Mere om. trekantsberegning. D s u Karsten Juul

Størrelse: px
Starte visningen fra side:

Download "Mere om. trekantsberegning. D s u. 2012 Karsten Juul"

Transkript

1 Mere om rekansberegning D s A C v B 01 Karsen Jl

2 Dee häfe indeholder ilfåjelser il fålgende häfer: Korfae rekansberegning for gymnasie og hf / hp://ma1.dk/korfae_rekansberegning_for_gymnasie_og_hf.pdf Çvelser il häfe "Korfae rekansberegning for gymnasie og hf" 9/-011 hp://ma1.dk/oevelser_il_haefe_korfae_rekansberegning_for_gymnasie_og_hf.pdf Alle häferne kan downloades fra hp://ma1.dk/noer.hm Indhold Eksempel med ensvinklede rekaner... 1 Eksempel pé dregning af vinkel ved hjälp af sinsrelaionen... Eksempel hvor vi brger cosinsrelaionen og sinsrelaionen il a dregne en afsand... De 11 opgaveyper med sider og vinkler i revinkle rekan... De formler il dregning af sider og vinkler i revinkle rekan... 7 De opgaveyper der låses ved hjälp af cosinsrelaionen eller sinsrelaionen De opgaveyper med sinsformlen for rekans areal... 9 Mere om rekansberegning Ñ 01 Karsen Jl Dee häfe kan downloades fra HÄfe mé benyes i ndervisningen hvis läreren med de samme sender en il som dels oplyser a dee häfe benyes, dels oplyser om hold, lärer og skole.

3 Eksempel med ensvinklede rekaner E 0 C 10 1 Hvad ved vi? PÉ figren er siderne BC og DE parallelle. Trekanerne ABC og ADE er alsé ensvinklede. Hvad vil vi dregne? Vi vil dregne CE. A B D Plan for dregninger: Ved hjälp af reglerne for ensvinklede rekaner kan vi dregne längder af sider i rekanerne, men CE er ikke side i en af rekanerne. Vi dregner derfor fårs AC. SÉ kan vi derefer dregne CE ved a räkke AC fra 0. Skalafakoren k: Da rekanerne er ensvinklede, skal alle sider i rekan ABC ganges med samme al k for a fé den ilsvarende side i rekan ADE. Tilsvarende sider er sider der ligger over for lige sore vinkler. Vi dregner k: Da siderne med längder 10 og 1 ligger over for samme vinkel, mé gälde 10 k 1 Vi dividerer begge sider med 10 og fér k 1, Vi dregner AC : Da AC og siden med längde 0 ligger over for vinklerne B og D der er lige sore, gälder AC 1, 0 Vi dividerer begge sider med 1, og fér AC 1, Vi dregner CE : Vi fér n a CE 0 1, dvs. CE 7, Mere om rekansberegning Side 1 01 Karsen Jl

4 Mere om rekansberegning Side 01 Karsen Jl

5 Eksempel pé dregning af vinkel ved hjälp af sinsrelaionen Opgaven I rekan ABC er (* ) A, a og c 8. Vi vil dregne vinkel C. Skisen Vi egner en skise: Udregningen Vi säer ind i sinsrelaionen: 8 sin() sin( C) Nspire låser denne ligning mh. C for C, eller C 11, 0 C 180 og fér: De o rekaner De viser sig a der er o rekaner der opfylder (*). I den ene af disse rekaner er C,, og i den anden er C 11,. Vi vil egne de o rekaner. FÅrs egner vi AB og vinkel A: l Pnke C ligger pé l, og afsanden fra B il C er. A 8 B Derfor egner vi en cirkel med cenrm B og radis : N har vi de o rekaner ABC. C l C A 8 B Mere om rekansberegning Side 01 Karsen Jl

6 Eksempel hvor vi brger cosinsrelaionen og sinsrelaionen il a dregne en afsand Smmen af vinklerne i en rekan NÉr vi kender o vinkler i en rekan, sé kan vi dregne den redje. De er fordi man alid fér 180 nér man lägger alle re vinkler sammen. Finde side i rekan med sinsrelaionen Hvis vi i en rekan kender vinklerne og en af siderne sé kan vi dregne enhver af de andre sider. Dee kan vi gåre med sinsrelaionen. Finde side i en rekan med cosinsrelaionen Hvis vi i en rekan kender o sider og vinklen mellem dem sé kan vi dregne den redje side. Dee kan vi gåre med cosinsrelaionen. Eksempel hvor vi brger cosinsrelaionen og sinsrelaionen il a dregne en afsand Figren viser e landomréde se ovenfra. Vi vil finde afsanden mellem og A og B, men vi kan ikke méle denne afsand (pé grnd af forhold i landskabe). D s A Vores mälinger C v B Vi finder o seder C og D hvor der gälder: Fra C kan vi se béde A, B og D. Fra D kan vi se béde A, B og C. Vi kan méle afsanden mellem C og D. Vi méler vinkler mellem sigelinjer. Afsande er i meer. Vi fér CD 18, 81, 7, v 7, 0, s, 9, 108, 8. Mere om rekansberegning Side 01 Karsen Jl

7 Plan for dregninger Siden AC Hvis vi i rekan ABC kender siderne AC og BC og vinklen imellem dem, sé kan vi dregne längden af AB med cosinsrelaionen. Vinklen kan vi nem dregne da vi kender og v. AC er en side i rekan ACD. I denne kender vi vinklerne og v, sé vi kan nem dregne vinklen A. Da vi kender vinklerne og en side kan vi dregne längden af de andre sider med sinsrelaionen. Vi nåjes med a dregne längden af AC. PÉ ilsvarende méde dregner vi siden BC i rekan BCD. Vinkelsmmen i en rekan er 180, sé i rekan ACD er A 180 v, Sinsrelaionen siger a for alle sider i en rekan fér vi de samme al nér vi dividerer siden med sins il sidens modséende vinkel. Derfor gälder a CD AC 18 d dvs. 1 sin( A) sin( ) sin(,) sin(81,7) Nspire låser denne ligning mh. d1 og fér d 1 7, 80 hvor d 1 AC Siden BC I rekan BCD laver vi dregninger af samme ype som i rekan ACD: B 180 s 1, 18 d hvor d sin(1,) sin(,9) d,9 BC Siden AB I rekan ABC er C v, 8 Da C er vinklen mellemsiderne d1 og d, og cosinsrelaionen a c d 1 d d1 d Vi låser denne ligning mh. c og fér c 97,110 cos( C) c AB er siden over for vinklen, fålger af Konklsion Afsanden mellem A og B er 97 meer. Mere om rekansberegning Side 01 Karsen Jl

8 De 11 opgaveyper med sider og vinkler i revinkle rekan I rekanen il håjre er siderne med längde og kaeer, fordi vinklen mellem dem er re. Siden med längde er hypoense, fordi den ikke er en af kaeerne. Foresil dig a d sidder i den spidse vinkel og holder i de o vinkelben. Den kaee d holder i, er vinklens hosliggende kaee. Den anden kaee er vinklens modsäende kaee. Type 1 Type Type Hypoensen og en. Vinklens hosliggende kaee. cos(7) Nspire dregner vensre side En og dens hosliggende kaee. Hypoensen. cos( 7) Hypoensen og en kaee. Vinklen mellem disse. cos( ) vinklens hosliggende kaee hypoensen Nspire låser mh. vinklens hosliggende kaee hypoensen Nspire låser mh. for vinklens hosliggende kaee hypoensen Type Hypoensen og en. Vinklens modséende kaee. sin (7) vinklens hypoensen Nspire dregner vensre side modséende kaee 7 Type En og dens modséende kaee. Hypoensen. sin ( 7) vinklens hypoensen Nspire låser mh. modséende kaee 7 Type Hypoensen og en kaee. Kaeens modséende vinkel. sin ( ) Nspire låser mh. for vinklens modséende kaee hypoensen 0 90 Mere om rekansberegning Side 01 Karsen Jl

9 Type 7 Type 8 En og dens hosliggende kaee. Vinklens modséende kaee. an(7) Nspire dregner vensre side En og dens modséende kaee. Vinklens hosliggende kaee. an( 7) vinklens modséende kaee vinklens hosliggende kaee Nspire låser mh. vinklens modséende kaee vinklens hosliggende kaee 7 7 Type 9 De o kaeer. En. an( ) Nspire låser mh. for vinklens modséende kaee vinklens hosliggende kaee 0 90 Type 10 Type 11 De o kaeer. Hypoensen. hypoense kaeer Nspire låser mh. for Hypoensen og en kaee. Den anden kaee. Nspire låser mh. for hypoense kaeer 0 0 De formler il dregning af sider og vinkler i revinkle rekan Hver af de 11 meoder ovenfor brger en af fålgende fire formler: I en revinkle rekan gälder (1) den_ene_kaee + den_anden_kaee = hypoensen For en i en revinkle rekan gälder: () hypoensen cos( vinkel ) = vinklens_hosliggende_kaee () hypoensen sin( vinkel ) = vinklens_modsäende_kaee () vinklens_hosliggende_kaee an( vinkel ) = vinklens_modsäende_kaee Mere om rekansberegning Side 7 01 Karsen Jl

10 De opgaveyper der låses ved hjçlp af cosinsrelaionen eller sinsrelaionen. Type 1: p Udregn side med cosinsrelaionen Trekanen er ikke revinkle. En vinkel mellem o sider og disse o sider. Siden over for vinklen. vinklensben siden over for vinklen alid cos(1,) Nspire låser ligningen mh. p for p 0 p 1, Type 1: Udregn vinkel med cosinsrelaionen Trekanen er ikke revinkle. De re sider. Vinklen. vinklensben siden over for vinklen Nspire låser ligningen mh. v for alid cos( v) 0 v 180 v Type 1: siden der er Udregn side med sinsrelaionen Trekanen er ikke revinkle. En side og o vinkler. En af de andre sider. p sin( 1.) sin( 8.8 ) siden der er enheder, ligger over for vinklen der er 8,8 p enheder, ligger over for vinklen der er 1, Nspire låser ligningen mh. p for p 0 1, Hvis de var siden over for den kende vinkel vi sklle finde, sé mée vi fårs dregne denne vinkel ved a dnye a smmen af de re vinkler er 180. p 8,8 Type 1: Udregn vinkel med sinsrelaion Trekanen er ikke revinkle. To sider og vinklen over for en af dem. Vinklen over for den anden af de o sider. 8,8 sin( v) sin( 8,8 ) siden der er enheder, ligger over for vinklen der er 8,8 siden der er enheder, ligger over for vinklen af sårrelse v v Nspire låser ligningen mh. v for 0 v 180 Lommeregneren giver béde en låsning nder 90 og en låsning over 90. Hsk a begrnde hvilken af låsningerne der skal brges. I dee ilfälde kan begrndelsen väre: "Vinklen er nder 90 da siden over for vinklen ikke er den sårse i rekanen." I nogle opgaver er de oplys om vinklen er smp (dvs. over 90 ) eller spids (dvs. nder 90 ). Mere om rekansberegning Side 8 01 Karsen Jl

11 De opgaveyper med sinsformlen for rekans areal Type 1 Areale er alid 1 To sider og vinklen mellem dem. Areale. T 1 sin(1, ) vinklen skal väre mellem disse sider T 1, Nspire dregner ligningens håjre side. Type 17 alid 9,9 1 Areale, vinklen mellem o sider og en af de o sider. Den anden af de o sider. 1 p sin(1, ) vinklen skal väre mellem disse sider Nspire låser ligningen mh. p. 9,9 p 1, Type 18 alid 9,9 1 Areale og o sider. Vinklen mellem de o sider. 1 sin( v ) vinklen skal väre mellem disse sider Nspire låser ligningen mh. v for 0 v 180. Ligningen har béde en låsning nder 90 og en låsning over 90. Hvis opgaven er i en pråve, sé vil der väre flere oplysninger sé de fremgér hvilken af de o rekaner opgaven drejer sig om. 9,9 v Mere om rekansberegning Side 9 01 Karsen Jl

Trekantsberegning. Udgave 2. 2010 Karsten Juul 25 B

Trekantsberegning. Udgave 2. 2010 Karsten Juul 25 B Trekansberegning Udgave 7,0 3 5 00 Karsen Juul ee häfe indeholder den del af rekansberegningen som skal kunnes på -niveau i gymnasie (sx) og hf. Fra sommer 0 kräves mere. Indhold. real af rekan.... Pyhagoras'

Læs mere

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul Tekansbeegning fo - og - niea i sx og hf dgae l 34 8 014 Kasen Jl Indhold 1. Vinkle... 1. Tekans häjde og aeal... 1.1 HÄjde.... 1. HÄjde-gndlinje-fomel fo ekans aeal... 1.3 Eksemel ho aeal e kend... 1

Læs mere

Eksponentielle sammenhänge

Eksponentielle sammenhänge Eksponenielle sammenhänge y 800,95 1 0 1 y 80 76 7, 5 5% % 1 009 Karsen Juul Dee häfe er en forsäelse af häfe "LineÄre sammenhänge, 008" Indhold 14 Hvad er en eksponeniel sammenhäng? 53 15 Signing og fald

Læs mere

for C-niveau i stx 2013 Karsten Juul

for C-niveau i stx 2013 Karsten Juul fo C-niea i sx 01 Kasen Jl 1. En sides modsäende inkel... 1. Ensinklede ekane... 1. Od fo sidene i en einkle ekan.... Pyhagoas sçning.... Udegn hyoense nä i kende de o kaee. Udegn kaee nä i kende kaee

Læs mere

for B- og A- niveau i stx og hf

for B- og A- niveau i stx og hf fo - og - niea i sx og hf D s 01 Kasen Jl Indhold 1: HÄjde og aeal... 1 1.1 Definiion HÄjde... 1 1. Eksemel En side kan Åe en häjde... 1 1.3 SÅning eal af ekan.... 1 1.4 Eksemel eal e kend... : Pyhagoas'

Læs mere

Trekantsberegning 25 B. 2009 Karsten Juul

Trekantsberegning 25 B. 2009 Karsten Juul Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Trekantsberegning. for C-niveau i hf Karsten Juul A D

Trekantsberegning. for C-niveau i hf Karsten Juul A D Tekansbeegning fo -niea i hf 0 01 Kasen Jl aeal...1, 7, 1 aeal og sins...7 beis fo sinsfomlen fo aeal af ekan...7 beis fo sinselaionen...8 cosins... cosins og Nsie... cosins i einkle ekan..., 11, 1 cosinselaionen...9,

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over.

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Rumgeomeri Hvis man ønsker mere udfordring, kan man springe de førse 0 opgaver over Opgave I rumme er give punkerne A og B Besem en parameerfremsilling for linjen l som indeholder punkerne A og B, når

Læs mere

GrundlÄggende. Bogstavregning. for stx og hf Karsten Juul

GrundlÄggende. Bogstavregning. for stx og hf Karsten Juul GrundlÄggende Bogstavregning for st og hf 01 Karsten Juul 1. LigevÄgt bevares når vi träkker fra begge sider... 1. LigevÄgt bevares IKKE når vi träkker fra venstre side... 1. LigevÄgt bevares når vi dividerer

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Lidt om trigonometriske funktioner

Lidt om trigonometriske funktioner DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK TRIGNMETRISKE FUNKTINER EFTERÅRET 000 Lid m rignmeriske funkiner Funkinerne cs g sin De rignmeriske funkiner defines i den elemenære maemaik ved

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

sammenhänge for gymnasiet og hf 2010 Karsten Juul

sammenhänge for gymnasiet og hf 2010 Karsten Juul LineÄre sammenhänge for gymnasiet og hf y 0,5x 2,5 200 Karsten Juul I dette häfte har jeg gjort meget for at teksten er skrevet sçdan at du nemmere kan fç overblik over reglerne og den sammenhäng der er

Læs mere

Differentialligninger

Differentialligninger Differentialligninger for A-niveau i st, udgave SkÄrmbillede fra TI-Nspire 015 Karsten Juul Differentialligninger for A-niveau i st, udgave 1 Hvad er en differentialligning? 1a OplÄg til differentialligninger1

Læs mere

Vektorer. koordinatgeometri

Vektorer. koordinatgeometri Vektorer og koordintgeometri for gymnsiet, dge 5 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors

Læs mere

Integralregning. 1. del. 2006 Karsten Juul. M l

Integralregning. 1. del. 2006 Karsten Juul. M l Integralregning del () M l () 6 Karsten Juul Indhold Stamunktion OplÄg om stamunktion Deinition a stamunktion 6 Kontrol a stamunktion 9 SÄtning om stamunktionerne til en unktion Deinition a ubestemt integral

Læs mere

STUDENTEREKSAMEN MAJ-JUNI 2009 2009-8-2 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER

STUDENTEREKSAMEN MAJ-JUNI 2009 2009-8-2 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER STUDENTEREKSAMEN MAJ-JUNI 009 009-8- MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Mandag den 11. maj 009 kl. 9.00-10.00 BESVARELSEN AFLEVERES KL. 10.00 Der tildeles

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Matematik C Højere forberedelseseksamen

Matematik C Højere forberedelseseksamen Matematik C Højere forberedelseseksamen Hæfte: August 2014 Kl. 9.00-12.00 Copyright Anders og Mark Kommentar til opgaven: Lilla farve - angiver formlen. Rød farve - angiver ophævelsen af en ligning. Matematik

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter, maj 007, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, indskrivelige

Læs mere

Matematil projekt Bærbar

Matematil projekt Bærbar Maemaik Kursusopgave Bærbar -6-26 Maemail projek Bærbar Opgave A. For a finde ligningen for planen så skal jeg bruge e punk på planen, og normalvekoren for planen. Punke på planen, kan jeg finde fordi

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

sammenhänge 2008 Karsten Juul

sammenhänge 2008 Karsten Juul LineÄre sammenhänge y x 3 3 008 Karsten Juul Dette häfte er en fortsättelse af häftet "VariabelsammenhÄnge, 008". Indhold 8. Hvad er en lineär sammenhäng?... 3 9. Hvordan ser grafen ud for en lineär sammenhäng?...

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

Løsninger til eksamensopgaver på A-niveau 2013

Løsninger til eksamensopgaver på A-niveau 2013 Løsningerne er hentet på www.szymanskispil.dk Quizspillene ASHRAM, MIR og SPORTSNØRD Løsninger til eksamensopgaver på A-niveau 013 4. maj 013: Delprøven UDEN hjælpemidler Opgave 1: Udtrykket reduceres

Læs mere

GEOMETRI og TRIGONOMETRI del 2

GEOMETRI og TRIGONOMETRI del 2 GEOMETRI og TRIGONOMETRI del x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse COS, SIN, TAN og RETVINKLEDE TREKANTER... 3 Vinkler målt i radianer:... 6 Grundrelationen:... 8 Overgangsformler:...

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe131-mat/b-31052013 Fredag den 31. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

At bygge bro. mellem folkeskole og gymnasium

At bygge bro. mellem folkeskole og gymnasium At bygge bro mellem folkeskole og gymnasium i matematik Program Præsentation Samarbejde mellem folkeskole og gymnasium Der er håb! Konkrete eksempler på opgaver fra 9. klasse og gymnasiet (B-niv) Matematik

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

Integralregning. for B-niveau i stx. 2015 Karsten Juul

Integralregning. for B-niveau i stx. 2015 Karsten Juul Integralregning or B-niveau i st 05 Karsten Juul Stikordsregister A areal mellem gra og -akse6, 7, 8, 9 areal mellem to graer0, arealunktion, 5, 6 B bestemt integral 5 bestemt integral med Nspire5 bestemt

Læs mere

Differentialligninger

Differentialligninger Differentialligninger for A-niveau i st SkÄrmbillede fra TI-Nspire 013 Karsten Juul Differentialligninger for A-niveau i st 1 OplÄg til differentialligninger1 Hvad er en differentialligning?1 3 UndersÅg

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul Kort om Anengraspolynomier 11 (1) Karsten Juul Dette häfte ineholer pensum i anengraspolynomier for gymnasiet og hf Inhol 1. Definition Anengraspolynomium... 1. Eksempel Hvilke tal er a, b og c lig?...

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion Transformationsgeometri: Inversion. Kirsten Rosenkilde, august 2007 1 Inversion Inversion er en bestemt type transformation af planen, og ved at benytte transformation på en geometrisk problemstilling

Læs mere

Opgave 1 - Eksponentiel funktion/procent og renter

Opgave 1 - Eksponentiel funktion/procent og renter Alle beregninger er, hvis ikke andet angivet, udført med WordMat. Opgave 1 - Eksponentiel funktion/procent og renter Jeg vil nu finde ud af hvor stort et beløb der står på kontoen efter 1 år med en starts

Læs mere

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul Nogle emner fra Deskriptiv Statistik 75 50 25 2011 Karsten Juul Indhold Hvad er deskriptiv statistik?... 1 UGRUPPEREDE OBSERVATIONER Hyppigheder... 1 Det samlede antal observationer... 1 Middeltallet...

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

DiploMat Løsninger til 4-timersprøven 4/6 2004

DiploMat Løsninger til 4-timersprøven 4/6 2004 DiploMa Løsninger il -imersprøven / Preben Alsholm / Opgave Polynomie p er give ved p (z) = z 8 z + z + z 8z + De oplyses, a polynomie også kan skrives således p (z) = z + z z + Vi skal nde polynomies

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver Matematik B Hjemmeopgaver 1) opgave 107c, side 115 Jeg skal tegne en trekant og estemme vinklerne A og C og siderne a, og c. Jeg har følgende mål: Jeg har ikke nok mål til at kunne regne nogle af vinklerne

Læs mere

Ib Michelsen: Matematik C, Geometri 2011 Version 7.1 03-10-11 rettet fejl side 47 sin G:\_nyBog\1-2-trig\nyTrigonometri12.odt

Ib Michelsen: Matematik C, Geometri 2011 Version 7.1 03-10-11 rettet fejl side 47 sin G:\_nyBog\1-2-trig\nyTrigonometri12.odt Trigonometri Vinkel v sin(v) Vinkel v sin(v) Vinkel v sin(v) 0,00 0,00 30,00 0,50 60,00 0,87 1,00 0,02 31,00 0,52 61,00 0,87 2,00 0,03 32,00 0,53 62,00 0,88 3,00 0,05 33,00 0,54 63,00 0,89 4,00 0,07 34,00

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen Fysikrappor: Vejr og klima Maila Walmod, 13 HTX, Rosklide I gruppe med Ann-Sofie N Schou og Camilla Jensen Afleveringsdao: 30 november 2007 1 I dagens deba høres orde global opvarmning ofe Men hvad vil

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på bagsiden).

Læs mere

Rettevejledning til Georg Mohr-Konkurrencen runde

Rettevejledning til Georg Mohr-Konkurrencen runde Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

Løsninger til eksamensopgaver på B-niveau 2013

Løsninger til eksamensopgaver på B-niveau 2013 Løsninger til eksamensopgaver på B-niveau 013 Opgave 1: y a x b x 6 y 5 9 4. maj 013: Delprøven UDEN hjælpemidler Metode 1: Man kan bestemme a ved at indsætte de sammenhørende værdier i ligningsudtrykket,

Læs mere

for gymnasiet og hf 2011 Karsten Juul

for gymnasiet og hf 2011 Karsten Juul for gymnasiet og hf 75 50 5 011 Karsten Juul I dette häfte er der lagt vägt på at det skal väre egnet til at slå op i når elever léser opgaver at tvivlstilfälde bliver afklaret at det er muligt på forskellige

Læs mere

Progression frem mod skriftlig eksamen

Progression frem mod skriftlig eksamen Progression frem mod skriftlig eksamen Ikke alle skal have 12 Eksamensopgavernes funktion i det daglige og til eksamen Progression i sættet progression i den enkelte opgave Hvornår inddrages eksamensopgaver

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014 Maemaik A Sudenereksamen Forberedelsesmaeriale il de digiale eksamensopgaver med adgang il inernee sx141-matn/a-0505014 Mandag den 5. maj 014 Forberedelsesmaeriale il sx A ne MATEMATIK Der skal afsæes

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock July 27, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C nivea uden en præcis definiion. Funkionerne

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Løsninger til eksamensopgaver på B-niveau 2014

Løsninger til eksamensopgaver på B-niveau 2014 Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Ugesedler til sommerkursus

Ugesedler til sommerkursus Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag

Læs mere

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Sæt 05 Geometri 01 Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Rettes: Karakter: Rettes ikke: Set og godkendt: Samlet elevtid: 165 min. = 2,75 time

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx123-mat/a-07122012 Fredag den 7. december 2012 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

(Alle disse mål kan ændres fra ballon til ballon, og i kan selv vælge hvad målende er. )

(Alle disse mål kan ændres fra ballon til ballon, og i kan selv vælge hvad målende er. ) MATMATISKE BEREGNINGER Her er den metode vi brugte til at beregne Hylsteret facon, og bredden af strimlerne. Hylsteret består af en kugle, og en keglestup der er tangens med kuglen (altså at den har en

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a gl. Matematik A Studentereksamen gl-1st141-mat/a-05014 Torsdag den. maj 014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere