Lidt om trigonometriske funktioner

Størrelse: px
Starte visningen fra side:

Download "Lidt om trigonometriske funktioner"

Transkript

1 DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK TRIGNMETRISKE FUNKTINER EFTERÅRET 000 Lid m rignmeriske funkiner Funkinerne cs g sin De rignmeriske funkiner defines i den elemenære maemaik ved hjælp af revinklede rekaner. Vi har brug fr mere generelle definiiner, således, a de rignmeriske funkiner cs g sin bliver definere fr alle reelle al. Her er én måde a gøre de på: Lad være en cirkel med radius g med cenrum i begyndelsespunke af e (sædvanlig) revinkle krdinasysem. Lad være punke med krdinaerne 0. Fr ehver reel al er de punk på, der har afsanden fra - mål langs i rening md ure, hvis 0 g med ure, hvis 0. Vi vil (sm sædvanlig) benye buelængden på sm e mål fr sørrelsen af vinklen (se egningen il højre), sm er radian. E ande vinkelmål er grader. Sammenhængen mellem radianmåle g gradmåle er, a radian svarer il 80. Vi vil alid medmindre de eksplici bliver nævn benye radianmåle. π x + y = y π/ π/ (radian) Vi definerer nu csinus g sinus funkinerne fr ehver! på følgende måde: C (cs, sin ) buelængde A (,0) x Fr ehver reel al er cs g sin henhldsvis "$# krdinaen g %$# krdinaen il punke på enhedscirklen (jvf. egningen venfr). cs '(" -krdinaen il ) sin *(% -krdinaen il,+ () å grund af denne definiin kaldes csinus g sinus funkinerne fe fr cirkulære funkiner. vennævne definiin gør de gså le a udlede en lang række af egenskaber ved disse funkiner. Eksempel Værdimængden fr såvel csinus sm sinus funkinen er inervalle [# ], d. v. s. fr ehver gælder de, a # - cs - g # - sin - +. Eksempel gælder de, a Funkinerne csinus g sinus er peridiske med periden, d. v. s. fr ehver. 5 cs 0/ cs g sin 0/ ' sin3+ 4 Vi vil alid beegne mængden af reelle al med

2 ; < > = N MATEMATIK TRIGNMETRISKE FUNKTINER Endvidere får man direke ud fra definiinen af csinus g sinus følgende velkende frmel, der gælder fr ehver : cs :/ sin * 9 () Nu kmmer de mege vigige frmler fr sinus g csinus addiinsfrmlerne ved hjælp af hvilke man er i sand il a besemme csinus g sinus fr en sum eller differens af vinkler ud fra csinus g sinus il disse /AB '? cs csc#? sin sin /AB '? sin cs0/? cs sin #DB '? cs cs0/? sin sin sin #DB '? sin csc#? cs sin (3) Lad s vise den redie af disse frmler (de øvrige re fås derefer le ud fra denne): Lad? g være reelle al g lad E,, g krdinaer er E : cs? sin? H : cs 3 sin B IH : S y være de punker på enhedscirklen, hvis #DB I sin K? #LM B IH : 0 + s s s Q x + y = s R A Q x

3 l k k l k n MATEMATIK TRIGNMETRISKE FUNKTINER 3 De vinkler T Ü V E g T V er begge lig med #W radian, hvrfr! X EY ) Z[ [\. Udrykker vi kvadraerne på disse afsande i krdinaer, får vi? cs # csm /? sin # sinm K? cs #DB '# / K? sin #DB I eller cs? #? cs cs]/ cs ^/? sin #? sin sin0/ sin K? cs #DM cs #LM 0/ sin #DM + Udnyer vi derefer, a cs "_/ sin "` fr ehver "W, får vi #DM * cs? cs0/ sin? sin3+ Ersaer vi i denne frmel med # g udnyer, a cs #B ' cs g sin #M 'a# sin, får vi den førse frmlerne i rammen (3): /AM * cs? csc# sin? sin3+ De sidse frmler i (3) vises ved a udnye (beny egningen på side ), a /cb I sin K? /cb # sin? cs? g de lige vise frmler, f. eks. sin K? /dm *Z# / /LM *e# csk? / csf/ sink? / sin* sin? csf/ cs? sini+ Addiinsfrmlerne kan anvendes il løsning af visse rignmeriske ligninger, nemlig ligninger af frmen hvr, g g cs ^/hg sin * er kende reelle al med /hg j 0. Meden går ud på, a man knsaerer, a vekren med krdinaerne enhedsvekr g derfr kan den skrives på frmen g /hg /(g cs 0 sin 0 I mgn er en fr e eller ande 0 p, sm kan besemmes (sm regel valg i inervalle [0 ]). kan efer divisin med /qg skrives på frmen cs0/ g /qg sin* /(g /hg g derfr med anvendelse a de lige vise på frmen eller cs 0 cs^/ sin 0 sin* /hg cs C#D 0 ' + /hg 4 Hvis r g s er punker i planen, så beegner vi her afsanden fra r il s med urs

4 ~ ; < = > MATEMATIK TRIGNMETRISKE FUNKTINER 4 Nu finder man samlige løsninger il denne ligning hvis den i de hele age har løsninger g har dermed funde samlige løsninger Hvis v /wg er der ingen løsninger il ligningen Ki g hvis -x /wg uendelig mange løsninger (hvrfr?). Eksempel 3 Besem samlige løsninger il ligningen 3 cs0/ sin + l Vi gennemfører prceduren beskreve venfr g bemærker, a ligningen kan mfrmes il den dermed ækvivalene ligning 3! 3 cs]/ sin' cs C# ' b6 d. v. s. a '# b6 (y b 4 er 3 ' / z*, hvrfr mængden af løsninger il ligningen 3 cs0/ sin' cs b6 sin b6, hvrfr 5 b / z * # / z* b hvr zl 0 Iy Iy {++I+ +. Udfra addiinsfrmlerne kan man iøvrig le få e par andre nyige frmler (sæ? q i de førse frmler i (3)): } cs * cs '# sin sin ' cs sin (4) g fra den førse af disse kan man ved bl. a. a udnye () få: cs ' sin * / cs # cs (5) Frmlerne i (5) udnyes mege fe i frbindelse med udregning af inegraler, men gså i andre sammenhænge. Fr a vise, a funkinerne cs g sin er differeniable funkiner med cs e# sin g sin cs 3 skal man frøvrig bruge addiinesfrmlerne (3) (se pgaverne 3 g især 4 på side 6). 34 T ligninger er ævivalene, hvis de har den samme løsningsmængde.

5 ; < Œ = > Œ MATEMATIK TRIGNMETRISKE FUNKTINER 5 Funkinen an Tangensfunkinen an defineres fe sm an sin cs 0, d. v. s. angensfunkinen er ikke definere fr fr de ƒ, fr hvilke cs j / z* M, hvr z kan anage vær- V dierne 0 Iy Iy {+++. Derudfra kan angensfunkinens egenskaber afledes. De lønner sig imidlerid a kigge lid nærmere på egningen på side, men da der skal freages en del ændringer på egningen, så ager vi den med igen (nainerne er iøvrig de samme sm på egningen på side ). Da punke har krdinaerne csi sinm vil linjen gennem g skære linjen parallel med % -aksen gennem punke med krdinaerne 0 i punke med krdinaerne anm. π ˆ x + y = Šy Œ π / s Œ π/ Œ (,an ) (cs, sin ) A (,0) x Œ (,an s) å egningen venfr il højre er dee illusrere ved punker é svarende il værdien g é svarende il værdien?. Der findes gså addiinsfrmler fr funkinen an, men disse udledes lees ud fra addiinsfrmlerne (3) g de gælder selvfølgelig kun der hvr de indgående udryk har en mening (er definere). /AB ' #DB '? an / an #?? an an an # an /? an an (6) Bevise fr frmlerne (6) er le: /AM ' sin K? /ŽM /AM g ilsvarende fr den anden frmel. sin? cs^/ cs? sin cs? cs'# sin? sin an? / an # an? an Fr en gd rdens skyld skal de lige nævnes, a funkinen an er differeniabel i si definiinsmråde med an cs / an 3+ Vi får i frbindelse med mvende rignmeriske funkiner brug fr både egningen på side g øvers på denne side.

6 MATEMATIK TRIGNMETRISKE FUNKTINER 6 pgaver:. Besem samlige løsninger (eksak!) il følgende ligninger: a) sin " sin" b) cs " cs " c) sin" / 3 cs" 0 d) cs " # 3 cs" / 0. I kender (frhåbenlig!?) de eksake værdier fr cs b3, sin b 3, cs b 4, sin b 4, cs b 6 g sin b 6. a. Besem de eksake værdier af cs b g sin b ved a benye addiinsfrmlerne (3) (udny a b b 3 # b 4 ). b. Besem ved a benye frmlerne (5) de eksake værdier af cs b g sin b b6 b ). Sammenlign resulaerne fra a. g b. Er der nge gal? 3. Beny egningen på side il a argumenere fr, a lim ü sin' 0 4! g lim 0 ü cs* 4! + 0 (udny, a areale af rekan mindre end eller lig med 4. å egningen på side 5 er fr I b areale af cirkeludsnie \, sm igen er mindre end eller lig med areale a rekanen V, hvr er punke med krdinaerne anm. a. Udny dee il a vise, a cs sin b. Slu heraf udny ev. pgave 3 a - fr 0 q I sin lim ü 0 4! + c. Udny derefer den nederse a frmlerne i (5) il a slue, a lim 0 # cs 0 4! + d. Vis, a funkinerne cs g sin er differeniable fr ehver med cs Z# sin sin g cs 3+ Svar:.a) š0œ' hvr š 0Ÿž Ÿž,.b) š0œ' hvr š 0Ÿž Ÿž,.c) b3 š0œ* hvr š` 0Ÿž Ÿž,.d) š0œ' hvr š` 0Ÿž Ÿž. + Den. sepember 000 / NW 44 lim * G beyder de samme sm ³²w fr «³²µ (alså, a går md, når «går md ).

Eksponentielle sammenhänge

Eksponentielle sammenhänge Eksponenielle sammenhänge y 800,95 1 0 1 y 80 76 7, 5 5% % 1 009 Karsen Juul Dee häfe er en forsäelse af häfe "LineÄre sammenhänge, 008" Indhold 14 Hvad er en eksponeniel sammenhäng? 53 15 Signing og fald

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over.

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Rumgeomeri Hvis man ønsker mere udfordring, kan man springe de førse 0 opgaver over Opgave I rumme er give punkerne A og B Besem en parameerfremsilling for linjen l som indeholder punkerne A og B, når

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock April 7, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C niveau, men dengang havde vi ikke

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock July 27, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C nivea uden en præcis definiion. Funkionerne

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014 Maemaik A Sudenereksamen Forberedelsesmaeriale il de digiale eksamensopgaver med adgang il inernee sx141-matn/a-0505014 Mandag den 5. maj 014 Forberedelsesmaeriale il sx A ne MATEMATIK Der skal afsæes

Læs mere

Kap. 1: Trigonometriske funktioner og grader.

Kap. 1: Trigonometriske funktioner og grader. - - Kap. : Trignmetriske funktiner g grader. Grader sm vinkelmål. Inden vi går i gang med at mtale de trignmetriske funktiner: sinus, csinus g tangens, vil vi først minde m, hvrdan en given vinkel kan

Læs mere

Mere om. trekantsberegning. D s u. 2012 Karsten Juul

Mere om. trekantsberegning. D s u. 2012 Karsten Juul Mere om rekansberegning D s A C v B 01 Karsen Jl Dee häfe indeholder ilfåjelser il fålgende häfer: Korfae rekansberegning for gymnasie og hf /11-010 hp://ma1.dk/korfae_rekansberegning_for_gymnasie_og_hf.pdf

Læs mere

Matematil projekt Bærbar

Matematil projekt Bærbar Maemaik Kursusopgave Bærbar -6-26 Maemail projek Bærbar Opgave A. For a finde ligningen for planen så skal jeg bruge e punk på planen, og normalvekoren for planen. Punke på planen, kan jeg finde fordi

Læs mere

Trekantsberegning. Udgave 2. 2010 Karsten Juul 25 B

Trekantsberegning. Udgave 2. 2010 Karsten Juul 25 B Trekansberegning Udgave 7,0 3 5 00 Karsen Juul ee häfe indeholder den del af rekansberegningen som skal kunnes på -niveau i gymnasie (sx) og hf. Fra sommer 0 kräves mere. Indhold. real af rekan.... Pyhagoras'

Læs mere

DiploMat Løsninger til 4-timersprøven 4/6 2004

DiploMat Løsninger til 4-timersprøven 4/6 2004 DiploMa Løsninger il -imersprøven / Preben Alsholm / Opgave Polynomie p er give ved p (z) = z 8 z + z + z 8z + De oplyses, a polynomie også kan skrives således p (z) = z + z z + Vi skal nde polynomies

Læs mere

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen Fysikrappor: Vejr og klima Maila Walmod, 13 HTX, Rosklide I gruppe med Ann-Sofie N Schou og Camilla Jensen Afleveringsdao: 30 november 2007 1 I dagens deba høres orde global opvarmning ofe Men hvad vil

Læs mere

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation.

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation. comfor forrængningsarmaurer Lindab Comdif 0 Lindab Comdif Ved forrængningsvenilaion ilføres lufen direke i opholds-zonen ved gulvniveau - med lav hasighed og underemperaur. Lufen udbreder sig over hele

Læs mere

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og EPDEMER DYAMK AF Kasper Larsen, Bjarke Vilser Hansen Henriee Elgaard issen, Louise Legaard og Charloe Plesher-Frankild 1. Miniprojek idefagssupplering, RUC Deember 2007 DLEDG Maemaisk modellering kan anvendes

Læs mere

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4 Insiu for Maemaiske Fag Maemaisk Modellering 1 Aarhus Universie Eva B. Vedel Jensen 12. februar 2008 UGESEDDEL 4 OBS! Øvelseslokale for hold MM4 (Jonas Bæklunds hold) er ændre il Koll. G3 på IMF. Ændringen

Læs mere

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge.

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge. Cykloider Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge Retningspunkt (repetition) Figur 1 viser enhedscirklen Det viste punkt P er anbragt sådan at den øverste af buerne

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

IT-arkitektur. IT-arkitektur Arkitektur på forskellige niveauer. Efter denne lektion skal du:

IT-arkitektur. IT-arkitektur Arkitektur på forskellige niveauer. Efter denne lektion skal du: IT-arkitektur IT-arkitektur Arkitektur på forskellige niveauer Slide no.: 1 Efter denne lektion skal du: Kunne gøre rede for de centrale elementer der kan indgå i en IT-arkitektur Kunne gøre rede for IT-arkitektur

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2013. Marianne Frank Hansen & Peter Stephensen

Danmarks fremtidige befolkning Befolkningsfremskrivning 2013. Marianne Frank Hansen & Peter Stephensen Danmarks fremidige beflkning Beflkningsfremskrivning 213 Marianne Frank Hansen & Peer Sephensen Juli 213 Side 2 af 132 Indhldsfregnelse 1 Indledning... 6 1.1 Opbygningen af beflkningsmdellen... 8 1.2 Viale

Læs mere

Øvelser. Differentialregning for gymnasiet og hf Karsten Juul. til hæftet

Øvelser. Differentialregning for gymnasiet og hf Karsten Juul. til hæftet Øvelser til hæftet Differentialregning fr gymnasiet g hf f () t s f f () 00 Karsten Juul Øvelserne i dette hæfte får eleverne til at pdage hvad det er der fregår i differentialregningen Dette pnår man

Læs mere

tegnsprog Kursuskatalog 2016

tegnsprog Kursuskatalog 2016 egnsprg Kursuskaalg 201 4 Hvrdan finder du di niveau? 4 Hvr hldes kurserne? 4 Hvrdan ilmelder du dig? 5 Hvad kser e kursus? Tegnsprg fr begyndere Tegnsprg på mellemniveau 10 Tegnsprg fr øvede 12 Sikker

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Navn: Ekspnentielle sammenhænge s. 1/8 Ekspnentielle sammenhænge Denne rapprt handler m ekspnentielle sammenhænge, herunder frskrift, udseende af graf, beregning af knstanter, betydning af knstanterne,

Læs mere

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver Newons afkølingslov løs ved hjælp af linjeelemener og inegralkurver Vi så idligere på e eksempel, hvor en kop kakao med emperauren sar afkøles i e lokale med emperauren slu. Vi fik, a emperaurfalde var

Læs mere

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72.

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72. Bioeknologi 2, Tema 4 5 Kineik Kineik er sudier af reakionshasigheden hvor man eksperimenel undersøger de fakorer, der påvirker reakionshasigheden, og hvor resulaerne afslører reakionens mekanisme og ransiion

Læs mere

8GYLNOLQJHQ L WLOVNXGGHQH WLO (8' Sn ILQDQVORYHQ RJ IUHPWLGHQV Y

8GYLNOLQJHQ L WLOVNXGGHQH WLO (8' Sn ILQDQVORYHQ RJ IUHPWLGHQV Y b Z V W / * 4/ 1 Sagsnr. 6-1 Ref. les Den. juni 7 Beregningerne bag notatet: 8GYLNOLQJHQ L WLOVNXGGHQH WLO (8' Sn ILQDQVORYHQ RJ IUHPWLGHQV NUDYWLO(8' 6 7 8 9 : ; < = >? @ : A 7 B > 7 > 8 B C 7 D B E 9?

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2011. Marianne Frank Hansen & Peter Stephensen

Danmarks fremtidige befolkning Befolkningsfremskrivning 2011. Marianne Frank Hansen & Peter Stephensen Danmarks fremidige beflkning Beflkningsfremskrivning 2011 Marianne Frank Hansen & Peer Sephensen Side 2 af 116 Indhldsfregnelse 1 Indledning... 6 1.1 Opbygningen af beflkningsmdellen... 8 1.2 Viale begivenheder...

Læs mere

Hvor mange er der?

Hvor mange er der? A Familien Tal 9 0 Hvor mange er der? Tæl ing Læs hisorien om Familien Tal høj. Se lærervejledningen..-. Tæl analle af de vise ing og skriv, hvor mange der er. Tæl ing fra asken 0 Tæl ing fra klassen 9

Læs mere

Side 1 af 9. Hvordan er resultatrapporten bygget op? Hvordan følger vi op på vores undersøgelse? 1. Simple tabeller. Besvarelser i alt.

Side 1 af 9. Hvordan er resultatrapporten bygget op? Hvordan følger vi op på vores undersøgelse? 1. Simple tabeller. Besvarelser i alt. ! "! # $ % & ' & ( & ) * + ), ( & -. / & - 0 1 ) 2.. & ' 3 4 5 2 6 6 & ( 2 * & ( ' & 0 7 ' - & (. 8 9 ( 4. 6 : ) * + ) 5 ) 2.. & ' 3 4 5 2 6 6 & ( 2 * & ( ' & ; 3 6 ( & 4 ) & ( 0 < 3 = ' + ' 4 0 1 ) 2..

Læs mere

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl.

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl. Skriflig Eksamen Daasrukurer og lgorimer (DM0) Insiu for Maemaik og Daalogi Odense Universie Torsdag den. januar 199, kl. 9{1 lle sdvanlige hjlpemidler (lrebger, noaer, ec.) sam brug af lommeregner er

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger MOGENS ODDERSHEDE LARSEN Sædvanlige Differenialligninger a b. udgave 004 FORORD Dee noa giver en indføring i eorien for sædvanlige differenialligninger. Der lægges især væg på løsningen af lineære differenialligninger

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

Funktionel form for effektivitetsindeks i det nye forbrugssystem

Funktionel form for effektivitetsindeks i det nye forbrugssystem Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh. augus 007 Funkionel form for effekiviesindeks i de nye forbrugssysem Resumé: Der findes o måder a opskrive effekiviesudvidede CES-funkioner med o

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Dialog om tidlig indsats Udveksling af oplysninger i det tværfaglige SSD-samarbejde og fagpersoners underretningspligt

Dialog om tidlig indsats Udveksling af oplysninger i det tværfaglige SSD-samarbejde og fagpersoners underretningspligt Dialog om tidlig indsats Udveksling af oplysninger i det tværfaglige SSD-samarbejde og fagpersoners underretningspligt Servicestyrelsen Edisonsvej 18 5000 Odense C Tlf.: +45 72 42 37 00 Fax: +45 72 42

Læs mere

Fysik A og Astronomi. Keplers love. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.

Fysik A og Astronomi. Keplers love. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3. Keples lve Skeve af Jacb Lasen.å HTX Slagelse Udgive i samabejde med Main Gyde Pulsen.å HTX Slagelse 1 De Lve På baggund af den danske asnm Tych Bahes bsevaine. De va isæ paallaksemålinge af Mas placeing

Læs mere

FARVEAVL myter og facts Eller: Sådan får man en blomstret collie!

FARVEAVL myter og facts Eller: Sådan får man en blomstret collie! FARVEAVL myer og facs Eller: Sådan får man en blomsre collie! Da en opdræer for nylig parrede en blue merle æve med en zobel han, blev der en del snak bland colliefolk. De gør man bare ikke man ved aldrig

Læs mere

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner. Komplekse tal Mike Auerbach Odense 2012 1 Vinkelmål og trigonometriske funktioner Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik Rakefysik. Rakeligningen Rakeligningen kan udlede ud fra iulssæningen. Vi anager a vi har en rake ed asse (), Rakeen drives fre ved a der udslynges en konsan asse µ r. idsenhed µ -d/d ed hasigheden u i

Læs mere

MAKRO 2 ENDOGEN VÆKST

MAKRO 2 ENDOGEN VÆKST ENDOGEN VÆKST MAKRO 2 2. årsprøve Forelæsning 7 Kapiel 8 Hans Jørgen Whia-Jacobsen econ.ku.dk/okojacob/makro-2-f09/makro I modeller med endogen væks er den langsigede væksrae i oupu pr. mand endogen besem.

Læs mere

Pensionsformodel - DMP

Pensionsformodel - DMP Danmarks Saisik MODELGRUPPEN Arbejdspapir Marin Junge og Tony Krisensen 19. sepember 2003 Pensionsformodel - DMP Resumé: Vi konsruerer ind- og udbealings profiler for pensionsformuerne. I dee ilfælde kigger

Læs mere

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008 Tjekkie Šěpán Vimr lærersuderende Rappor om undervisningsbesøg Sucy-en-Brie Frankrig 15.12.-19.12.2008 Konak med besøgslæreren De indledende konaker (e-mail) blev foreage med de samme undervisere hvilke

Læs mere

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri Maemaikkens mserier - på e høj niveau af Kenneh Hansen 4. Rumgeomeri Hvordan kan o forskellige planer ligge i forhold il hinanden? 4. Rumgeomeri Indhold 4. Vekorer i rumme 4. Krdsproduke 7 4. Planer og

Læs mere

Svar til eksamen i Matematik F2 d. 23. juni 2016

Svar til eksamen i Matematik F2 d. 23. juni 2016 Svar til eksamen i Matematik F d. 3. juni 06 FORBEHOLD FOR FEJL! Bemærk, i modsætning til herunder, så skal det i besvarelsen fremgå tydeligt, hvordan polerne ndes og hvordan de enkelte residuer udregnes.

Læs mere

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003 RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Eferårssemesre 2003 Generelle bemærkninger Opgaven er den redje i en ny ordning, hvorefer eksamen efer førse semeser af makro på 2.år

Læs mere

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015 Komplekse tal Mike Auerbach Tornbjerg Gymnasium, Odense 2015 Indhold 1 Vinkelmål og trigonometriske funktioner 2 1.1 Radianer................................................ 2 1.2 Cosinus og sinus som

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Mig og min ADHD -profil:

Mig og min ADHD -profil: Mig g min ADHD -prfil: - et hjælperedskab til dig, sm kan have svært ved at beskrive dine vanskeligheder g hvad ADHD gør ved lige netp dit liv. Denne skabeln kan du bruge, hvis du ligesm mange andre med

Læs mere

Undervisningsmaterialie

Undervisningsmaterialie The ScienceMah-projec: Idea: Claus Michelsen & Jan Alexis ielsen, Syddansk Universie Odense, Denmark Undervisningsmaerialie Ark il suderende og opgaver The ScienceMah-projec: Idea: Claus Michelsen & Jan

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling Hvad er en diskre idsmodel? Diskree Tidsmodeller Jeppe Revall Frisvad En funkion fra mængden af naurlige al il mængden af reelle al: f : R f (n) = 1 n + 1 n Okober 29 1 8 f(n) = 1/(n + 1) f(n) 6 4 2 1

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Enhedscirklen og de trigonometriske Funktioner

Enhedscirklen og de trigonometriske Funktioner Enhedscirklen og de trigonometriske Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul Tekansbeegning fo - og - niea i sx og hf dgae l 34 8 014 Kasen Jl Indhold 1. Vinkle... 1. Tekans häjde og aeal... 1.1 HÄjde.... 1. HÄjde-gndlinje-fomel fo ekans aeal... 1.3 Eksemel ho aeal e kend... 1

Læs mere

Kædning og sæsonkorrektion af det kvartalsvise nationalregnskab

Kædning og sæsonkorrektion af det kvartalsvise nationalregnskab Danmarks Sask Naonalregnskab 9. november 00 ædnng og sæsonkorrekon af de kvaralsvse naonalregnskab Med den revderede opgørelse af de kvaralsvse naonalregnskab 3. kvaral 007 6. januar 008 blev meoden l

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

SMART Notebook 11.1 Math Tools

SMART Notebook 11.1 Math Tools SMART Ntebk 11.1 Math Tls Windws perativsystemer Brugervejledning Prduktregistrering Hvis du registrerer dit SMART-prdukt, giver vi dig besked, når der er nye funktiner g sftwarepgraderinger. Registrer

Læs mere

Computer- og El-teknik Formelsamling

Computer- og El-teknik Formelsamling ompuer- og El-eknik ormelsamling E E E + + E + Holsebro HTX ompuer- og El-eknik 5. og 6. semeser HJA/BA Version. ndholdsforegnelse.. orkorelser inden for srøm..... Modsande ved D..... Ohms ov..... Effek

Læs mere

Appendisk 1. Formel beskrivelse af modellen

Appendisk 1. Formel beskrivelse af modellen Appendisk. Formel beskrivelse af modellen I dee appendiks foreages en mere formel opsilning af den model, der er beskreve i ariklen. Generel: Renen og alle produenpriser - eksklusiv lønnen - er give fra

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

tegnsprog Kursuskatalog 2015

tegnsprog Kursuskatalog 2015 egnsprog Kursuskaalog 2015 Hvordan finder du di niveau? Hvor holdes kurserne? Hvordan ilmelder du dig? 5 Hvad koser e kursus? 6 Tegnsprog for begyndere 8 Tegnsprog på mellemniveau 10 Tegnsprog for øvede

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Estimation af markup i det danske erhvervsliv

Estimation af markup i det danske erhvervsliv d. 16.11.2005 JH Esimaion af markup i de danske erhvervsliv Baggrundsnoa vedrørende Dansk Økonomi, eferår 2005, kapiel II Noae præsenerer esimaioner af markup i forskellige danske erhverv. I esimaionerne

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

It-plan for Valsgård Skole 2011

It-plan for Valsgård Skole 2011 It-plan fr Valsgård Skle 2011 1 Beskrivelse Grundlaget fr brug af IT i er beskrevet i Faghæfte 48. http://www.uvm.dk/~/media/publikatiner/2009/flke/faelles%20maal/filer/faghaefter/100503_it_g_ mediekmpetencer.ashx

Læs mere

Efterspørgslen efter læger 2012-2035

Efterspørgslen efter læger 2012-2035 2013 5746 PS/HM Eferspørgslen efer læger 2012-2035 50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 Anal eferspurge læger i sundhedsudgifalernaive Anal eferspurge læger i finanskrisealernaive

Læs mere

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst Oversig Eksempler på hvordan maemaik indgår i undervisningen på LIFE Gymnasielærerdag Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk Sofskife og kropsvæg hos paedyr Vægforhold mellem

Læs mere

Opgave 1: Regressionsanalyse

Opgave 1: Regressionsanalyse Opgave : Regressiosaalyse La u, x,..., u, x være par af reelle al. Vi skal u besemme e ree liie, er passer bes me isse alpar i e forsa a summe x s α βu s miimeres. Ma fier alså e liie, x ˆα + ˆβu, for

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm.

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm. Homografier Möbius transformationer Følgende tema, handler om homografier, inspireret af professor Børge Jessens noter, udgivet på Københavns Universitet 965-66. Noterne er herefter blevet bearbejdet og

Læs mere

Time Sag Styring i Qmanager

Time Sag Styring i Qmanager Indhldsfrtegnelse Opsætning (NOVAQ Administratr)... 1 Licensnøgle... 1 Rd gruppen til Time-Sag administratrerne... 1 Rettighedspsætning (Default psætning)... 2 Hvem kan administrere brugernes tidsindstillinger...

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk Oversig Mes repeiion med fokus på de sværese emner Modul 3: Differenialligninger af. orden Maemaik og modeller 29 Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk 3 simple yper differenialligninger

Læs mere

Projektets mål og rammer. Vær sikker på at i er enige om målet, ellers når i det ikke! Tag hensyn til jeres forskellige forudsætninger

Projektets mål og rammer. Vær sikker på at i er enige om målet, ellers når i det ikke! Tag hensyn til jeres forskellige forudsætninger Prjekplanlægning g prjeksyring sa kunikain i g ra gruppen Prjekes ål g raer Indhld: Prjekes ålgraer Akiviesdiagra Hvr lang id ager en giver pgave? - hvrdan an gæer kvaliicere Tidsplan Jusering a idsplan

Læs mere

Differentialregning. for B-niveau i hf udgave 3. 2015 Karsten Juul

Differentialregning. for B-niveau i hf udgave 3. 2015 Karsten Juul Dierentialregning r B-niveau i h udgave t s 05 Karsten Juul Dierentialkvtient. Tangent g räringspunkt..... FunktinsvÅrdi g dierentialkvtient..... Frtlkning a ' vedr. gra... 4. Frtlkning a ' nçr er tiden....

Læs mere

Facitliste til elevbog

Facitliste til elevbog Facitliste til elevbog Algebra a 8x 4 b 6x c 7x 8 d 0 5x e x 54 f 8x 6 x a x 7x + 4 b 48a 4 + 8a c 56x + x d 6a 4 5a e 4x 80x f 6a 4 4a a 8(x + ) b 5x(4x 7) c 4( a) d 9a ( a) e 4( + 7a ) f 6(x + y) 4 a

Læs mere

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:

Læs mere

Formler for spoler. An English resume is offered on page 5.

Formler for spoler. An English resume is offered on page 5. An English resume is offered on page 5. Ledere En leder har ved lave frekvenser en inern selvindukion L 1 som følge af fele inde i lederen, men srømmen løber kun i de yderse,5 mm ved khz og,1 mm ved 1

Læs mere

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE?

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? Af Torben A. Knudsen, Sud. Poly. & Claus Rehfeld, Forskningsadjunk Cener for Trafik og Transporforskning (CTT) Danmarks Tekniske Uniersie Bygning 115, 800

Læs mere

Noter om komplekse tal

Noter om komplekse tal Noter om komplekse tal Preben Alsholm Januar 008 1 Den komplekse eksponentialfunktion Vi erindrer først om den sædvanlige og velkendte reelle eksponentialfunktion. Vi skal undertiden nde det nyttigt, at

Læs mere

Rettevejledning til Georg Mohr-Konkurrencen runde

Rettevejledning til Georg Mohr-Konkurrencen runde Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik A Rita Ahrenfeldt hh12okoa11

Læs mere

Tilbagemelding fra bestyrelsesseminariet

Tilbagemelding fra bestyrelsesseminariet Dansk Selskab fr Fysiterapi 17. marts 2016 NYHEDSBREV 2/2016 Kære alle. Det er ikke så længe siden, at jeg udsendte et nyhedsbrev. Siden sidst har bestyrelsens hldt et rigtig gdt bestyrelsesseminar. Det

Læs mere

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om

Læs mere

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r)

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r) Matematik Vi har fået til opgave at bygge en ballon hvis volume mindst må være 1,2 Kubikmeter og max 1,5 kubikmeter. Så for at løse dette problem valgte vi at finde formlerne for en kugle, kugleafsnit

Læs mere

Hjelp til Speedadmin. Fakturering

Hjelp til Speedadmin. Fakturering Hjelp til Speedadmin Fakturering Indhld Indhld... 2 Faktureringsdelen... Fejl! Bgmærke er ikke defineret. Opsætning af betalingssystemet... 3 Opsætning til Visma/Agress/ERV... 4 Test af første fil... 4

Læs mere