x 3 + z 1 z 2 x 3 ) # # Eftersom leddene x 1 x 2 x 3 både er lagt til og trukket fra i førstekoorside 10
13 dinaten, så kan denne vektor omskrives til: y 1 y 3 x 2 + z 1 z 3 x 2 y 1 y 2 x 3 z 1 z 2 x 3 # # Og det er sandelig det samme som i den anden udregning. Øvelse 2 Nu har jeg så brug for din hjælp igen: Opskriv de to andre koordinater i begge udregninger og se at de også bliver ens. 3 Retningen af krydsproduktet Nu bliver det sjovt, fordi vi har tilpas mange hjælpesætninger på plads til at vi kan begynde at vise sætninger som rent faktisk er interessante. Og den bedst nyhed er: Beviserne bliver enormt nemme fordi vi allerede har lavet alt det besværlige arbejde. I første omgang har lemma 6 en meget vigtig konsekvens, nemlig følgende: Sætning 8 Hvis v og w er to tredimensionelle vektorer, så er krydsproduktet v w en vektor som står vinkelret på både v og w. Bevis. Husk at to vektorer er vinkelrette præcis hvis deres prikprodukt giver nul. Derfor undersøger vi hvad de to prikprodukter giver: v (v w) og w (v w) side 11
14 Det første kan vi omskrive ved hjælp af lemma 6: v (v w) = (v v) w = 0 w = 0 (I det andet lighedstegn brugte vi lemma 2.) Det andet prikprodukt kræver en ekstra dribling: w (v w) = (v w) w = v (w w) = v 0 = 0 (Hvor vi startede med at bruge at prikproduktet opfylder den kommutative lov, så vi kan bytte om på de to vektorer som er prikket med hinanden.) Eftersom de to prikprodukter giver nul, kan vi konkludere at v w er vinkelret på både v og w. Det betyder at vi har nogenlunde styr på hvilken retning krydsproduktet peger: Hvis man forestiller sig to vektorer indtegnet fra det samme punkt, så vil de medmindre de er parallelle forløbe i en entydigt bestemt plan. Og krydsproduktet af de to vektorer vil så pege vinkelret ud fra denne plan. 4 Længden af krydsproduktet Den næste sætning er utroligt smuk. Hvis man læser andre beviser for den, vil man se at de næsten altid er vildt besværlige 3. Men fordi vi har lavet vores forarbejde ordentligt, så er det en ren fornøjelse at lave beviset. Inden vi formulerer sætningen minder jeg lige om en sætning om prikproduktet: Sætning 9 Hvis v og w er to vektorer, så gælder: v w = v w cos(α) 3 Du kan se en rigtig god gennemgang af et sådant bevis her side 12
15 hvor α er vinklen imellem v og w. Den sætning vi skal bevise ligner ganske meget: Sætning 10 Hvis v og w er to tredimensionelle vektorer, så gælder: v w = v w sin(α) Prikproduktet og (længden af) krydsproduktet er altså to sider af samme sag: Prikproduktet handler om cosinus til vinklen, og (længden af) krydsproduktet handler om sinus til vinklen. Udover at de to sætninger ser godt ud ved siden af hinanden skal vi også bruge sætning 9 til at bevise sætning 10: Bevis. Vi udregner længden af krydsproduktet i anden potens, fordi vi på den måde kan lave en smart omskrivning: v w 2 = (v w) (v w) Men lemma 6 handler om hvordan man prikker en vektor på et krydsprodukt (vi betragter hele den sidste parentes som en tredje vektor): = v (w (v w)) og så har vi noget som vi kan bruge lemma 7 på (det w som står længst til venstre spiller rollen som u): = v ( ) (w w) v (w v) w Hvis vi så bruger den distributive lov for prikproduktet til at prikke side 13
16 v ind i parentesen, får vi: ( ) v w 2 = (w w) (v v) (w v) (v w) ) = ( v 2 w 2 (v w) 2 Så bruger vi sætning 9: ) v w 2 = ( v 2 w 2 ( v w cos(α)) 2 ) = ( v 2 w 2 v 2 w 2 cos(α) 2 Og sætter v 2 w 2 uden for parentes: ) v w 2 = v 2 w 2 (1 cos(α) 2 Og til allersidst ringer vi til idiotformlen for cosinus og sinus, som jo siger at: cos(α) 2 + sin(α) 2 = 1 dvs. Så nu har vi at: sin(α) 2 = 1 cos(α) 2 v w 2 = v 2 w 2 sin(α) 2 Og ved at tage kvadratroden på begge sider, får vi det ønskede! 4.1 Det udspændte parallellogram Nogle gange formulerer man sætning 10 som følgende: side 14
17 Sætning 11 Hvis v og w er to tredimensionelle vektorer, så er længden af krydsproduktet: v w lig med arealet af det parallellogram som de to vektorer udspænder hvis de indtegnes fra det samme punkt. Bevis. Hvis man tegner v og w ind fra det samme punkt, så vil højden i det udspændte parallellogram være: h = w sin(α) Og dermed er arealet af dette parallellogram: A = v h = v w sin(α) 4.2 Parallelle vektorer 2 Til sidst kan vi bevise udvidelsen af lemma 5 Sætning 12 Hvis v og w er to tredimensionelle vektorer, så gælder: v og w er parallelle v w = 0 Dermed kan krydsproduktet bruges til at kontrollere om to vektorer er parallelle eller ej: Hvis krydsproduktet giver nul, så er de to vektorer parallelle, og ellers er de ikke! side 15
18 Bevis. Vi mangler kun pilen opad, eftersom pilen nedad allerede er bevist i lemma 5. Men hvis krydsproduktet af v og w giver nulvektor, så må længden af krydsproduktet også være nul. Det betyder at: v w sin(α) = 0 Dermed må en vektorerne af vektorerne være nulvekter, eller også må sinus til vinklen imellem dem give nul. Det sidste betyder at vinklen må være enten 0 eller 180. Uanset hvilken af disse muligheder der er tilfældet, er de to vektorer parallelle (eftersom nulvektor siges at være parallel med alle vektorer). side 16
Egenskaber ved Krydsproduktet
Egenskaber ved Krydsproduktet Frank Nasser 23. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Afstande, skæringer og vinkler i rummet
Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Afstandsformlerne i Rummet
Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Afstande, skæringer og vinkler i rummet
Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Løsning af simple Ligninger
Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Vinkelrette linjer. Frank Villa. 4. november 2014
Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
π er irrationel Frank Nasser 10. december 2011
π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock
Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil
Omskrivningsregler. Frank Nasser. 10. december 2011
Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd
Analytisk Geometri. Frank Nasser. 12. april 2011
Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Todimensionelle Vektorer
Todimensionelle Vektorer Frank Villa 15. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Differentiation af Potensfunktioner
Differentiation af Potensfunktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Grafmanipulation. Frank Nasser. 14. april 2011
Grafmanipulation Frank Nasser 14. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Delmængder af Rummet
Delmængder af Rummet Frank Villa 15. maj 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
De rigtige reelle tal
De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Vektorer og lineær regression
Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden
Diskriminantformlen. Frank Nasser. 11. juli 2011
Diskriminantformlen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Formler, ligninger, funktioner og grafer
Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0
BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den
Vektorer og lineær regression. Peter Harremoës Niels Brock
Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.
Pythagoras Sætning. Frank Nasser. 20. april 2011
Pythagoras Sætning Frank Nasser 20. april 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Oprids over grundforløbet i matematik
Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere
Archimedes Princip. Frank Nasser. 12. april 2011
Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Polynomiumsbrøker og asymptoter
Polynomiumsbrøker og asymptoter Frank Villa 9. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Todimensionale Vektorer
Todimensionale Vektorer Frank Villa 6. december 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Afstand fra et punkt til en linje
Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold
Flere ligninger med flere ukendte
Flere ligninger med flere ukendte Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Afstandsformlen og Cirklens Ligning
Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.
User s guide til cosinus og sinusrelationen
User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for
Lineære ligningssystemer
enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.
Kvadratiske matricer. enote Kvadratiske matricer
enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,
Additionsformlerne. Frank Villa. 19. august 2012
Additionsformlerne Frank Villa 19. august 2012 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Andengradsligninger. Frank Nasser. 12. april 2011
Andengradsligninger Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Matricer og Matrixalgebra
enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,
Differentiation af Logaritmer
Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Nasser 0. april 0 c 008-0. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan
Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan så vælge tegnet. - For at definere noget, eks en x værdi,
Kom i gang-opgaver til differentialregning
Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke
Differentiation af Trigonometriske Funktioner
Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.
Ordbog over Symboler
Ordbog over Symboler Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Harmoniske Svingninger
Harmoniske Svingninger Frank Villa 16. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Delmængder af Rummet
Delmængder af Rummet Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Pointen med Funktioner
Pointen med Funktioner Frank Nasser 0. april 0 c 0080. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis
Logaritmiske Transformationer
Logaritmiske Transformationer Frank Nasser 23. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX
MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...
06 Formler i retvinklede trekanter del 2
06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS
INTRODUKTION TIL VEKTORER
INTRODUKTION TIL VEKTORER x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse HVORFOR INDFØRES VEKTORER?... 3 VEKTORER... 5 Vektoraddition... 7 Kræfternes parallelogram... 9 Multiplikation af vektor
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.
Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen
Pointen med Differentiation
Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER
ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...
Matematisk argumentation
Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.
Omskrivningsgymnastik
Omskrivningsgymnastik Frank Villa 16. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015
Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en
Andengradsligninger. Frank Nasser. 11. juli 2011
Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25
Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.
Dokumentation af programmering i Python 2.75
Dokumentation af programmering i Python 2.75 Af: Alexander Bergendorff Jeg vil i dette dokument, dokumentere det arbejde jeg har lavet i løbet opstarts forløbet i Programmering C. Jeg vil forsøge, så vidt
Lektion 3 Sammensætning af regnearterne
Lektion Sammensætning af regnearterne Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division... Negative tal... Parenteser og brøkstreger... Potenser og rødder... Lektion Side 1 Plus,
Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2
Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel
Afstandsformlen og Cirklens Ligning
Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.
navigation introduktion 1 Vejskilte og stifindere om navigationsdesign
navigation introduktion 1 Vejskilte og stifindere om navigationsdesign navigation introduktion 2 definition Navigation betyder at beregne en kurs - at have et mål og finde ud af hvordan man lettest når
Om problemløsning i matematik
Om problemløsning i matematik Frank Villa 15. juni 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
MATEMATIK A. Indhold. 92 videoer.
MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer
Differentiation i praksis
Differentiation i praksis Frank Villa 7. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over
Tredje kapitel i serien om, hvad man kan få ud af sin håndflash, hvis bare man bruger fantasien
Tredje kapitel i serien om, hvad man kan få ud af sin håndflash, hvis bare man bruger fantasien For nogen tid siden efterlyste jeg i et forum et nyt ord for håndflash, da det nok ikke er det mest logiske
Matricer og lineære ligningssystemer
Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix
GrundlÄggende variabelsammenhänge
GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.
Funktionsterminologi
Funktionsterminologi Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet
Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord
BRUGERUNDERSØGELSE BORGERENS MØDE MED REHABILITERINGSTEAMET LEJRE KOMMUNE 2014
BRUGERUNDERSØGELSE BORGERENS MØDE MED REHABILITERINGSTEAMET LEJRE KOMMUNE 2014 1 Om rapporten Denne rapport præsenterer resultater fra en spørgeskemaundersøgelse blandt de borgere, der i perioden den 1.
Københavns åbne Gymnasium Elevudsagn fra spørgeskemaundersøgelsen i 2q
Københavns åbne Gymnasium Elevudsagn fra spørgeskemaundersøgelsen i 2q 1.7 Overraskelser ved gymnasiet eller hf! Er der noget ved gymnasiet eller hf som undrer dig eller har undret dig? 20 Det har overrasket
Problemløsning i retvinklede trekanter
Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug
Studieretningsopgave
Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...
Nedenfor er tegnet svingningsmønsteret for to sinus-toner med frekvensen 440 og 443 Hz:
Appendiks 1: Om svævning: Hvis to toner ligger meget tæt på hinanden opstår et interessant akustisk og matematisk fænomen, der kaldes svævning. Det er dette fænomen, der ligger bag alle de steder, hvor
Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod
Navn: Klasse: Matematik Opgave Kompendium Potens & Kvadratrod Opgaver: Ekstra: Point: http://madsmatik.dk/ d.0-0-01 1/1 Potenser: Du har måske set udtrykket før eller måske 10 1. Begge to er det vi kalder
Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså
Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen
Bedste rette linje ved mindste kvadraters metode
1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem
Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.
Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske
Æstetik og reduktioner Matematisk takt og tone. Mikkel Findinge
Æstetik og reduktioner Matematisk takt og tone Mikkel Findinge Indhold Indledning. Hvad er god matematisk skik?...................... Starttips før ulvehyl 4. Primtalsfaktorisering...........................
Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.
Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).
Og vi skal tale om det på en måde, som du måske ikke har tænkt over det før.
Kald 3 - The Power of why. I dag skal vi tale om HVORFOR du ønsker det, du ønsker. Og vi skal tale om det på en måde, som du måske ikke har tænkt over det før. Derfor er det super vigtigt, at du har god
TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)
Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale
Differentialligninger. Ib Michelsen
Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3
Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen
Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold
Geometriske vektorer. enote En geometrisk vektor
enote 10 1 enote 10 Geometriske vektorer Formålet med denne note er at give en introduktion til geometriske vektorer i planen og rummet, som sigter mod at introducere en række af de metoder, der gør sig
M A T E M A T I K. # e z. # a. # e x. # e y A U E R B A C H M I K E. a z. a x
M A T E M A T I K B A M I K E A U E R B A C H WWW.MATHEMATICUS.DK z a z # e z # a a x # e x ay # e y y x Matematik B A. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes
Bilag 6: Transskribering af interview med deltager nr. 1
Bilag 6: Transskribering af interview med deltager nr. 1 Indledning INT: Okay, det er denne her brochure, det handler om. D: Mmm. INT: Og hvad tror du, den handler om? D: Den her brochure? Den handler
