Forslag til løsning af Opgaver til sandsynlighedsregning (side 434)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Forslag til løsning af Opgaver til sandsynlighedsregning (side 434)"

Transkript

1 Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Opgave Vi kan selv vælge, om vi vil arbejde med ordnet eller uordnet udtagelse, hvis vi blot sikrer, at vi er konsekvente i vores valg, dvs. samme valg for antal udfald i hændelsen og i udfaldsrummet. Her er valgt uordnet udtagelse, da udtagelsen af tal ganske vist sker i en rækkefølge, men i de 3 hændelser, der indgår i opgaver, er det ikke nødvendigt at skelne mellem den rækkefølge, de 4 tal kommer i. Vort udfaldsrum består af K( 90, 4 ) forskellige udfald. ) Hvis alle 4 tal er valgt på Sørens plade, er der K( 5, 4 ) forskellige valg. Derfor: K( 5, 4) 365 P( A) 0, K( 90, 4) ) Hvis ingen af tallene er på Sørens plade, er de alle valgt blandt de 75 tal, som Søren ikke har. Det giver: K( 75, 4) P( B) 0, 4757 K( 90, 4) ) af tallene skal vælges fra Sørens plade, og det skal kombineres med de valg, der er for at vælge de 3 øvrige tal blandt de 75 tal, som Søren ikke har. Vi får: K( 5, ) K( 75, 3) P( C) 0, 3964 K( 90, 4) Begrundelsen for at vælge uordnet udtagelse er, at PC ( ) er vanskeligere ved ordnet udtagelse. Her skal man nemlig også tage hensyn til hvilket af de 4 trækninger, der er et tal fra Søren plade Vi får derfor ved ordnet udtagelse: P( C) 0,

2 Opgave 2 Vi laver et chancetræ: fejl 0,04 0,400,04=0,06 A 0,40 ikke fejl 0,96 0,400,96=0,384 B 0,60 fejl 0,0 0,600,0=0,06 ikke fejl 0,90 0,600,90=4 Der er 2 grene, der repræsenterer, at kuglepennen har fejl, nemlig øverste og 3. gren fra oven. Det giver: P( Fejl) 0, 40 0, 04 0, 60 0, 0 0, 06 0, 06 0, 076 Når vi ved, at når der er fejl ved kuglepennen, stammer den enten fra A eller B. Det betyder, at vi enten er ved. eller 3. gren fra oven. Vi skal finde, hvor stor en procentdel af de fejlproducerede varer, der stammer fra A. Med andre ord hvor meget udgør tallene fra. gren af det samlede tal for de 2 grene: 0, 40 0, 04 0, 06 P( Kuglepennen stammer fra A der er fejl) 0, 2 0, 40 0, 04 0, 6 0, 0 0, 076 Opgave 3 Opgaven er af samme type som opgave 2. Vi har 2 slags mønter, en symmetrisk med en sandsynlighed for plat på og en ikke symmetrisk med en sandsynlighed for plat på 0,6. Når der vælges tilfældigt, er der lige stor chance for valg af de 2 mønter. plat =0,25 Symmetrisk krone =0,25 Ikke sym. plat 0,6 0,6=0,30 krone 0,4 0,4=0,20 65

3 P( Plat) 0, 5 0, 5 0, 5 0, 6 0, 55. 0, 5 0, 6 0, 30 P( ikke sym. mønt Plat) 0, 545 0, 5 0, 5 0, 5 0, 6 0, 55 Opgave 4 Der er tale om en binomialfordeling, da bilen enten har lygtefejl eller ej. Når der udtages 3, har vi n 3. Vi har derfor: X b( 3, 0,40) P(2 af de 3 biler har lygtefejl) k( 3, 2) 0, 4 2 0, 6 30, 6 0, 6 0, 288. Opgave 5 Vi udregner sandsynligheden for, at nøglen passer i., 2., 3., 4., 5., 6 eller 7. forsøg. Det viser sig, at der, som vi kan se i udregninger nedenfor, er den samme sandsynlighed for hvert af de 7 forsøg. P( nøglen passer i. forsøg) P( X ) 7 6 P( nøglen passer i 2. forsøg) P( X 2) (den første passer ikke, men den anden passer) P( nøglen passer i 3. forsøg) P( X 3) (de 2 første passer ikke, men den tredje passer) o. s. v. Der er således tale om en jævn sandsynlighedsbelægning. E( X ) ( ) Opgave 6 Når der udtages med tilbagelægning, er der ved hver udtrækning en sandsynlighed på es. ) P( 3 esser) 0, for at få et ) P( antal esser er større end 0) P( 0 esser) 0, ) Vi får: X b( 3, ) og E( X ) n p 3 0, ) Vi beregner først følgende sandsynligheder: 66

4 9 P( X 0) 0, P( X ) K( 3, ) 0, P( X 2) K( 3, 2) 0, Idet Y betegner A s overskud, har Y følgende sandsynlighedsfordeling: Y P( Y y) P( X 0) 0, 729 P( X ) 0, 243 P( X 2) 0, 027 P( X 3) 0, 00 Opgave 7 E( Y) 0, 729 0, , , 00 0, 6 Der er hver gang en sandsynlighed på 3 for at gætte rigtigt. ) Med 8 spørgsmål vil den stokastiske variable X, der tæller antal rigtige svar, være fordelt efter binomialfordelingen: b8 (, ). Med 2 spørgsmål gælder: X b( 2, ). Det betyder: 3 3 P( prøven er bestået ) P( X 4; 8, 3) 0, 2586 (resultat fundet i tabel) P( prøven er bestået ) P( X 6; 2, 3) 0, 777 (resultat fundet i tabel) n 2) Vi skal åbenbart bestemme n således at: P( x ; n, ) 0, 0. Forskellige tabelopslag giver: 2 3 Opgave 8 P( X 8; 5, 3) 0, 0882 P( X 8; 6, 3) 0, 265 P( X 9; 7, 3) 0, 0755 Ved ulige antal spørgsmål er kravene strengere, og dermed bliver sandsynligheden mindre for at man kan slippe gennem prøven ved gæt alene. Med 25 spørgsmål får vi: P( X 3; 25, 3) 0, 045. Her er vi således under 5 %. Hvis spilleren satser på felt a, hvor a 6, taber han kr., hvis ingen af de 2 terninger viser a. Han vinder 2 kr., hvis en af terningerne viser a, og han vinder 4 kr., hvis begge terninger viser a. Idet den stokastiske variable X angiver hans overskud, får vi: 67

5 P( X ) P( X 2) P( X 4) E( X ) V ( X ) E( X ) E( X ) 4 6 ( ) ( X ) V( X ) 2, 25 ca., 5 25 Spilleren taber, hvis ingen af de 2 terninger viser 3. Sandsynligheden herfor er hver gang P( Han taber netop 6 gange ud af 0spil) K( 0, 6) 0, Opgave Månedlig gevinstchance= ca. 0, P(Mindst gevinst i 6 trækninger) P( 0 gevinster ) ( 0, 039) 6 0, 23 I min udregning er der medtaget så mange decimaler, som lommeregneren regner med, og herved får man netop det tal, som angivet i folderen P( 0 milliongevinster i 2 trækninger) 0, Det betyder, at sandsynligheden for mindst gevinst i klasselotteriet er 0, , I Lotto er risikoen for 0 milliongevinster på en kupon med 0 rækker: 0 0 ( ) ( 0, ) 0, P( 0 miliongevinster i 4 uger) 0, ,

6 P( Mindst milliongevinst i 4 uger) 0, , Multiplicerer vi dette tal med 4,6, får vi 0, , der er tæt på chancen for milliongevinst i Klasselotteriet. Mine tal giver, at chancen i Klasselotteriet er ca. 4,5 gange så stor som i Lotto. Unøjagtigheden kan skyldes afrunding af decimaler. 69

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24.

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. 10. 10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. Bestem udfaldsrummet for lykkehjulet. 10.2 En tegnestift Du putter en tegnestift i et raflebæger, ryster det godt og smider

Læs mere

Kombinatorik og Sandsynlighedsregning

Kombinatorik og Sandsynlighedsregning Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Statistik og sandsynlighed Statistik handler om at beskrive og analysere en stor mængde data. som I eller andre har indsamlet. Det kan fx være tal, der fortæller om, hvor mange lynnedslag der er i Danmark

Læs mere

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former.

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. Statistisk sandsynlighed Her finder man sandsynligheden for en hændelse ved at kigge på en

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed Mattip om Statistik Du skal lære om: Faglig læsning Kan ikke Kan næsten Kan Chance og risiko Sandsynlighed Observationer, hyppighed og frekvens Gennemsnit Tilhørende kopier: Statistik, og mattip.dk Statistik

Læs mere

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1 Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens

Læs mere

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N.

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N. Dagens program Afsnit 1.4-1.6 Kombinatorik - Permutationer - Kombinationer Udtagelse af stikprøver - Population - Med og uden tilbagelægning Eksempler 1 Sandsynligheder Udfaldsrum Ω = {ω 1,..., ω N } hvor

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien:

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien: INFA-Chancelæreserien: Chancer gennem eksperimenter Chancer gennem optællinger CHANCETRÆ - Chancer gennem beregninger SPIL - Chancer gennem tællemetoder LOD - Chancer gennem simuleringer KUGLE - Chancer

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

MATEMATIKBANKENS SANDSY NLIGHED- OG K O MB I NATORIKKOMPENDIUM. Sandsynlighed Kombinatorik Matrix Tælletræer Tilbagelægning (U)Ordnet Guns g Simula on

MATEMATIKBANKENS SANDSY NLIGHED- OG K O MB I NATORIKKOMPENDIUM. Sandsynlighed Kombinatorik Matrix Tælletræer Tilbagelægning (U)Ordnet Guns g Simula on MATEMATIKBANKENS SANDSY NLIGHED- OG K O MB I NATORIKKOMPENDIUM Sandsynlighed Kombinatorik Matrix Tælletræer Tilbagelægning (U)Ordnet Guns g Simula on Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 0. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6. og 6. Betingede diskrete

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/1 Hvad skal vi lave i dag? Repeterer lidt om diskrete sv. Standardfordelinger (binomial, Poisson, geometrisk) Stokastiske vektorer Diskrete stokastiske vektorer p. 2/1 Repetition Heltallige sv er

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning En note om sandsynlighedsregning. Den er tænkt som supplement til Vejen til Matematik B2. Henrik S. Hansen, Sct. Knud Version 2.0 Indhold Indledning... 1 Sandsynlighedsregning...

Læs mere

Vejledende løsninger til opgaver i kapitel 6

Vejledende løsninger til opgaver i kapitel 6 Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 7. September, 2007 Hvad er sandsynlighedsregning? Formel matematisk måde til at håndtere tilfældigheder. Dybest set en formalisering af udregninger med proportioner.

Læs mere

TØ-opgaver til uge 45

TØ-opgaver til uge 45 TØ-opgaver til uge 45 Først laver vi en liste over de ligninger med mere i [IPT], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Ligning (2.6) på side 5. [3]: Sætning 3.1, ligning (3.3) på side 7.

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren

Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren INFA 2005 Forord Denne INFA-publikation giver en indføring i arbejdet med begreber fra sandsynlighedernes verden. Den henvender

Læs mere

SANDSYNLIGHED FACIT SIDE 154-155

SANDSYNLIGHED FACIT SIDE 154-155 SIDE 154-155 Opgave 1 A. Data (x) h(x) f(x) 2 1 0,042 3 3 0,125 4 6 0,25 5 3 0,125 6 4 0,16 7 1 0,042 8 2 0,0833 9 1 0,042 10 2 0,0833 11 1 0,042 B. C. Diagrammet (et søjlediagram) er lavet ud fra hyppigheden,

Læs mere

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ JLJ Nanostatistik: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/nanostatistik/ p. 1/16 Højder

Læs mere

Løsninger til kapitel 5

Løsninger til kapitel 5 1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

TØ-opgaver til uge 46

TØ-opgaver til uge 46 TØ-opgaver til uge 46 Først laver vi en liste over de ligninger med mere i [ITP], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Sætning 3.1, ligning (3.3) på side 7. [3]: Sætning 3.1, ligning (3.4)

Læs mere

Sandsynlighed og kombinatorik

Sandsynlighed og kombinatorik Sandsynlighed og kombinatorik Indholdsfortegnelse... 1 Simpel sandsynlighed... 2 Kombinatorik... 4 Sandsynlighed ved hjælp af kombinatorik... 7 Udregningsark... 8 side 1 Simpel sandsynlighed 1: Du kaster

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Statistik og sandsynlighedsregning

Statistik og sandsynlighedsregning Statistik og sandsynlighedsregning DLF-Kursus Ringsted 17.-18.9 2015 Eva Rønn UCC Indhold og mål Mål At I får får overblik over statistik og sandsynlighed som fagområde i folkeskolen får indblik i didaktiske

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

OPGAVER 3.g SANDSYNLIGHEDSREGNING KOMBINATORIK STATISTIK KOMPLEKSE TAL. x-klasserne Gammel Hellerup Gymnasium

OPGAVER 3.g SANDSYNLIGHEDSREGNING KOMBINATORIK STATISTIK KOMPLEKSE TAL. x-klasserne Gammel Hellerup Gymnasium OPGAVER 3.g SANDSYNLIGHEDSREGNING KOMBINATORIK STATISTIK KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse SANDSYNLIGHEDSREGNING... 3 KOMBINATORIK... 4 STATISTIK... 30 KOMPLEKSE TAL...

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 9. Sandsynlighedsregning

Matematikkens mysterier - på et obligatorisk niveau. 9. Sandsynlighedsregning Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 9. Sandsynlighedsregning Hvad er den typiske størrelse af et nittehoved? 9. Statistik og sandsynlighedsregning Indhold 9.0 Indledning

Læs mere

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder Dagens program Afsnit 2.1-2.3 Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder 1 Stokastiske variable (diskrete) Et eksperiment med usikkerhed beskrives

Læs mere

Sandsynlighed og kombinatorik

Sandsynlighed og kombinatorik Sandsynlighed og kombinatorik Simpel sandsynlighed... 94 Kombinatorik... 95 Sandsynlighed og kombinatorik... 97 Kombinatorik og kugletrækning... 97 Kombinatorik og sandsynlighedsregning Side 93 Sandsynlighedsregning

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Matematiske emner SPIL. Sandsynligheder og Strategier

Matematiske emner SPIL. Sandsynligheder og Strategier Matematiske emner SPIL Sandsynligheder og Strategier Ole Witt-Hansen Køge Gymnasium 2006 INDHOLD Kap. Sandsynligheder ved spil.... Lotto... øvelser...2 2. Poker...3 3. Ruinsandsynligheder ved Roulette

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Projektarbejde. Kombinatorik

Projektarbejde. Kombinatorik Projektarbejde Matematik A Teknisk Gymnasium Århus Side 1 Indledning: Besvarelsen bør indeholde følgende hovedafsnit: Opgaveanalyse: En kort beskrivelse af, hvad opgaven går ud på, samt hvilke oplysninger,

Læs mere

Matematik med LEGO WeDo klasse. Lærervejledning - Målmanden. Formål med opgaven: Aktivitet: Instruktion: Evaluering:

Matematik med LEGO WeDo klasse. Lærervejledning - Målmanden. Formål med opgaven: Aktivitet: Instruktion: Evaluering: Lærervejledning - Målmanden Eleverne skal bygge målmanden efter den vejledning der er givet i LEGO WeDo. De skal bruge en papirbold til at skyde på målmanden. Hvor mange papirbolde redder målmanden og

Læs mere

Sandsynlighedregning

Sandsynlighedregning MOGENS ODDERSHEDE LARSEN Sandsynlighedregning + = - P(A B) P(A) P(B) P(A B). 1. udgave 2016 FORORD Dette notat giver en kort gennemgang af de grundlæggende begreber i sandsynlighedsregning. Det forudsættes,

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Rev. 12.10. 2015. Spilleregler: Bånd oversigt: Gevinst oversigt Featurespil

Rev. 12.10. 2015. Spilleregler: Bånd oversigt: Gevinst oversigt Featurespil Rev. 12.10. 2015 Spilleregler Bånd oversigt Gevinst oversigt Featurespil Spilleregler: Bånd oversigt: Indsatsen vælges ved at logge på en automat med den ønskede indsats: 50 øre, 1 krone eller 5 kroner

Læs mere

Sum af. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Samlet sum. Navn

Sum af. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Beløb. Samlet sum. Navn Afrund beløb Sum af alle beløb til hele kroner Nr. 27 Navn Runde 1 Runde 2 Runde 3 Runde 4 Runde 5 Runde 6 Samlet sum Navn Runde 1 Runde 2 Runde 3 Runde 4 Runde 5 Runde 6 Sum af alle beløb til hele kroner

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning 1. I en klasse er der 6 drenge og 9 piger. I klassen nedsættes et festudvalg til at arrangere en klassefest, og dette udvalg skal bestå af én pige og én dreng. Hvor mange forskellige

Læs mere

Kombinatorik. M-serien består af disse arbejdskort: M1 Formler til kombinatorik M2 Pascals trekant M3 Binomialformlen

Kombinatorik. M-serien består af disse arbejdskort: M1 Formler til kombinatorik M2 Pascals trekant M3 Binomialformlen 1 Statistik og sandsynlighedsregning er et relativt nyt emne i folkeskolens matematikundervisning. Ja, det er for den sags skyld et relativt nyt emne også i fagmatematikken og i anvendelser af matematik.

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

EMMA*-Tema: Chancetræer

EMMA*-Tema: Chancetræer EMMA*-Tema: Chancetræer Indhold 1. Vi tegner et chancetræ 2. Lidt om programmet TRÆ 3. Udtagelse med tilbagelægning 4. Programmet ÆSKE 5. Opgaver 6. Reducerede chancetræer 7. Hvor sikker er diagnosen?

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Vigtigste nye emner i 2.1, 2.2 og 2.5

Læs mere

Modul 3: Sandsynlighedsregning

Modul 3: Sandsynlighedsregning Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 3: Sandsynlighedsregning 3.1 Sandsynligheder................................... 1 3.2 Tilfældig udtrækning fra en mængde........................

Læs mere

Allan C. Malmberg. Terningkast

Allan C. Malmberg. Terningkast Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning Udfaldsrum og hændelser Udfald e:resultatetafetforsøg. Udfaldsrum S: Mængden af de mulige udfald af forsøget. Hændelse A: En delmængde af udfaldsrummet. Tilfældigt fænomen S e (eks.)

Læs mere

FÅ OVERSKUD PÅ DIT SPIL

FÅ OVERSKUD PÅ DIT SPIL FÅ OVERSKUD PÅ DIT SPIL Odds-Betting.dk Den sikre måde, hvorpå du kan få overskud. Jeg vil i denne E-bog komme ind på hvorpå du kan styrke dine chancer for netop at få et pænt overskud på diverse spil.

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 1.7-1.8 Fødselsdagseksemplet, fra sidst Eksperimenterikkealleerligesandsynlige Diskrete sandsynlighedsfordelinger -Definition af sandsynligheder - Regneregler Hvad er sandsynligheder?

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel 4 0202 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel Hjemmeopgaver Vejledende løsning.2 Eksperimentet kan beskrives ved binomialfordelingen, X b(x; n, p), hvor n = og p = 1 2. Dermed kan man

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Løsningsforslag til Stokastik 1.-10. klasse

Løsningsforslag til Stokastik 1.-10. klasse 1 Løsningsforslag til Stokastik 1.-10. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

statistik og sandsynlighed F+E+D bernitt-matematik.dk Demo

statistik og sandsynlighed F+E+D bernitt-matematik.dk Demo F+E+D 1 brikkerne statistik og sandsynlighed F+E+D 1. udgave som E-bog ISBN: 978-87-92488-20-6 2010 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk Læs

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015

WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015 WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015 At I får overblik over statistik og sandsynlighed som fagområde i folkeskolen indblik i didaktiske forskeres anbefalinger til undervisningen i statistik

Læs mere

Indhold. Servicesider. Testsider

Indhold. Servicesider. Testsider Indhold Servicesider Isometrisk papir.................................................... kopiside - Prikpapir............................................................. kopiside - Brøkkort.............................................................

Læs mere

Eksamensspørgsmål 1a matematikc Læg mærke til at spørgsmålene er dublerede.

Eksamensspørgsmål 1a matematikc Læg mærke til at spørgsmålene er dublerede. 1 Eksamensspørgsmål 1a matematikc 2010. Læg mærke til at spørgsmålene er dublerede. (Censor har godkendt spørgsmålene, pånær spørgsmål 7 og 17 der er gledet ud). 1. Procent- og rentesregning Gør rede for

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variable Loven om den itererede middelværdi Eksempler 1 Beskrivelse af

Læs mere

Start med at beskriv det bagvedliggende stokastiske eksperiment med det tilhørende sandsynlighedsfelt.

Start med at beskriv det bagvedliggende stokastiske eksperiment med det tilhørende sandsynlighedsfelt. Hjælp til opgave 2 besvarelseseksempel Tip til de følgende opgaver tart med at beskriv det bagvedliggende stokastiske eksperiment med det tilhørende sandsynlighedsfelt. Definér derefter relevante hændelser

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variabler Loven om den itererede middelværdi Eksempler 1 Beskrivelse

Læs mere