Matematik - September 2001 Afleveret d. 27/4-2006
|
|
|
- Philippa Karlsen
- 9 år siden
- Visninger:
Transkript
1 Matematik - September Afleveret. 7/ - 6 Opgave For at lave en paremeterfremstilling for en ret linje, så skal jeg bruge et punkt på linjen, og en retningsvektor. Punktet kener jeg a jeg får opgivet to punkter på linjen B F Retningsvektoren finer jeg ve at lave en vektor som går mellem e to punkter BF F B BF Derefter sætter jeg et in i fomlen for en linjes parameterfremstilling x y z t Opgave For at fine planets ligning, så skal jeg bruge en normalvektor og et punkt på planet, punktet kener jeg i form af e tre punkter som vi får opgivet at planet går i gennem. Normalvektoren finer jeg ve at lave to vektorer mellem e tre punkter, og fine krysprouktet af e to vektorer, a jeg erve finer normalvektoren A C G AG G A AC C A n AC AG n Derefter sætter jeg vektoren n og punktet A in ligningen for planer ( x ) ( y ) ( z ) x x y z y z Lavet af Morten Kvist Htx. Sie af 7
2 Matematik - September Afleveret. 7/ - 6 Opgave Delopgave C Først så finer jeg afstane mellem punktet H, og planet er går i gennem punkterne D, E, F og G. Dette gør jeg ve hjælp af sinusrelationen sin( eg). sin( eg) solve, a. a altså ligger H, højere en D, E, F og G i z-koorinatets retning, og a jeg ve at alle vinkler in til punktet H er lige store, så må en ligge lige i miten mellem e punkter H... Opgave x( t) t π sin( t) y( t) cos( t) r( t) x( t) y( t) For at fine u af hvor funktionen skær x-aksen, så sætter jeg y(t) og isolere t y( t) solve, t t π π. Opgave Jeg ifferentirer vektorfunktionen x ( t) y ( t) r ( t) t x( t) x ( t) cos( t) t y( t) y ( t) ( ) sin( t) x ( t) r ( t) y ( t) cos( t) ( ) sin( t) så sætter jeg t in, og finer hastighesvektoren r ( ).8.68 Lavet af Morten Kvist Htx. Sie af 7
3 Matematik - September Afleveret. 7/ - 6 erefter finer jeg længen af enne vektore, og finer erve farten_.8 (.68).676 altså er farten: V.676 Opgave Delopgave C x ( t) t x ( t) y ( t) t y ( t) x ( t) ( ) sin( t) y ( t) ( ) cos( t) r ( t) cos( t) ( ) sin( t) r ( t) r ( t) y ( t) x ( t) x ( t) y ( t) ( ) sin( t) ( ) cos( t) y ( t) solve, t set( t) x ( t) altså er er ikke noget resultat, erfor er er ikke noget tispunkt hvor hastighesvektoren og accelerationsvektoren står vinkelret på hinanen Opgave y y først opeler jeg ligningen i h(x) og g(x) g( y) y h( x) y g( y) h( x) y erefter så samler jeg y og y på en ene sie og x og på en anen sie g( y) y Derefter så integrere jeg e to sier Lavet af Morten Kvist Htx. Sie af 7
4 Matematik - September Afleveret. 7/ - 6 y y ( y) x ( y) x k erefter så bruger jeg punktet P (, -) til at fine konstanten K [ ( ) ] k solve, k Så kan jeg bruge en funne k væri, sætte en in i ligningen, og isolere y y y x x ( y) x solve, y x x y ( x) x x Opgave y y x x Først så ifferentiere jeg en funne ligning y ( x) x x x x Så sætter jeg x-koorinatet fra punktet P in i en ifferentieree ligning, og finer hælningen y ( ) Derefter sætter jeg et, og koorinaternet til P in i formlen for linjens ligning y ( x ) solve, y ( 6) x y( x) ( 6) x Lavet af Morten Kvist Htx. Sie af 7
5 Matematik - September Afleveret. 7/ - 6 Opgave f( x).sin(.6x) For at fine beholerens tværsnits arela, så integrere jeg funktionen i et bestemte interval A f( x) men et er kun arealet for en ene halveel af glasset, er er også en halvel som er uner x-aksen. Derfor skal et funne areal forobles A A A.78 Opgave g( x) x x For at fine u af hvor meget glasset kan inehole, hvis et fyles til kanten, så bruger jeg formlen for at fine volumet hvis en funktion rejes om x-aksen. Den funktion ser såan u: x π f( x) x er sætter jeg så tallene in i V π f( x) Hvis man anvener funktionen f(x), så har glasset følgene volume: V 7.6 cm Hvis man og i steet anvener en tilnærmee funktion g(x), så har glasset følgene volume V π g( x) V 6.66 cm Lavet af Morten Kvist Htx. Sie af 7
6 Matematik - September Afleveret. 7/ - 6 Opgave A Der er givet følgene parameterfremstilling x y z t 7 u af et kan jeg fine et punkt på linjen, og en retningsvektor P r 7 Vi får også opgivet punktet A A 7 Først skal jeg fine vektoren mellem Po og A PoA A P PoA r PoA a jeg kan set at et giver en nul vektore, så må punktet ligge på linjen Lavet af Morten Kvist Htx. Sie 6 af 7
7 Matematik - September Afleveret. 7/ - 6 Opgave A B For at fine afstanen mellem linjen l og punktet B, så bruger jeg følgene formel ist( P, m) r PoP r Først så laver jeg vektoren mellem Po og B PoB B P PoB Derefter finer jeg længen af enne vektor L PoB L PoB.7 Så finer jeg længen af retningsvektoren for linjen l r 7 L r 7 L r 8.66 Derefter iviere jeg e to me hinanen for at fine afstanen L PoB.8 L r Lavet af Morten Kvist Htx. Sie 7 af 7
Matematik Kursusopgave Kran Lastning 01-06-2006. Kran Lastning. Lavet af Morten Kvist & Benjamin Jensen Htx 3.2 Side 1 af 8
Kran Lastning Lavet af Morten Kvist & Benjamin Jensen Htx 3.2 Sie 1 af 8 En kran kørere på et skinnesystem i x-aksens retning me en jævn hastighe på 0,8 meter/sekun. Samtiig svinger kranens ulægger vinklen
Hjemmeopgavesæt 01.02.10
Rami Kaoura Matematik A Dato 01.0.010 Hjemmeopgavesæt 01.0.10 Navn: Rami Kaoura Klasse: 1.4 Fag: Matematik A Vejleer: Jørn Christian Bentsen Skole: Roskile tekniske gymnasium, Htx Dato: 01.0.010 1 Rami
Matematik Aflevering - Æggebæger
Matematik Aflevering - Æggebæger Lavet af Morten Kvist i samarbejde med Benjamin Afleveret d. 17/3-2006 Afleveret til Kristine Htx 3.2 Side 1 af 6 Opgave 1 Delopgave A Først har jeg de to logaritme funktioner,
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,
2x MA skr. årsprøve
MA skr. årsprøve 8.0.08 Prøven uen hjælpemiler Opg. + = 0 ( ) + = 0 I parentesen står et anengraspolynomium. Det har = = 9 + og erme røerne = = og = = Af nulregelen ses at også 0 er en løsning, så
Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne:
Vektorer i 3D. Grundegreer. Koordinater z k P OP i 0 j x y Enhedsvektorerne De ortogonale enhedsvektorer kaldes for: i, j og k Vektor OP Hvis punkt p har koordinaterne: P ( a a a3 ) Så har vektor OP koordinaterne:
Marius tanker. Af Hans Marius Kjærsgaard. - I et vektorfelt
Marius tanker Af Hans Marius Kjærsgaar - I et vektorfelt Inholfortegnelse Introuktion... Problemformulering... Introuktion til funktionsmænger... 3 Grafisk repræsentation og samlingspunkter... 3 Sti-optimering
Grafregner-projekt om differentiation.
Grafregner-projekt om ifferentiation. Motivation: Når nu ifferentieret giver, og e ifferentieret giver e, hvorfor får man så ikke e når man ifferentiere e? Formål: ) At opnå kenskab til, og forståelse
Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler
Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel
Matematik A-niveau Delprøve 1
Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±
Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik
Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.
Matematik A August 2016 Delprøve 1
Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,
Løsning til aflevering - uge 12
Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store
Q (0, 1,0) MF(161): y a( x) y b( x) har løsningen: y e b( x) bx ( ) e dx e e dx e dx e. y e 8e. Delprøve uden hjælpemidler: kl
MatA Juni 7 Kr. Bahr Side af 5 Delprøve uden hjælpemidler: kl. 9.. Opgave ( %) To planer er givet ved ligningerne: : z og : z5. a) Gør rede for, at de to planer er parallelle. De to planer er parallelle,
Matematik A. Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til bedømmelse.
HTX Matematik A Fredag den 18. maj 2012 Kl. 09.00-14.00 GL121 - MAA - HTX 1 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til
Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet
Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2 -----------------------------------------------------DELPRØVE 1------------------------------------------------------- Opgave 1 - Reduktion
Matematikprojekt Belysning
Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang
Formelsamling Matematik på højniveau version 2.0 af Daniel Thaagaard Andreasen & Kristian Jerlsev Aarhus Universitet Institut for Fysik og Astronomi
Formelsamling Matematik på højniveau version 2.0 af Daniel Thaagaar Anreasen & Kristian Jerlsev Aarhus Universitet Institut for Fysik og Astronomi Inhol 1 Foror 2 2 Potensregneregler 3 3 Kvaratsætninger
Grønland. Matematik A. Højere teknisk eksamen
Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres
Matematik A, STX. Vejledende eksamensopgaver
Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,
Elementære funktioner
enote 3 1 enote 3 Elementære funktioner I enne enote vil vi els repetere nogle af e basale egenskaber for et uvalg af e (fra gymnasiet) velkente funktioner f (x) af én reel variabel x, og els introucere
Elementære funktioner
enote 14 1 enote 14 Elementære funktioner I enne enote vil vi els repetere nogle af e basale egenskaber for et uvalg af e (fra gymnasiet) velkente funktioner f (x) af én reel variabel x, og els introucere
Afstande, skæringer og vinkler i rummet
Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Afstande, skæringer og vinkler i rummet
Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet
Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord
Matematik A STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik A, STX 18 maj Matematik A, STX 23 maj Matematik A, STX 15 august
Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A
Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres
VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag.
VEKTOR I RUMMET PROJEKT 1 Fag Matematik A & Programmering C Tema Avedøre-værket Jacob Weng & Jeppe Boese Roskilde Tekniske Gymnasium 3.4 07-10-2010 1 Vektor i rummet INDLEDNING Projektet omhandler et af
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over
Matematik D. Almen voksenuddannelse. Skriftlig prøve. Torsdag den 18. maj 2017 kl AVU172-MAT/D. (4 timer)
Matematik D Almen voksenuannelse Skriftlig prøve (4 timer) AVU172-MAT/D Torsag en 18. maj 2017 kl. 9.00-13.00 Opgaver fra erhvervsuannelserne Matematik niveau D Skriftlig matematik Opgavesættet består
Diskriminantformlen. Frank Nasser. 12. april 2011
Diskriminantformlen Frank Nasser 12. april 2011 c 2008-2011. Dette okument må kun anvenes til unervisning i klasser som aonnerer på MatBog.k. Se yerligere etingelser for rug her. Bemærk: Dette er en arkiveret
Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.
Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver
Matematik B Hjemmeopgaver 1) opgave 107c, side 115 Jeg skal tegne en trekant og estemme vinklerne A og C og siderne a, og c. Jeg har følgende mål: Jeg har ikke nok mål til at kunne regne nogle af vinklerne
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Rumfang af væske i beholder
Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses
Opgavesamling Matematik A HTX
Opgavesamling Matematik A HTX Denne opgavesamling viser eksempler på opgaver, der kan stilles ved den skriftlige prøve i Matematik A på HTX efter reformen 2017 inden for de nye elementer. Dette involverer
Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul
Kort om Anengraspolynomier 11 (1) Karsten Juul Dette häfte ineholer pensum i anengraspolynomier for gymnasiet og hf Inhol 1. Definition Anengraspolynomium... 1. Eksempel Hvilke tal er a, b og c lig?...
HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX
HTX Matematik A Onsdag den 11. maj 2011 Kl. 09.00-14.00 GL111 - MAA - HTX 1 2 Side 1 af 7 sider Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte
Matematik B-niveau STX 7. december 2012 Delprøve 1
Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Løsningsforslag Mat B August 2012
Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave
Matematik A. Højere teknisk eksamen. 5 timers skriftlig prøve. Fredag den 17. december 2010 kl htx103-mat/a
Matematik A Højere teknisk eksamen 5 timers skriftlig prøve htx103-mat/a-17122010 redag den 17. december 2010 kl. 9.00-14.00 Side 1 af 7 sider Matematik A 2010 Prøvens varighed er 5 timer. Alle hjælpemidler
Interferens og gitterformlen
Interferens og gitterformlen Vi skal stuere fænomenet interferens og senere bruge enne vien til at sige noget om hva er sker, når man sener monokromatisk lys, altså lys me én bestemt bølgelænge, igennem
Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010
Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor
Matematik A. Højere teknisk eksamen
Matematik A Højere teknisk eksamen htx112-mat/a-30082011 Tirsdag den 30. august 2011 kl. 9.00-14.00 Side 1 af 7 sider Matematik A 2011 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen
Besvarelser til Calculus Ordinær Eksamen Juni 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver
Besvarelser til Calculus Ordinær Eksamen Juni 2019
Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri
VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner
10/11/2013 Avedøreværket. Matematik og IT. Mikkel G, Erik, Alexander og Mathias ROSKILDE HTX KLASSE 3.4
1/11/213 Avedøreværket Matematik og IT Mikkel G, Erik, Alexander og Mathias ROSKILDE HTX KLASSE 3.4 Indhold Forord... 2 Matematik... 3 a) Bestem koordinaterne til punkt B i grundfladen... 4 b) Opstil en
Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler
Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.
Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006 05-A-2-U Typeopgave 2 Matematik Niveau A Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består af 6 opgaver, der indgår
Mathematicus AB1. # a # b. # a # b. Mike Vandal Auerbach.
Mathematicus AB1 # a # b # a # b Mike Vandal Auerbach www.mathematicus.dk Mathematicus AB1 1. udgave, 2017 Disse noter er skrevet til matematikundervisning på stx og må anvendes til ikke-kommercielle formål.
Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari
Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.
Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo
SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette
Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!
Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da
Funktioner af flere variable
Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,
Opgave 1 ( Toppunktsformlen )
Opgve 1 ( Toppunktsformlen ) Et nengrspolynomium er givet ve f x x 2 b x c. For t fine toppunktet vil vi først ifferentiere f x Derefter løser vi ligningen f ' x x b f ' x 0 x b 0 x b D f ' x x b er en
20 = 2x + 2y. V (x, y) = 5xy. V (x) = 50x 5x 2.
17 Optimering 17.1 Da omkræsen skal være 0cm har vi at 0 = x + y. Rumfanget V for kassen er en funktion der afhænger af både x og y givet ved V (x, y) = 5xy. Isolerer vi y i formlen for omkredsen og indsætter
DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015
DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010-juni 2013 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2011 Htx Sukkertoppen,
Vejledende Matematik A
Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes
Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning
Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001
Delmængder af Rummet
Delmængder af Rummet Frank Villa 15. maj 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Matematik A 5 timers skriftlig prøve
Højere Teknisk Eksamen august 2009 HTX092-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 28. august 2009 kl. 9.00-14.00 Side 1 af 9 sider Matematik A 2009 Prøvens varighed
Løsningsforslag Mat B 10. februar 2012
Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.
UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas
UVB Skoleår: 2013-2014 Institution: Fag og niveau: Lærer(e): Hold: Teknisk Gymnasium Skive Matematik A Claus Vestergaard og Franka Gallas 3. A Titel 1: Rep af 1. og 2. år + Gocart Titel 2: Vektorer i rummet
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
Parameterkurver. Et eksempel på en rapport
x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden
Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium
Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...
Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1
Oversigt [S]. Nøgleord og begreber Retningsafledt Gradientvektor Gradient i flere variable Fortolkning af gradientvektoren Agst, opgave 5 Delvis afledt [S]. Directional derivatives and te... Definition
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj-juni 2015 HTX Vibenhus
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
Reeksamen i Calculus
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 0. februar 019 Dette eksamenssæt
Funktioner. 3. del Karsten Juul
Funktioner 3. del 019 Karsten Juul Funktioner 3. del, 019 Karsten Juul 1/9-019 Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes i undervisningen hvis læreren
Fri søjlelængder for rammekonstruktioner.
Fri søjlelænger for rammekonstruktioner. maj 013, LC I litteratur som eksempelvist Teknisk Ståbi kan man fine e frie søjlelænger for en række stanarstilfæle. For søjler gæler Eulers søjleformel, som kan
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj Matematik Niveau A
Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj 2006 06-0-1 Matematik Niveau A Dette opgavesæt består af 7 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion
Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007. Matematik Niveau A
Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007 07-0-1 Matematik Niveau A Dette opgavesæt består af 8 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Københavns
Vektorregning. Vektorer som lister
10 Vektorregning Vektorer som lister En vektor laves nemmest som en liste på TI-89 Titanium / Voyage 200. I nedenstående skærmbillede ser du, hvordan man definerer vektorer og laver en simpel udregning
Vektorfunktioner Parameterfremstillinger Parameterkurver x-klasserne Gammel Hellerup Gymnasium
Vektorfunktioner Parameterfremstillinger Parameterkurver x-klasserne Gammel Hellerup Gymnasium April 019 ; Michael Szymanski ; [email protected] Indholdsfortegnelse VEKTORFUNKTIONER... 1. Skæringer med koordinatakserne...
