MULTI 45 ISBN

Størrelse: px
Starte visningen fra side:

Download "MULTI 45 ISBN 978-87-02-123494"

Transkript

1

2 MULTI 45. udgave,. oplag Gyldendal A/S, København. Kopiering fra denne bog må kun finde sted på institutioner, der har indgået aftale med COPY-DAN, og kun inden for de i aftalen nævnte rammer. Forlagsredaktion: Marianne Nordlunde Ekstern redaktion: Thomas Kaas Grafisk design: Kontur Design/Karin Friis Hansen Grafisk tilrettelæggelse: Søstrene Sandhed/Janne Rose og Susan Meling Tang Omslag: Kontur Design/Karin Friis Hansen Illustrationer: Line Rom Lange Tekniske tegninger: Søstrene Sandhed/Janne Rose og Susan Meling Tang Fotos: Søren Lundberg: s. 46, 29, 64 Tryk: Ednas Print, Slovenien ISBN Til 5. klasse hører: MULTI 5 - grundbog MULTI 5 - opgavebog MULTI 5 - kopimappe MULTI 5 - i-bog MULTI 5 - lærervejledning

3 Du skal lære om:. Faglig læsning side 4 2. Regning med tal side 0 3. Gange og division side Figurer, flader og linjer side Brøker og decimaltal side Cirkler og polygoner side Koordinatsystemet side Procent side Statistik side Rumfang side 22. Reduktion, ligninger og uligheder side Tal på sandsynlighed side Matematik i hverdagen side 64

4 FAGLIG LÆSNING MÅL At du lærer: bogen at kende, så du bliver god til at læse den hvordan du skal arbejde med en aktivitetsboks hvordan du skal arbejde med en teoriboks at bruge modellen for faglig læsning. OM MULTI 5 Kapitlerne i MULTI 5 er bygget op på samme måde som i MULTI 4. Her er en oversigt over de dele, som er i hvert kapitel. Mål og begreber og ord står på første side i hvert kapitel. Målene fortæller, hvad du skal lære i løbet af kapitlet. Begreberne og ordene skal du lære at kende i løbet af kapitlet. Når du møder begrebet eller ordet første gang, vil det stå med fed skrift. Forhåndsviden står på første side i hvert kapitel. I opgaven skal du i klassen eller sammen med en makker bruge din viden om emnet til at svare på nogle spørgsmål. FORHÅNDSVIDEN Aktiviteter er altid i en blå boks. En aktivitet er en opgave, hvor du gennem leg, spil, bevægelse og ved at bruge materialer arbejder med matematik. 4 Faglig læsning

5 Teori er altid i en lilla boks. I en teoriboks får du forklaret eller vist begreber, ord og matematiske regler. OPGAVE 5 Opgaverne i kapitlet er meget forskellige. Nogle opgaver skal du løse selv, andre skal du løse med en makker. Evalueringsark har opgaver, der passer til de mål, som stod på første side. Du skal løse opgaverne med en makker. Når I løser opgaverne, kan I finde ud af, hvordan I hver især har udviklet jer i forhold til målene. TRÆN TRÆN 2 Træn og 2 er på siderne efter evalueringssiden. På siderne arbejder du med kapitlets emne. Træn ligner opgaver, du tidligere har mødt. Træn 2 har opgaver, der er lidt sværere. Blandede opgaver. Nogle kapitler slutter med blandede opgaver. Opgaverne ligner de opgaver, du tidligere har mødt i bogen. Tema/projekt. Nogle kapitler slutter med et tema/ projekt. I skal arbejde undersøgende, når I arbejder med disse sider. betyder, at du skal arbejde sammen med en makker. F betyder, at du skal arbejde med faglig læsning, hvor du skal bruge en særlig arbejdsmåde, se side 8. A betyder, at du skal bruge et aktivitetsark. Aktivitets- ark er kopiark, du får af din lærer. O betyder, at der er sider i opgavebogen, der passer til denne side. E betyder, at du skal bruge et skriftlig evalueringsark. Det skriftlige evalueringsark er et kopiark, du får af din lærer. Faglig læsning 5

6 SÅDAN LÆSER DU EN TEORIBOKS Teoriboksene i MULTI 5 beskriver enten frem- gangsmåder, færdigheder eller begreber. Fremgangsmåder En fremgangsmåde er en måde, som du kan bruge, når du skal løse en opgave. Begreber Begreber er faglige ord, du skal kende. Redskaber Et redskab er en instruktion i at bruge et hjælpemiddel. Når I sammen læser en teoriboks, skal I: læse overskriften, se på illustrationerne og tale om, hvad I tror, teoriboksen handler om tale om, hvad I ved om emnet i forvejen læse indholdet i teoriboksen finde ud af, om teoriboksen beskriver fremgangsmåder, færdigheder eller begreber skrive de ord ned, som I ikke forstår, og undersøge, hvad ordene betyder forklare hinanden, hvad teoriboksen fortæller. OPGAVE. Find teoriboksen på side Hvad er teoriboksens overskrift? 3. Hvad tror I, teoriboksen handler om? 4. Hvad ved I om emnet i forvejen? 5. Læs teoriboksen. 6. Beskriver teoriboksen fremgangsmåder, redskaber eller begreber?. Hvad betyder diagonal, linjestykke og halvlinje? 8. Hvad fortæller teoriboksen? OPGAVE 2 Find teoriboksen på side 56, og find ud af, hvad teoriboksen fortæller. Hvad tror du, modsatte regningsarter handler om? 6 Faglig læsning

7 SÅDAN LÆSER DU EN AKTIVITETSBOKS Aktivitetsboksene i MULTI 5 indeholder enten et spil, en undersøgelse eller en bevægelsesaktivitet. I aktivitetsboksene står, hvor mange personer I skal være, og hvad I skal bruge. Spil Et spil har regler, som I skal læse og forstå, før I kan spille. Undersøgelser En undersøgelse er en aktivitet, hvor I skal opdage noget. Bevægelsesaktiviteter I en bevægelsesaktivitet skal I bevæge jer og træne noget samtidig. Når I sammen læser en aktivitetsboks, skal I: læse overskriften, se på illustrationerne og tale om, hvad I tror, aktiviteten handler om læse hele aktivitetsboksen finde ud af, om aktiviteten er et spil, en undersøgelse eller en bevægelsesaktivitet finde ud af, hvor mange I skal være til aktiviteten finde ud af, hvornår aktiviteten er færdig finde ud af, hvilke aktivitetsark I skal bruge skrive de ord ned, som I ikke forstår, og undersøge, hvad ordene betyder fortælle med egne ord, hvad I skal i aktiviteten, og finde de ting, I skal bruge aftale, hvordan I vil fordele opgaverne imellem jer lave aktiviteten. OPGAVE 3. Slå op på aktiviteten side Hvad er aktivitetens overskrift? 3. Hvad tror I, aktiviteten handler om? 4. Læs hele aktivitetsboksen. 5. Er aktiviteten et spil, en undersøgelse eller en bevægelsesaktivitet? 6. Hvor mange skal I være til aktiviteten?. Hvornår er aktiviteten færdig? 8. Hvilke aktivitetsark skal I bruge? 9. Hvad betyder observationssæt, typetal og middeltal. 0. Hvad går aktiviteten ud på?. Hvad skal I ellers bruge af materialer? 2. Hvordan vil I fordele opgaverne mellem jer? 3. Lav aktiviteten. OPGAVE 4 Find aktivitetsboksen på side 65, og find ud af, hvad I skal i aktiviteten. O Faglig læsning 7

8 Nu skal vi tegne et billede, der viser teksten En af de ting, du skal arbejde med i MULTI 5, er at læse og forstå tekster, tegninger, skemaer, tabeller og diagrammer. I MULTI 4 brugte du en særlig arbejdsmåde, som du igen skal bruge. Her i MULTI 5 ser den lidt anderledes ud. Model for faglig læsning A LÆS, OG FORSTÅ TEKSTEN Fortæl teksten med egne ord. Tegn et billede, der viser teksten. Hvad er spørgsmålet? (Sig det højt, skriv det ned). Hvor på siden står der noget om det, vi skal vide? Kig i tabeller, diagrammer, illustrationer og tekst. Skriv de oplysninger ned, som du skal bruge. Hvilken matematik skal du bruge? LØS OPGAVEN Vis, hvordan du vil løse opgaven, fx som et regnestykke eller med en tegning. Lav et overslag. Regn opgaven ud. Skriv resultatet, så det er tydeligt, og du nemt kan finde det. VURDER, OM RESULTA- TET KAN PASSE Læs opgaven igen. Kan resultatet passe? Passer resultatet med dit overslag? Har du valgt den rigtige metode til at løse opgaven? Har du brugt de rigtige oplysninger? Hvad fortæller resultatet? Opgave 5 F Cille har 35 kr. Det er 5 gange så mange penge som Mikkel. Anna har dobbelt så mange penge som Mikkel. Victor har lige så mange penge som Mikkel og Oliver tilsammen. Oliver har 20 kr.. Hvor mange penge har hvert af børnene? 2. Hvor mange penge har børnene tilsammen? Opgave 6 F Mor, far og Line fejrer fødselsdag. Line siger: mor og far, ved I godt, at I er 00 år tilsammen." Far er overrasket, Ja, du har ret. Og din alder og min er i alt 64 år. Line svarer, og min alder og mors er i alt 58 år. Hvor gammel er mor, far og Line? 8 Faglig læsning

9 Opgave GULERODSBOLLER 0 STK. 3 dl vand dl ymer 25 g gær F 40 g solsikkekerner 40 g havregryn 20 g revet gulerod tsk. salt 350 g hvedemel Lav opskriften om, så du får:. 50 boller boller. Opgave 8 F Thomas og Hedda skal i teatret i Odense. Forestillingen er kl. 7, men de skal være der 5 minutter før. De tager bussen fra Odense banegård (OBC) og skal af ved Grønnegade. Fra Grønnegade skal de gå 5 minutter til teatret. Opgave 9 F Du må bruge lommeregner. 5.x skal i biografen kl.0.00 med deres 2 lærere. Der er 25 elever i klassen. Hvad koster billet- terne for elever og lærere tilsammen? Talby Biograf Billetpris 75 kr. før kl kr. efter kl turs klippekort 650 kr. (kan bruges på alle tider). Børn under 5 år halv pris hele dagen. Opgave 0 F Peter, Marie, Andrea og Jonas fik i alt 38 chokoladeæg. Jonas fik et færre end Peter. Andrea fik halvt så mange som Marie. Peter fik 2 flere end Andrea. Hvor mange æg fik de hver?. Hvor lang tid tager deres bustur? 2. Hvornår skal de med bussen fra OBC for at kunne nå forestillingen kl. 7? 3. Julie skal med i teatret og stiger på bussen ved Klaregade. Hvad tid skal Julie tage bussen, hvis hun vil med samme bus som Thomas og Hedda? Rute OBC Hans Jensens Stræde Klingenberg Klaregade Filosofgangen Søndergade Grønnegade Kongensgade Faglig læsning 9

10 REGNING MED TAL MÅL At du lærer: mere om plus og minus med og uden decimaltal mere om at regne med negative tal mere om gange og division om regningsarternes hierarki om primtal og sammensatte tal. BEGREBER OG ORD fortegn decimaltal negative tal regningsarternes hierarki primtal sammensatte tal opløse i primfaktorer faktorer primfaktoropløsning FORHÅNDSVIDEN. Find på matematikopgaver, som passer til tegningerne. Skriv opgaverne ned. 2. Løs hinandens matematikopgaver. 3. Brug matematikopgaverne til at forklare ord fra boksen, I kender. Hvorfor kan jeg kun dele hver af bunkerne på 2 måder? OPGAVE. Brug tallene i boksen. Skriv 2 plusstykker, 2 minusstykker, 2 gangestykker og 2 divisionsstykker. 2. Regn stykkerne. 3. Skriv regnehistorier, der passer til 3 af regnestykkerne , ,32 56,74 0 Regning med tal

11 A SÅ TÆT PÅ SOM MULIGT A 2 AKTIVITET FOR 2-4 PERSONER. I skal bruge: papir, blyant, lommeregner og talkort (A2). Regler: I spiller alle mod alle. Spillet går ud på at lave regnestykker, som giver et resultat så tæt på rundens tal som muligt. Jo tættere I kommer på rundens tal, jo færre point får I. Det gælder om at få færrest point. Først skal I klippe talkortene ud og lægge dem med bagsiden opad på bordet. Herefter siger en af jer et helt tal mellem 0 og 50. Dette tal er rundens tal. Derefter vender en anden spiller 6 talkort. Cifrene på talkortene skal I bruge i et regnestykke sammen med +. Tallene i regnestykkerne skal være decimaltal med eller 2 decimaler og skal være dannet ud fra de 6 cifre på talkortene. Når alle har vist deres regnestykke, så bruger I lommeregneren til at se, hvor tæt jeres resultat er på rundens tal. Forskellen mellem jeres resultat og rundens tal svarer til det antal point, hver af jer får. I spiller 8 runder. Den, der har færrest point efter 8 runder, vinder. OPGAVE 2 F Olivers far Hans skal trække en masse ledninger fra et lokale hen til et andet. Han har en masse forlængerledninger, som han kan sætte sammen for at have nok ledning. 4. Hvilken forlængerledning mangler Hans at bruge, hvis han i alt skal have 88 m, og han allerede har samlet forlængerledning a, c, k og l? 5. Lav selv 3 opgaver til hinanden. Hans skal lave 4 nye stikkontakter i Olivers værelse. Derfor trækker han en ny ledning rundt langs væggen fra A til B. Til hver stikkontakt bruger Hans 8 cm ledning.. Giv 3 forslag til, hvilke forlængerledninger Hans kan sætte sammen, hvis han skal bruge mellem 75 m og 80 m. 2. Hvilke forlængerledninger skal Hans samle, hvis han vil bruge så få forlængerledninger som muligt for at samle mindst 75 m? 3. Hvor mange meter samler han, hvis han samler forlængerledningerne d, f og e? Dør,05 m B A,08 m 6. Hvor mange meter ledning skal Hans bruge?. Hvor meget ledning er der tilbage, hvis Hans køber 20 m ledning? O 2 5,57 m 5,57 m,4 m,4 m 2,6 m Opgaver

12 T NEGATIVE TAL Tal, der er mindre end nul, hedder negative tal. Du skriver et negativt tal med et minus som fortegn, fx. 6. Når fortegnet står ved siden af et regnetegn, skriver du en parentes rundt om det negative tal, fx 4 ( 5). Du kan regne stykker med minus ved at tænke trække fra eller fylde op. Eksempel: hvis du skal regne stykket 5 7 giver det god mening at tænke, jeg trækker 7 fra 5. Hvis du skal regne stykket 5 ( 7) giver det god mening at tænke, hvor meget skal jeg lægge til 7 for at få 5? (-7) = 2 Hvis du bruger lommeregneren til at regne med negative tal, skal du huske at taste fortegnet. Knappen kan se sådan ud: ( ) +/ = -2 OPGAVE 3 A 3+4. Find en regneregel, der kan bruges til at regne stykker som: a. 5 + ( 2) b. 4 + ( 3) c. 8 + ( 4). 2. Find en regneregel, der kan bruges til at regne stykker som: a. 5 ( 2) b. 4 ( 3) c. 8 ( 4). OPGAVE 4 A 3+4. Regn stykkerne, og regn efter på lommeregner. a. 4 5 b. 8 4 c. 0 9 d e. 2 7 f g h i Find nogle regler, der gælder, når I regner med negative tal. 3. Find en ny makker, og fortæl på skift, hvilke regler I har fundet. 4. Vend tilbage til den første makker, og fortæl hinanden, hvilke regler I nu kender. 5. Skriv reglerne ned. Tal om reglerne i klassen. Hæng reglerne op i klassen. OPGAVE 5 A 3+4 Regn stykkerne ( 5) ( 4) 6. 3 ( 8) OPGAVE 6 A 3+4 Undersøg, og forklar hinanden, om der er regnet rigtigt eller forkert. Skriv de rigtige resultater = = = = = = ( 9) = ( 7) = ( 9) = 0 Det må være rigtigt for 9 6 = 3 Jeg tror, det er forkert. Så må vi hellere undersøge det 2 Regning med tal

13 A STAFETTEN A AKTIVITET FOR 4-6 PERSONER. I skal bruge: papir, blyant, taltavle (A4), regnekort (A5) og resultatkort (A6). Regler: I skal dele jer i 2 eller 3 hold. Det gælder om at få flest stik. Et stik består af et regnestykke og det resultat, der passer til. På et bord ligger regnekortene og resultatkortene. Holdene stiller op ved siden af hinanden. I siger i kor: en, to, tre, nu. På nu løber første mand fra hvert hold hen til bordet, finder et stik og løber tilbage og klapper næste mand i hånden, der løber til bordet. Når stikket er hentet, skal resultatet kontrolleres ved at regne efter. Brug fx taltavlen, når I regner efter. Hvis der er regnet forkert, skal stikket tilbage på bordet. Stafetten fortsætter, indtil alle kortene er taget. Vinderne er det hold, der har flest stik. OPGAVE Malte var i sommerferien i Chile for at vandre med sine forældre. På tegningen har Malte indtegnet den rute, de gik.. Hvor meget faldt temperaturen fra punkt A til punkt B? 2. Hvor meget faldt temperaturen fra punkt B til punkt C? 3. Hvor stor var temperaturforskellen mellem toppen af bjerget og dalen? 4. Mellem hvilke 2 punkter var temperaturforskellen 4? OPGAVE 8 F Yun, Marmona, Jonas og Lucas spiller et terningespil, hvor det gælder om at få flest point. Pointene skriver de op efter hver runde. Navn. runde 2. runde 3. runde 4. runde 5. runde Yun Marmona Jonas Lucas Hvor mange point har hver af de 4 elever? 2. Hvem vinder spillet? 3. Hvem taber spillet? 4. Hvor mange point er der mellem vinderen og taberen? 5. Hvor mange point er der mellem Marmona og Lucas? O 3 Opgaver 3

14 A HVORDAN REGNER DU? AKTIVITET FOR 2-3 PERSONER. I skal bruge: papir, blyant, mobiltelefon eller videokamera. Regler: I skal lave jeres egne videofilm, hvor I viser og forklarer, hvordan I ganger og dividerer. Inden I filmer, skal I lave et manuskript og øve jer på jeres metoder til at gange og dividere. I kan fx bruge disse stykker: : : : 5 Når filmene er færdige, bytter I video med en anden gruppe. Nu kan I prøve, om I kan regne stykkerne 36 4 og 87 : 3 ud fra den anden gruppes metoder. God ide, men vi skal lige have skrevet ned og øvet, hvad vi skal sige Lad os vise stykket 73 8 med denne metode Hvilken metode skal vi vise? OPGAVE 9 Regn stykkerne : : : 4 OPGAVE 0 Skriv gangestykker med cifrene 3, 5, 7 og 9.. Hvad er det største resultat, du kan få, når du kun må bruge hvert ciffer en gang? Regn efter på lommeregner. 2. Hvad er det mindste resultat, du kan få, når du kun må bruge hvert ciffer en gang? Regn efter på lommeregner. OPGAVE Skriv divisionsstykker med cifrene 2,4,6 og 8.. Hvad er det største resultat, du kan få, når du kun må bruge hvert ciffer en gang? Regn efter på lommeregner. 2. Hvad er det mindste resultat, du kan få, når du kun må bruge hvert ciffer en gang? Regn efter på lommeregner. OPGAVE 2 Skriv regnehistorier, der passer til mindst et af gangestykkerne og mindst et af divisionsstykkerne : : 9 4 Regning med tal

15 OPGAVE 3. Skriv mindst 3 opgaver, der passer til billederne, som handler om gange eller division. Fx: Cilles mor køber 3 dvd er, hvor meget skal hun betale? Hvor mange liter juice kan William købe, hvis han har 50 kr.? 2. Løs opgaverne. 3. Byt opgaver med din makker, og løs hinandens opgaver. 4. Sammenlign resultaterne. Regn efter på lommeregner. OPGAVE 5 F Eleverne i 5.x cykler hver dag i skole. Klassen skal løse opgaver, der handler om, hvor langt de cykler. Når de løser opgaverne, skal de huske at vise, hvordan de regner stykkerne. Mikkel har 3,5 km til skole, og Cille cykler i alt 4 km til og fra skole.. Klassen får disse opgaver. Hjælp Cille og Mikkel med at løse dem. a. Hvor mange km cykler du hver dag til og fra skole? b. Hvor mange km cykler du på en skoleuge? c. Hvor mange km cykler du på 5 uger? d. Hvor mange km cykler du på et normalt skoleår på 40 uger? e. Hvor mange dage skal du cykle til og fra skole, hvis du skal cykle 84 km? 2. En dag beslutter Mikkel, at han i en uge vil cykle en omvej til og fra skole. Efter en uge har han cyklet 45 km. a. Hvor mange km cykler Mikkel på en dag? b. Hvor mange km har Mikkel til skole, når han cykler omvejen? 3. Undersøg, hvor langt du selv har til skole, og svar på disse spørgsmål. a. Hvor mange km har du til og fra skole? b. Hvor mange km kører eller går du på en skoleuge? c. Hvor mange km kører eller går du på et normalt skoleår på 40 uger? OPGAVE 4 Anna, Julie og Ida laver en bod, hvor de sælger jordbær, ærter og saft. De sælger jordbær for 5 kr. bakken, ærter for 2 kr. bakken og saft for 3 kr. glasset. Efter en dag har de solgt for 86 kr.. Hvor mange bakker jordbær, bakker ærter og glas med saft har de solgt? Skriv mindst 3 forskellige forslag. 2. Da dagen er slut, deler pigerne pengene lige imellem sig. Hvor mange penge får de hver? O 4 Opgaver 5

16 T REGNINGSARTERNES HIERARKI Der findes regler for, hvilken rækkefølge du skal regne i, når der er flere regnetegn i et stykke. Uden disse regler ville et stykke kunne give flere forskellige resultater. Reglen kaldes regningsarternes hierarki. Parentes Gang og divider Plus og minus Hvis der i et regnestykke ikke er en parentes, så springer du videre til næste trin. På samme trin regner du altid fra venstre mod højre. Resultat (4 + 7) 4 9 (Parentes) (Gang og divider fra venstre mod højre) 4 9 (Gang og divider fra venstre mod højre) (Plus og minus fra venstre mod højre) 44 9 (Plus og minus fra venstre mod højre) 50 (Resultat) 35 (Resultat) OPGAVE 6 Regn stykkerne : (2 + 7) (3 + 6) (3 9) : 2 8. (7 4) ( 9 + 3) 9. 0 (5 8) : OPGAVE Brug parenteser og mindst 3 regnetegn, og skriv regnestykker, der giver disse resultater Fx: (7 0) = 27 OPGAVE 8. Skriv mindst 5 forskellige regnestykker, hvor regnetegn og parenteser er hemmelige. Fx = 2 2. Byt stykker med din makker, og indsæt regnetegn og parenteser. Fx = 2 3. Regn efter på lommeregner. 6 Regning med tal

17 A REGNEDOMINO A AKTIVITET FOR 2-3 PERSONER. I skal bruge: dominobrikker (A7), saks. Regler: I skal spille Regnedomino. Først skal I klippe dominobrikkerne ud og lægge dem med bagsiden opad på bordet. Herefter trækker I hver 3 brikker, som I ikke må vise til de andre spillere. Resten af brikkerne skal blive liggende på bordet. Den spiller, der har det højeste resultat på en brik, starter med at lægge denne brik på bordet. Den næste spiller skal nu lægge en dominobrik, der enten passer til regneudtrykket eller til resultatet på den første brik. Hvis spilleren ikke kan lægge en brik, så bliver spilleren nødt til at trække en ny brik fra bordet, hvorefter turen går videre til næste spiller. Sådan fortsætter spillet. Den spiller, der først kommer af med alle sine brikker, vinder. OPGAVE 9 Viktor, Malte og Jakub skal med Viktors far og onkel ud og se ishockey.. Hvilke regneudtryk passer til historien? a b. 2 ( ) 3 c. ( ) 5 d I pausen køber de hver en juice og en pølse. 2. Skriv et regneudtryk, der viser, hvor meget de betaler for juice og pølser. 3. Hvor meget koster det i alt for dem at tage til ishockey? O 5 Opgaver 7

18 T PRIMTAL OG SAMMENSATTE TAL. Et primtal er et naturligt tal, der er større end, og som kun og tallet selv går op i. De hele tal, der går op i et naturligt tal, hedder faktorer. Et primtal har derfor 2 faktorer. Eksempel: 2 er et primtal, fordi kun og 2 går op. Tallet 2 har 2 faktorer. 3 er et primtal, fordi kun og 3 går op. Tallet 3 har 2 faktorer. 4 er ikke et primtal, fordi, 2 og 4 går op. Tallet 4 har 3 faktorer. Naturlige tal med flere end 2 faktorer kaldes sammensatte tal. Du kan omskrive et sammensat tal til et gangestykke af primtal. Dette hedder at opløse i primfaktorer. Når du har opløst i primfaktorer, så får du primfaktoropløsningen Primfaktoropløsningen er OPGAVE 20 A 8 Tal Faktorer Primtal (sæt kryds) Sammensat tal (sæt kryds) Primfaktoropløsningen 20, 2, 4, 5, 0, 20 X Udfyld primtalsarket A8, 2. Kig på arket, hvad har primtallene til fælles? OPGAVE 2 Opløs tallene i primfaktorer, og skriv primfaktoropløsningen Regning med tal O 6

19 EVALUERING I skal arbejde 2 eller 3 sammen. OPGAVE A 68. Lav kort, og skriv på hvert kort et af følgende begreber: fortegn, decimaltal, negative tal, regningsarternes hierarki, primtal, sammensatte tal, opløse i primfaktorer, faktorer og primfaktoropløsning. 2. Læg kortene på bordet, så I kan se dem. 3. Vælg på skift kort, som I kan forklare. Forklar begrebet for de andre i gruppen. Når alle har forstået begrebet, lægger I kortet til side. I skiftes til at trække kort og fortsætter, indtil alle kortene er forklaret og forstået. 4. Hvis der er nogle begreber, I ikke kan forklare eller forstå, så skal I hænge kortene med disse begreber op på tavlen. 5. Kig på tavlen, om der er begreber, I kan forklare en anden gruppe. OPGAVE 2 Undersøg, om der er regnet rigtigt eller forkert. Forklar hinanden, hvordan I regner stykkerne = ,59 + 3,73 = 7, ,4 + 4,94 = 7, = ,93 2,8 =,2 6. 7,8 3,73 = 3,3 OPGAVE 3 Forklar hinanden, hvilke regler I bruger, når I regner med negative tal. Brug fx disse regnestykker: ( 5) 9 + ( 4) 5 + ( 3). OPGAVE 4 Vis hinanden, hvordan I ganger og dividerer. Brug fx disse regnestykker: : : 9 9 : 5. OPGAVE 5 Undersøg, om der er regnet rigtigt eller forkert. Forklar hinanden, hvordan I regner stykkerne = (8 + 3) = (6 9) : 7 = 4 OPGAVE 6 Undersøg, hvilke af disse tal der er primtal OPGAVE Vis hinanden, hvordan I opløser i primfaktorer. Brug fx disse tal: Evaluering 9

20 TRÆN OPGAVE Regn stykkerne ,94 + 7, ,7 + 59, ,8 + 24, ,6 79, ,8 222, ,04 458,72 OPGAVE 2 Regn stykkerne ( 5) 8. 4 ( 3) 9. 7 ( 7) OPGAVE 3 Regn stykkerne OPGAVE 4 Regn stykkerne.. 27 : : : : : : 7 OPGAVE 6 Skriv regnehistorier, der passer til hver af stykkerne.. 56,75 + 4, ,25 88, : 9 OPGAVE. Skriv ordene i den rigtige rækkefølge, så det danner reglerne for regningsarternes hierarki. først parenteserne plus og division sidst regnes derefter minus til OPGAVE 5 Skriv regnestykker, der passer til regnehistorierne, og find resultaterne. gange og. 2 piger og 4 drenge deler en pose med 4 balloner. Hvor mange får de hver? 2. Sjippetov A er 72 cm langt, og sjippetov B er,98 m langt. Hvor meget måler sjippetovene tilsammen? 3. En pose æbler koster 9,95 kr., og et net med appelsiner koster 6,75 kr. Hvad er forskellen på prisen for æbler og appelsiner? 4. 6 børn har 55 kr. hver. Hvor mange penge har børnene tilsammen? 5. Du er 2 år, og din mor er 39 år. Hvor mange år er din mor ældre end dig? OPGAVE 8 Regn stykkerne (4 9) 2 4. (3 + 5) (5 9) (2 + 8) : 5 OPGAVE 9 Skriv primtallene mellem 0 og 30. OPGAVE 0 Opløs tallene i primfaktorer Regning med tal

21 TRÆN 2 OPGAVE Regn stykkerne.. 27, , ,9 + 23, ,742 +, ,57 76, ,3 42,7 6. 2,9 0,04 OPGAVE 2 Regn stykkerne ,5 6. 2, ( 6) ( 34) 9. 5,5 ( 2,5) OPGAVE 6 Oliver handler ind for sin mor. Han køber 4 poser te til 30 kr. pr. pose, 3 liter mælk til 5 kr. pr. karton og 0 æbler til 2,50 kr. pr. stk. Han betaler med 200 kr.. Skriv et regneudtryk, der viser Olivers indkøb. 2. Hvor mange penge får Oliver tilbage? OPGAVE 3 Regn stykkerne ,9 3. 5, : : : : 9 OPGAVE 4 Regn stykkerne (5 9) ( 3 5) : (45 2) : 9 + (7,25 + 5,75) 5. (7 + 9) 2 (8 7) : 8 (5 + 2) : 9 OPGAVE 5 Brug + : ( ) og cifrene 3, 5, 7 og 9. Skriv regnestykker, hvor resultatet bliver:. så stort som muligt, når du kun må bruge hvert ciffer en gang 2. så lavt som muligt, når du kun må bruge hvert ciffer en gang. 3. Regn efter på lommeregner. OPGAVE Pandekager 4 personer 4 æg 2 dl mælk 6 dl hvedemel 2 spsk. olie Hvor meget skal du bruge, hvis opskriften skal være til:. 5 personer? personer? OPGAVE 8 Opløs tallene i primfaktorer OPGAVE 9 Du skal si en talfølge, så du kun har primtal tilbage. Du har siet talfølger i opgavebogen side 6. Hvor lang skal talfølgen være, hvis du efter at have siet tallene 3 gange kun har primtal tilbage? Træning 2

22 TEMA/PROJEKT SPILLEFABRIKKEN A PROJEKT FOR 2-4 PERSONER. I skal bruge: MULTI-spillepladen (A9), regnekort (A0), chancekort (A), spørgsmålskort (A2), spillefabrikken (A3), papir, blyant, en terning og centicubes. I skal arbejde med at udvikle spil, der træner regning med tal, fx plus, minus, negative tal, gange, division, regningsarternes hierarki og primtal. OPGAVE A Spil MULTI spillet i grupper. MULTI spillet Regler: Det gælder om at komme først i mål. I sætter hver en centicube på start. Når det bliver en spillers tur, trækker en af de andre spillere et regnekort og læser stykket højt. Stykket må gerne regnes på udregningspapir. Hvis resultatet er rigtigt, kaster spilleren terningen, og øjentallet fortæller, hvor mange felter spilleren skal rykke frem på pladen. Hvis en spiller rammer et felt med S, så skal spilleren trække et spørgsmålskort. En i gruppen læser teksten på spørgsmålskortet højt. Hvis spilleren svarer rigtigt, må spilleren rykke det antal felter frem, som står på kortet. Svarer spilleren forkert, skal spilleren rykke det antal felter tilbage, som står på kortet. Hvis en spiller rammer et felt med C, så skal spilleren trække et chancekort og gøre det, der står på kortet. Herefter går turen videre til næste spiller. Spillet slutter, når en af jer kommer i mål. 22 Regning med tal

23 Hvordan kan vi ellers ændre reglerne i MULTIspillet? Vi kan måske lave nogen kort, hvor man skal være fysisk aktiv? OPGAVE 2 A 3 Lav jeres egne regler til MULTI spillet. Brug aktivitetshjulet på Spilfabrikken (A3), og udfyld det. Skriv reglerne ned, og spil MULTI-spillet med de nye regler. OPGAVE 3 A 3. I skal lave jeres eget spil. I spillet skal der være fokus på det, I har lært i kapitlet Regning med tal. Brug aktivitetshjulet på Spilfabrikken (A3). 2. Skriv reglerne til spillet ned, så andre kan spille jeres spil. OPGAVE 4. Spil hinandens spil. 2. Bedøm spillet. I kan bl.a. skrive: a. hvad der er godt ved spillet b. om reglerne er til at forstå. Tema/projekt 23

24 GANGE OG DIVISION MÅL At du lærer: at gange med store tal at gange et hele tal med decimaltal om divisionsstykker, der ikke går op at løse matematikproblemer med gange eller division om sammenhængen mellem gange og potens. BEGREBER OG ORD potens potensregning opløftet i FORHÅNDSVIDEN Tegningerne viser forskellige situationer fra hverdagen. Vælg 2 tegninger hver, og skriv en regnehistorie til hver tegning, som handler om gange eller division. OPGAVE. Lav en tegning til din makker, som handler om at gange eller dividere. 2. Skriv en regnehistorie, der passer til din makkers tegning. 3. Læs regnehistorierne højt for hinanden. 4. Skriv regnestykker, der passer til regnehistorierne, og find resultaterne. 24 Gange og division

25 A TÆNK OG TERNINGER A 4 AKTIVITET FOR 2-3 PERSONER. Hm, gad vide, hvilke tegninger og regningsarter jeg skal bruge? I skal bruge: 4 terninger og scorekort (A4). Regler: I skal slå med 4 terninger og udvælge 3 af terningerne. Det antal øjne de 3 valgte terninger viser, skal I bruge til at fremstille et regnestykke sammen med regnetegnene: : Regnestykkerne skal komme frem til et resultat, som gør, at du kan svare ja til flest mulige spørgsmål på scorekortet. Du får et point for hvert spørgsmål, du kan svare ja til. Det gælder om at få flest point. Øjne på terningerne Regnestykket Er resultatet et helt tal? Er resultatet mellem 0-5? Har du brugt og : i regnestykket? Point for runden 2, 2, 3, 5 2 : 2 5 = 5 ja nej ja 2 OPGAVE 2 Brug : og mindst 4 af tallene 2, 3, 4, 5 og 6. Lav regnestykker, hvor resultatet bliver:. et helt tal 2. så tæt på som muligt 3. så tæt på 50 som muligt 4. så stort som muligt, når I skal bruge begge regningsarter. OPGAVE 3 Skriv sætningerne færdige.. Da 3 9 = 27, så er 27 : 9 = og 27 : 3 =. 2. Da 8 2 = 96, så er 96 : 8 = og 96 : 2 =. 3. Da 43 : = 3, så er 3 = og 3 =. 4. Da 68 : 8 = 2, så er 8 2 = og 2 8 =. OPGAVE 4 Sandt eller falsk?. Hvis det dobbelte af 48 er 96, så må det halve af 96 være Når 4 mennesker deler 32 karameller, så får de 4 mennesker 8 karameller hver. 3. Hvis det tredobbelte af 8 er 24, så må halvdelen af halvdelen af 24 være Du kan altid bytte rundt på de 2 tal i et gangestykke og få det samme resultat. 5. Du kan aldrig bytte rundt på de 2 tal i et divisionsstykke og få det samme resultat. OPGAVE 5 Regn mindst 4 af stykkerne Opgaver 25

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

1. Faglig læsning og skrivning side 4. 2. Regning med tal side 10. 3. Brøker og decimaltal side 24. 4. Areal side 38. 5.

1. Faglig læsning og skrivning side 4. 2. Regning med tal side 10. 3. Brøker og decimaltal side 24. 4. Areal side 38. 5. Du skal lære om: 1. Faglig læsning og skrivning side 4. Regning med tal side 10. Brøker og decimaltal side 4 4. real side 8. Procent side 6. Statistik side 66 7. Rumlige figurer side 80 8. Ligninger og

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Ideer til matematik-aktiviteter i yngstetrinet

Ideer til matematik-aktiviteter i yngstetrinet Ideer til matematik-aktiviteter i yngstetrinet Følgende ideer er ment som praktiske og konkrete ting, man kan bruge i matematik-undervisningen i de yngste klasser. Nogle af aktiviteterne kan bruges til

Læs mere

Årsplan for matematik i 1.-2. kl.

Årsplan for matematik i 1.-2. kl. Årsplan for matematik i 1.-2. kl. Lærer Martin Jensen Mål for undervisningen Målet for undervisningen er, at eleverne tilegner sig matematiske kompetencer og arbejdsmetoder jævnfør Fælles Mål. Eleverne

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring Hovedemne 1: Talsystemet og at gange kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge udvikle metoder til multiplikation og division med naturlige tal udføre beregninger med de

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 5. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster?

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Oplæg I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Hvordan ser I mulighederne i at stimulere elevernes tænkning og udvikle deres arbejdsmåde, når de

Læs mere

tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3.

tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3. Den tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3. klasse 4. klasse 5. klasse 6. klasse 7. klasse 8. klasse 9. klasse 1.klasse

Læs mere

Lektion 1 Grundliggende regning

Lektion 1 Grundliggende regning Lektion 1 Grundliggende regning Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division - brug af regnemaskine... Talsystemets opbygning - afrunding af tal... Store tal og negative tal...

Læs mere

Birgit Mortensen. Begynderkonference d. 26/2 2014. Sproglig bevidsthed i matematik - hvorfor og hvordan

Birgit Mortensen. Begynderkonference d. 26/2 2014. Sproglig bevidsthed i matematik - hvorfor og hvordan Birgit Mortensen. Begynderkonference d. 26/2 2014 Sproglig bevidsthed i matematik - hvorfor og hvordan Sproglig bevidsthed i matematik undervisningen Sum er noget bierne gør, når de flyver i haven Negativ

Læs mere

30 = 2 + x. Svar: x = 28. 10 x = 6. 3x 12 = 0. Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar:

30 = 2 + x. Svar: x = 28. 10 x = 6. 3x 12 = 0. Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: . Superliga Forstør kopiarkene til A-format og klip sæt brikker af kopiarket. Alle stiller sig parvis overfor hinanden omkring et langt bord. De udklippede brikker deles ud så hvert par har en lille bunke

Læs mere

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9.

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. Den lille hjælper Krogårdskolen Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. klasse Hvordan løses matematik? Positionssystem... 4 Positive tal... 4 Negative tal... 4 Hele tal...

Læs mere

Mondiso matematik for 1. til 3. klasse

Mondiso matematik for 1. til 3. klasse Mondiso matematik for 1. til 3. klasse Programmet henvender sig til elever i indskoling. Det kan også benyttes af børn på højere klassetrin, som har behov for at få genopfrisket det grundlæggende i matematikken.

Læs mere

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen)

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Bog: Vi bruger grundbogssystemet Format, som er et fleksibelt matematiksystem, der tager udgangspunkt i læringsstile.

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

fsa 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem Matematisk problemløsning Folkeskolens Afgangsprøve December 2011

fsa 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem Matematisk problemløsning Folkeskolens Afgangsprøve December 2011 fsa Folkeskolens Afgangsprøve Matematisk problemløsning December 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem 1 På tryk tryk

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Årsplan. 1. klasse. Bageriet marked. Tal i hverdagen Plus på spil Byens former En tur i center Indianere De gamle

Årsplan. 1. klasse. Bageriet marked. Tal i hverdagen Plus på spil Byens former En tur i center Indianere De gamle Årsplan 1. klasse Tal i hverdagen Plus på spil Byens former En tur i center Indianere De gamle Bageriet Loppearabere marked ca. 4-5 uger ca. 4-5 uger ca. 4-5 uger ca. 4-5 uger ca. 4-5 uger ca. 4-5 uger

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal trin 2 preben bernitt brikkerne til regning & matematik potenstal og rodtal, trin 2 ISBN: 978-87-92488-06-0 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

2 Brøker, decimaltal og procent

2 Brøker, decimaltal og procent 2 Brøker, decimaltal og procent Faglige mål Kapitlet Brøker, decimaltal og procent tager udgangspunkt i følgende faglige mål: Brøker: kunne opstille brøker efter størrelse samt finde det antal af en helhed,

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Matematisk opmærksomhed

Matematisk opmærksomhed Tælle og systematisere tal. Tælle i trin på 5 og 10 Kender i nogle tal? Hvor mange forskellige tal kender I? (forskellen på tal og grundtal) Hvad kan I tælle til? Kender I nogle store tal? Kan I tælle

Læs mere

matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 ISBN: 978-87-92488-28-2 1. udgave som E-bog 2006 by bernitt-matematik.dk Kopiering af

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

brikkerne til regning & matematik potenstal og præfikser Demo trin 1 preben bernitt

brikkerne til regning & matematik potenstal og præfikser Demo trin 1 preben bernitt brikkerne til regning & matematik potenstal og præfikser trin 1 preben bernitt brikkerne til regning & matematik potenser og præfikser, trin 1 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter uden regnemaskine...2 De fire regnearter nu må du godt bruge regnemaskine...5 10-tals-systemet...7 Decimaler og brøker...9 Store tal...1 Gange

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Brøker og forholdstal

Brøker og forholdstal Brøker og forholdstal Hvad er brøker... Forlænge og forkorte... Udtage brøkdele... Forholdstal... Uægte brøker og blandede tal... Brøker og decimaltal... Regning med brøker plus og minus... Regning med

Læs mere

Sproginddragelse i matematikundervisningen. Eksempel fra Lundergårdskolen i Hjørring Efterår 2013 v/ Frank Overlund og Thomas Hjermitslev

Sproginddragelse i matematikundervisningen. Eksempel fra Lundergårdskolen i Hjørring Efterår 2013 v/ Frank Overlund og Thomas Hjermitslev Sproginddragelse i matematikundervisningen Eksempel fra Lundergårdskolen i Hjørring Efterår 2013 v/ Frank Overlund og Thomas Hjermitslev Mål og fokusområder der skal indgå i planlægning og gennemførelse

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Årsplan for matematik 4. klasse 14/15

Årsplan for matematik 4. klasse 14/15 Årsplan for matematik 4. klasse 14/15 Status: 4.b er en klasse der består af ca. 20 elever. Der er en god fordeling mellem piger og drenge i klasser. Klassen har 5 matematiktimer om ugen. Vi fortsætter

Læs mere

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik: TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Parvis. do. do. Aflevering af individuelle lektier s. 12-13

Parvis. do. do. Aflevering af individuelle lektier s. 12-13 Fagårsplan 2010/2011 Matematik 6.A. B side 1 af 8 Brian Sørensen (BS) Kongeskær SkoleNord 32 33 Cirklen 34 35 eleverne tager manglende prøver eleverne og læreren sætter mål for årets arbejde i matematik

Læs mere

brøker trin 1 brikkerne til regning & matematik preben bernitt

brøker trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik brøker trin 1 preben bernitt brikkerne til regning & matematik brøker, trin 1 ISBN: 978-87-92488-04-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

formler og ligninger basis brikkerne til regning & matematik preben bernitt

formler og ligninger basis brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger basis preben bernitt brikkerne til regning & matematik formler og ligninger, basis ISBN: 978-87-92488-07-7 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

Det vigtigste ved læring af subtraktion er, at eleverne

Det vigtigste ved læring af subtraktion er, at eleverne Introduktion Subtraktion er sammen med multiplikation de to sværeste regningsarter. Begge er begrebsmæssigt sværere end addition og division og begge er beregningsmæssigt sværere end addition. Subtraktion

Læs mere

Matematik Test 6. 6.1. Talskrivning: 6.2 Sandt eller falskt udsagn. 30 mm = 3 cm 500 m = 5 km 3 ton = 300 Kg. 4 dm > 80 mm 3000 m < 3 km 2 cm > 10 mm

Matematik Test 6. 6.1. Talskrivning: 6.2 Sandt eller falskt udsagn. 30 mm = 3 cm 500 m = 5 km 3 ton = 300 Kg. 4 dm > 80 mm 3000 m < 3 km 2 cm > 10 mm 1 Denne PDF fil består af 1. Evalueringstest ( side 1-5) 2. Elevstatusark (side 6) 3. Eksempler på henvisningsopgaver (s. 7-12 ) - vist med fed/kursiv skrift på statusarket. Matematik Test 6 Navn: Klasse

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

MATEMATIK SÅNING I SKOLEHAVEN SIDE 1 MATEMATIK. Såning i skolehaven

MATEMATIK SÅNING I SKOLEHAVEN SIDE 1 MATEMATIK. Såning i skolehaven SIDE 1 MATEMATIK SÅNING I SKOLEHAVEN MATEMATIK Såning i skolehaven SIDE 2 MATEMATIK SÅNING I SKOLEHAVEN MATEMATIK SÅNING I SKOLEHAVEN SIDE 3 MATEMATIK Såning i skolehaven INTRODUKTION I dette forløb skal

Læs mere

Grundlæggende færdigheder

Grundlæggende færdigheder Regnetest A: Grundlæggende færdigheder Træn og Test Niveau: 7. klasse Uden brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag

Læs mere

Evaluering af matematikundervisningen december 2014

Evaluering af matematikundervisningen december 2014 Evaluering af matematikundervisningen december 0 Evalueringen er udarbejdet på baggrund af et ønske om dokumentation for elevernes udbytte af matematikundervisningen. Af forskellige årsager er evalueringen

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

brikkerne til regning & matematik benævnelser basis+g preben bernitt

brikkerne til regning & matematik benævnelser basis+g preben bernitt brikkerne til regning & matematik benævnelser basis+g preben bernitt brikkerne til regning & matematik benævnelser basis+g ISBN: 978-87-92488-03-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering

Læs mere

Først falder den med 20% af 100 = 20 kr, dernæst stiger den med 30% af 80 = 24 kr.

Først falder den med 20% af 100 = 20 kr, dernæst stiger den med 30% af 80 = 24 kr. FORKLARINGER TIL LOGIK & TAL KORT 121 2 ud af 3 deltagere må være børn, da der er dobbelt så mange børn som voksne. Derfor er der i alt 48 børn med på skovturen. 2 ud af 3 børn må være piger, da der er

Læs mere

Tal og regning. 1 a 5 b 2 c 2 d 8 e 4 f 3 g 6 h 3. 3 a 2 b 5 c 3 d 3 e 2 f 12 g 2 h 7. 4 a 8 b 2 c 12 d 16 5... 7... 10. 6 2 og 5.

Tal og regning. 1 a 5 b 2 c 2 d 8 e 4 f 3 g 6 h 3. 3 a 2 b 5 c 3 d 3 e 2 f 12 g 2 h 7. 4 a 8 b 2 c 12 d 16 5... 7... 10. 6 2 og 5. Facitliste Tal og regning Tal og regning a 5 b c d 8 e 4 f g 6 h 9 a b 5 c d e f g h 7 4 a 8 b c d 6 5... 7... 0 6 og 5 7 9 cm og cm 8 a 4 b 6 c 0 d 0 e f g 4 h 9, 0 og 0 x 8 a 84 b 0 c d 56 e 44 f 5 g

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

10 Skitur til Østrig. Faglige mål. Side til side-vejledning. Budget og opsparing. Klubfest. Opsparing til skituren. Penge. Budget og opsparing

10 Skitur til Østrig. Faglige mål. Side til side-vejledning. Budget og opsparing. Klubfest. Opsparing til skituren. Penge. Budget og opsparing 10 Skitur til Østrig Faglige mål Kapitlet Skitur til Østrig tager udgangspunkt i følgende faglige mål: Budget og opsparing: kunne udarbejde budget og regnskab, kende forskel på de to begreber samt vide

Læs mere

Lærereksemplar. Kun til lærerbrug. Bestil venligst på www.forlagetdelta.dk. Enhver mangfoldiggørelse af dette hæfte er forbudt.

Lærereksemplar. Kun til lærerbrug. Bestil venligst på www.forlagetdelta.dk. Enhver mangfoldiggørelse af dette hæfte er forbudt. Bestil venligst på www.forlagetdelta.dk Enhver mangfoldiggørelse af dette hæfte er forbudt. Forord REMA 3b er en del af forlagets REMA - serie, som nu er fuldt udbygget til 10. kl. I REMA 3b anvendes tallene

Læs mere

Lege egnet til matematikundervisningen på mellemtrinet

Lege egnet til matematikundervisningen på mellemtrinet Lege egnet til matematikundervisningen på mellemtrinet Indholdsfortegnelse Tabel-stafet... 2 Gange-træning / Gang med terning på taltavlen... 2 10 gode venner... 3 Brøker på taltavlen... 4 Ur-leg på urbanen...

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen Matematik på AVU Eksempler til niveau G, F, E og D Niels Jørgen Andreasen Om brug af denne eksempelsamling Matematik-niveauerne på Almen Voksenuddannelse hedder nu Basis, G og FED. Indtil sommeren 009

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

brikkerne til regning & matematik tal og regning basis+g preben bernitt

brikkerne til regning & matematik tal og regning basis+g preben bernitt brikkerne til regning & matematik tal og regning basis+g preben bernitt brikkerne til regning & matematik tal og regning, basis ISBN: 978-87-92488-01-5 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Kom godt i gang. Mellemtrin

Kom godt i gang. Mellemtrin Kom godt i gang Mellemtrin Kom godt i gang Mellemtrin Forfatter Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard, Finn Egede Rasmussen,

Læs mere

Funktioner. Funktioner Side 150

Funktioner. Funktioner Side 150 Funktioner Brug af grafer koordinatsystemer... 151 Lineære funktioner ligefrem proportionalitet... 157 Andre funktioner... 163 Kært barn har mange navne... 165 Funktioner Side 15 Brug af grafer koordinatsystemer

Læs mere

Årsplan matematik 5.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 5.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 22 elever og der er afsat 4 ugentlige timer + 1 time klassens tid, hvor der skal være tid til det sociale i klassen. Grundbog: Vi vil arbejde ud fra Matematrix 5, arbejds- og grundbog,

Læs mere

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

fsa 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær i Simons klasse 6 En figur af kvarte cirkler

fsa 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær i Simons klasse 6 En figur af kvarte cirkler fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2012 Et svarark er vedlagt som bilag til dette opgavesæt 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

Kom godt i gang. Sluttrin

Kom godt i gang. Sluttrin Kom godt i gang Sluttrin Kom godt i gang Sluttrin Forfatter Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard, Finn Egede Rasmussen,

Læs mere

Lekion 4 Brøker og forholdstal

Lekion 4 Brøker og forholdstal Lekion Brøker og forholdstal Indholdsfortegnelse Indholdsfortegnelse... Hvad er brøker... Forlænge og forkorte brøker... Udtage brøkdele... Uægte brøker og blandede tal... Brøker og decimaltal... Regning

Læs mere