At score mål på hjørnespark



Relaterede dokumenter
Fysikundervisningens udvikling i gymnasiet

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Arealet af en sfærisk trekant m.m.

Elementær Matematik. Lineære funktioner og Andengradspolynomiet

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Introduktion I dette forløb vil vi dels få et redskab til at sammenligne, hvor hurtigt givne funktioner vokser (eller aftager), og dels

b > 0 og x > 0, vil vi kalde en potensfunktion Potensfunktioner

Kort om. Potenssammenhænge Karsten Juul

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen

Lektion 7s Funktioner - supplerende eksempler

, idet der jo af ovenstående udregninger (hvor vi har regnet ensbetydende, dvs vi kan slutte begge veje) følger at > K.

Gravitationsfeltet. r i

1 1 t ( ) x k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = x + k

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser

Overgangsbetingelser for D- og E-felt

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion)

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Impulsbevarelse ved stød

HTX Holstebro Jacob Østergaard 20. oktober A Fysik A Accelererede Roterende Legemer 19:03:00

Trivselsundersøgelse 2010

BEVISER TIL SÆTNINGER I BOGEN

2. ordens differentialligninger. Svingninger.

Annuiteter og indekstal

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016

Tredimensional grafik

Vektorer i planen. Fem opgavesæt. for gymnasiets standardforsøg i matematik Karsten Juul

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Matematik B-A. Trigonometri og Geometri. Niels Junge

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

g-påvirkning i rutsjebane

Elektrodynamik. Christian Andersen. 15. juni Indhold 1. 1 Indledning 3

Trigonometri. Matematik A niveau

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,

PÆDAGOGISK KVALITETSEVALUERING

Projekt 7.8 To ligninger med to ubekendte

Roskilde Kommune Teknik og Miljø Rådhusbuen Roskilde Jyllinge, den 28. juli 2014

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Appendiks B: Korrosion og restlevetid for trådbindere

Cykelfysik. Om udveksling og kraftoverførsel

LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER

Trekantsberegning. for B- og A- niveau i stx og hf udgave Karsten Juul

Rumgeometri Side 1 af 20

Erik Vestergaard Erik Vestergaard, 2009.

Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: = 14 m. areal: 5 5 = 25 cm 2 omkreds: = 20 cm. areal: 8 5 = 40 dm 2

Annuiteter og indekstal

Formelsamling Matematik C Indhold

Plasticitetsteori for jord som Coulomb materiale

Livstidssundhedsomkostninger for rygere og aldrig-rygere. Årlige omkostninger ved passiv rygning

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Projekt 0.5 Euklids algoritme og primiske tal

Forløb om annuitetslån

De dynamiske stjerner

UGESEDDEL Dette gøres nedenfor: > a LC

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser.

Matematik på Åbent VUC

Formelsamling Matematik C Indhold

To legeme problemet og Keplers love

ELEVER underviser elever En motiverende metode Drejebog med eksempler

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

MOGENS ODDERSHEDE LARSEN MATEMATIK

11: Det skjulte univers

3. Vilkårlige trekanter

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Elektrostatisk energi

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet

Implicit differentiation Med eksempler

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

Opsparing og afvikling af gæld

Eksamensspørgsmål: Potens-funktioner

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER

Lærereksemplar. Kun til lærerbrug

Matematisk formelsamling. Hf C-niveau

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

Matematisk formelsamling. stx C-niveau

Eksemplificering af DEA-metodens vægtberegning

Simple udtryk og ligninger

Matematikkens sprog INTRO

Monteringsvejledning

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

Misspecifikationer i modal-split modeller

Potens regression med TI-Nspire

ANALYSEOPGAVE Feelgood Bakery

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007

MSLT: Undersøgelse af søvnlatens

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0

Regneregler for brøker og potenser

ØLANDSVEJ 4, HORNE, 9850 HIRTSHALS. Hesteejendom med nyere hestestald og 20 ha jord!

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet

Matematisk modellering og numeriske metoder. Lektion 17

2 Erik Vestergaard

Krydsprodukt. En introduktion Karsten Juul

Transkript:

At scoe ål på hjønespk Ole Witt Hnsen, lekto eeitus undevisningens udvikling i gnsiet Indtil 988 hvilede fsikundevisningen i gnsiet på det teoetiske, so n søgte t bekæfte genne deonsttionsfosøg elle fsikøvelse, de blev nlseet og dokuenteet i fsikppote. I undevisningen bejdede n sig begebsæssigt og konologisk fe f kinetikken ed folene fo jævn og konstnt cceleeet bevægelse ove eknikken ed Netons love. Meget ieligt, d eknikken e foudsætningen fo en gundlæggende foståelse fo esten f fsikken. Denne begebsæssige konologi e opetholdtholdt i stnddvæket Univesit Phsics f Peson, i tske læebøge og også i de fleste læebøge f fø 988 blndt ndet ine egne. En centl del f g undevisningen v t befi elevene fo Aistoteleske hvedgsfoestillinge og t foulee Glileis fldlove, so den føste ekendelsesæssige lndvinding, de nltisk beskive en gundlæggende sipel lovæssighed i fsikken: Det fie fld. Isæ efte 5 e det teoetiske spekt stot set opgivet (fodi elevene helle ikke læe tetik længee?) og lovæssighedene i fsikken blive i stedet esulttet f coputefits. D kvntittiv åleusikkehed fo længst e fosvundet f fsikundevisningen, søge elevene ofte t finde nltiske foklinge på led i coputefits, so ikke bude væe de, desugtet, t luftodstnd fo fit fld f ssive legee fuldstændig dukne i åleusikkehed. D elevenes eleentæe tetiske fædighede i gnsiet i dg helt e estttet f bug f tetik IT, e det jo også osonst t fosøge t udlede folene fo konstnt cceleeet bevægelse, udtkkene fo potentiel og kinetisk enegi, bejdssætningen og enegibevelse i tngdefeltet. Jeg snes det e et pobletisk kultuelt og intellektuelt tilbgeskidt, t det teoetiske spekt f fsik og tetik ed udledning og bevise stot set e fosvundet f undevisningen, hvo det tidligee (og isæ fo pigene) hvde en eleentæ intellektuel ppel fo en del f elevene. Alt dette e jo en sg blot, d undevisningen o bevægelse i tngdefeltet foegå ved t optge fldende legee ed højhstighedske, og oveføe dt til et coputepog, so deefte lve fits og tegne gfe. Men nu til sgen. Tidligee, nå jeg udledte folene fo det skå kst (ed vektoegning ntuligvis) og undestegede, t nå n føst h sluppet et legee, så e bevægelsen udelukkende stet f tngdekften i lodet etning, så e det ikke 8 LMFK-bldet /4

så sjældent, t eleve h spugt o, hvodn n så f kn få en fodbold til t dkke elle deje. Svet e ntuligvis, t n ved udledningen f det skå kst, se bot f luftodstnd, en det fokle jo ikke, hvodn bolden kn deje. Foklingen å søges i, t bolden skue, ltså otee o en lodet kse. Opvkte eleve vil så gene hve en fokling på, hvofo det kn give en sidevæts kft, og undvigenøven h d væet, t det e lt fo kopliceet til t fokle på gnsilt niveu (hvilket e sndt). O jeg selv fostå det?...øh v det ikke klokken, de ingede? At n fktisk kn scoe ål på hjønespk, kn ses f flee videoe på YouTube, hvis n i Google søge på: Mål på hjønespk. Mn kn godt give en kvlittiv fokling, so jeg engng h set i bldet Ingeniøen, en en egentlig beegning f boldens bne ud f gundliggende lovæssighede, h jeg ldig set. Jeg kn huske, t en elev engng foeslog det, so Sto Opgve i fsik, en dengng opgv jeg det, so lt fo kopliceet. Pensionisttilvæelsen tillde iidletid t tge den slgs poblee op, selv o det e geoetisk (tetisk) kopliceet. Men det vise sig fktisk uligt t udlede nogle nltiske udtk, so beskive bevægelsen, hvo boldens hstighed og ottion e de eneste pete n kn vælge fit. Det esultee i koblede. odens diffeentilligninge, so heefte kn løses nueisk og vises i en D pojektion. Geoetisk nlse f poblestillingen Figuen på næste side vise en fodbold, de bevæge sig i etning, svende til en luftodstnd, de koe ind i odst etning. Et punkt på bolden e fstlgt ved polæe koodinte: (, θ, ). Geoetien kn væe lidt svæ t oveskue på den ulige tegning, så de e lgt et snit pllelt ed plnen, hvo vindens etning v e opløst efte en tngentil og en dil etning. betegne vindens dile koposnt og v t betegne vindens tngentile koposnt. Af figuen til høje ses, t v v sin v v cos t Idet bolden otee o z ksen, vil et punkt (, θ, ) hve en hstighed i etningen, so e boldens edføingshstighed, plus koposnten f boldens ottionshstighed. Fo ften i den jævne cikelbevægelse gælde v ω og ften i cikelbevægelsen, svende til ziutvinklen θ e defo v θ ω sinθ og koposnten vil væe v θ ω sinθ cos. LMFK-bldet /4 9

z ω v θ z v t v v t Hstigheden f et punkt i etningen e defo v + ω sin θ cos ϕ, og den dile og tngentile koposnt f denne hstighed blive defo. v ( v + ω sinθ cos ϕ) sinϕ vt ( v + ω sinθ cos ϕ) cosϕ Vi e inteesseet i kften, de vike odst bevægelsesetningen ( etningen), so vil bese bolden og kften, de vike i etningen, vinkelet på bevægelsesetningen. Vi skl defo udegne koposntene i og etning f dilhstigheden. Rdilhstighedene f boldens bevægelse vil ænde ft og etning f bolden, ens tngentilhstigheden eventuelt vil ænde ottionshstigheden. Iidletid vil boldens hstighed bese på den ene side og give edløb på den nden, så vi se helt bot f tngentilhstigheden. Ud f tegningen øvest til høje, kn n fo dilhstigheden se, t: v v cosϕ v v sinϕ så v ( v + ω sinθ cos ϕ) sinϕ cosϕ v ( v + ω sinθ cos ϕ) sinϕ sinϕ So udtk fo luftodstnden, de vike odst bevægelsesetningen, vil vi nvende udtkket: F ½c ρ Av γ v Kæftene, de vike i etningen, svende til vinklene og, e odst ettede, hvd ngå leddet v, so det fegå f udtkket fo, en d vi kvdee hstighedene, blive vi nødt til t udegne F so: F F () F ( ) Den kft F, de vike i punktet (, θ, ) skl så gnges ed eleleentet da sinθ dθ dϕ og integees ove hele hlvkuglen, θ [, ] og ϕ [,½ ]. D vi h tukket elet ud f folen, skive vi den nu: df ½c ρv da γ v da df df ) df ( ϕ) ( ϕ) df ( ϕ) (( sinθ cos ϕ ) sin ϕ cos γ + ω sinθ cos ϕ) sin ϕ cos ϕ ϕ sin θ sin dθ θd ϕ dθ dϕ ( v + ω sin θ θcos( cos( ϕ )) ϕ )) sin sin ϕ cos ϕ cos ϕ ϕsin θ sin dθ θ d ϕd ) θ dϕ) De to udtk e ens, botset f et fotegnsskifte i det ndet led i de toleddede støelse, idet cos( ϕ) cosϕ. Leddene vil defo gå ud od hinnden, botset f gnge det dobbelte podukt f den toleddede støelse, n finde efte en inde eduktion: df ( ϕ) df ( ϕ) γ 4v ω sin θ cos ϕ sin ϕ dθ dϕ I det følgende få vi bug fo t kunne udegne integle f tpen: sin n cos d ρ e luftens sseflde, c e fofktoen, A e tvæsnitselet f legeet, og v e hstigheden i bevægelsesetningen. Hvis n e lige og e ulige (elle ovendt), så kn integlene udegnes eltivt net ved nvendelse f folene: cos sin, elle, hvd de e det se, sin cos og en sipel substitution. Hvis både n og e lige, kn integlet udegnes ved (successiv) nvendelse f ovennævnte fole, 4 LMFK-bldet /4

st folene: cos cos cos + og sin. Endelig hvis n og e ulige, kn n nvende folen sin sin cos. F γ 4v ω sin θ cos ϕ sin ϕ dθ dϕ cos θ θ sin θdθ d θ sin θ 4 cos ϕ sin ϕ dϕ ( sin ϕ) cosϕ sin ϕ dϕ 4 (sin sin ϕ) sin sin sin d ϕ ϕ 5 ϕ 5 Det endelige udtk fo F blive heefte: F 4 cρ vω 5 5 5 Beæk, t de (ntuligvis) ikke e nogen kft på tvæs f bevægelsesetningen, hvis ω. Udtkket fo hstigheden i etning e givet ovenfo: v ( v + ω sinθ cos ϕ) sin ϕ Dette udtk skl integees ove hele hlvkuglen: F γ v sinθ dθ dϕ γ (( v + ω sinθ cos ϕ) sin ϕ) sinθ dθ dϕ Bevægelsesligningene Heefte kn vi opskive udtkket fo F. F cρ ( v + ω ) 4 Vi h ntget, t bolden bevæge sig i etningen. Dette e ntuligvis en tilnæelse, hvis n skde et hjønespk lngs bglinien ( etningen). Den koekte foel fo luftodstnden e F ½c Av v ρ ½c v ρ Av v Selv o hstigheden ikke e gnske vinkelet på ottionsksen, vil vi beholde udtkket fo F lt ndet ville væe (tetik) hlsløs gening, og foodentlig kun ænde inilt på esulttene. Acceletionen bestees ved t dividee ed boldens sse, udskevet ved hjælp f de bsisvektoe i, j, k : F F Fz F + z + + 4 i c v ρ ( + ω 5 4 j ) g k c 4 i c v v ρ ω ρ ( + ω 5 4 j ) g k Hvis vi skive cceletionen ud i koponente efte, og z kse, finde n defo: c vv c 4 ρ ρ v ω 4 5 c vv ρ ( + ω ) 4 c ρ 4 vv g z z Leddet, de koe ed cos vil fosvinde ved integtionen, idet cos e ulige i intevllet f til, og de øvige funktione e lige. Nå integnden udegnes finde n: F 4 4 F γ ( v sin ϕ sinθ + ω sin ϕ sin θ cos ϕ) dθ dϕ På næsten se åde so ovenfo, finde n fo de 4 integle: sin 4 ϕ d ϕ, sin 4 θ θ 8 d, sinθd θ 4 og sin ϕ cos ϕ d ϕ, 6 hvilket n uligvis også kn finde ved bug f CAS. LMFK-bldet /4 4

Dette e koblede. odens diffeentilligtninge, og selv o det skulle lkkes t finde en nltisk løsning, e det svæt t finde nvendelse fo den. Ligninge e løst nueisk, og plottet i en ægte D pojektion. Udegne n konstntene ed ρ,9 kg/, c,4, dius f bolden, og ssen f bolden,4 kg, få n følgende nueiske ligninge:, 5 vv 5, 4 vω z 4 5 ω, 5 vv +, 68, 5 vv z 9, 8 Gfisk løsning f bevægelsesligningene Vi h st fodboldbnens bedde til 6. Opgven, t bestee udgngsften, vinklene θ, fo etningen og det ette sku f bolden fo, t den ende i ål, e otent lige så vnskelig, so t udføe det i pksis, en nogle ielige vædie kunne væe: v,5 /s, ω,4 s, (oløbstid T, s), θ 6 og 8. Bolden vil gnske igtigt deje ind od ålet og lnde de, og på D figuene, se det ud so o den koe i ål, en det e et bedg på gund f pojektionen. Se n iidletid på gfene fo (t), (t), z(t), kn n se, t den fktisk ikke nå ind i ålet. Med de vlgte vædie f vinkle og hstighed skl n fktisk op på uelistisk høje ottionshstighede, fø bolden gå ind i ålet. O det e uligt i den nuvæende beskivelse, t få bolden i ål ed elistiske vædie f vinkle, hstighed og ottion, skl jeg ikke kunne sige, d n uligvis også skl justee det eodniske. Foålet h egentlig blot væet, t give en teoetisk og kvntittiv fokling på, t n kn scoe ål på hjønespk. Af de te gfe nedenfo, hvo D fbildningen ses f to foskellige pldse på tilskueækkene, kn ses, t de blive scoet på hjønespk. På hve D gf e vist to kuve, hvof den ene e e boldens bne i ål, den nden e bnekuven, nå n se bot f luftodstnden. Beæk t fstnde e stækt fotegnede i D pojektion. Den sidste gf e ((t), (t), z(t)) ed og uden luftodstnd. Beegningene og gfene e lvet ed et ee end å gelt DOS pog skevet i Tubo 7.. Efte Windos 98, kn n ikke længee tge et skædup f DOS gfikken, og poget kn ovehovedet ikke køe i Windos 7 elle 8. De viste billede e defo kopi f skædup f en Windos 98 skine. Fonøjelsen ved den klssiske fsik e jo, t det binge én i stnd til nltisk t fostå og beskive voes teielle oveden, so den kn igttges. Min pointe e lidt den, t gå ud f gundliggende lovæssighede, fo deefte t behndle esulttene ed IT, i stedet fo det ovendte, t udlede lovæssighede ud f IT gfe. 4 LMFK-bldet /4