Some like it HOT: Højere Ordens Tænkning med CAS

Størrelse: px
Starte visningen fra side:

Download "Some like it HOT: Højere Ordens Tænkning med CAS"

Transkript

1 Some like it HOT: Højere Ordens Tænkning med CAS Bjørn Felsager, Haslev Gymnasium & HF, 2001 I år er det første år, hvor CAS-forsøget er et standardforsøg og alle studentereksamensopgaverne derfor foreligger i to varianter: Den almindelige variant, der skal løses med en grafregner, og så CAS-varianten, der skal løses med et CAS-værktøj, dvs. et computer-algebra-system. På Haslev Gymnasium og HF har vi netop i år skiftet til CAS-forsøget for de nye matematikerklasser. Vi var derfor selvfølgelig spændt på at se variationerne fra de almindelige sæt til CAS-sættene, om end det jo først er fra næste sommereksamen at vores elever selv kommer i ilden. Samtidigt indeholder årets sæt en af de smukke eksamensopgaver, der kan danne afsæt for et symbolsk matematikprojekt på samme måde som mangen en fysikopgave i årenes løb har dannet afsæt for et eksperimentelt fysikprojekt. 1

2 Det er endda ikke engang en egentlig CAS-opgave, idet den er formuleret, så man kan skyde sig igennem med en grafregner. Det drejer sig om den valgfrie opgave 7a fra sættet til det 3-årige forløb til A-niveau, hvor man skal maksimere arealet af det indskrevne rektangel, henholdsvis minimere arealet af den omskrevne trekant, til grafen for en cosinusfunktion på det første stykke i første kvadrant. Opgaven indeholder imidlertid en smuk overraskelse, idet det viser sig, at de to arealer har et fælles ekstremumssted og så kan man jo ikke lade være med at undre sig: Hvorfor nu det? Det gælder om at holde hovedet koldt Lad os starte med at løse opgaven sådan omtrent som man ville gøre det med en grafregner. De ligninger, der skal løses undervejs, kan alligevel ikke løses eksakt. Hvis vi kigger på grafpunktet (t, cos(t )), så er arealet A(t ) for det indskrevne rektangel åbenbart givet ved A(t ) = t cos(t). Vi kan nemt illustrere grafen for cosinusfunktionen med et indskrevet rektangel (fx for t-værdien π/3): Tilsvarende kan vi nemt tegne grafen for arealfunktionen A(x) = x cos(x) og finde maksimumsstedet grafisk. Det maksimale areal for det indskrevne rektangel findes altså i x og størrelsen af det maksimale areal er givet ved A max (alt sammen med den usikkerhed, der nu er forbundet med de grafiske rutiner): Men nu har vi jo en symbolsk lommeregner til rådighed, så det er heller ikke svært at løse opgaven symbolsk ved at differentiere arealfunktionen og så bestemme nulpunktet for den første afledede numerisk (da den fremkomne ligning ikke kan løses symbolsk). Fortegnet for den anden afledede viser netop, at der er tale om et lokalt maksimum (og grafen viser så, at der rent faktisk er tale om et globalt maksimum i intervallet [0; π/2]): 2

3 Vi går så over til at se nærmere på den omskrevne trekant. Hertil får vi brug for tangentligningen for tangenten med røringspunkt i grafpunktet (t,cos(t)), så vi kan beregne skæringspunkterne med akserne. Men her kan vi jo benytte taylorkommandoen: Arealfunktionen for den omskrevne trekant er altså givet ved bt () = ( cos( t) + t sin( t) ) 2 2 sin( t) Det er noget simplere end det udtryk, der foreslås i opgaveteksten, men det er nu ikke svært at vise, at de er ækvivalente. Som før kan vi illustrere grafen for cosinusfunktionen med et indskrevet rektangel (igen for t = π/3): Tilsvarende kan vi nemt tegne grafen for arealfunktionen B(x) og finde minimumsstedet grafisk: 3

4 Og her kommer så overraskelsen: Det minimale areal for den omskrevne trekant findes i x (og størrelsen af det minimale areal er givet ved B min ). Det ligner unægtelig det tidligere fundne maksimumssted for A(t ) så meget, at de i virkeligheden godt kunne være ens! Det kan vi bare ikke eftervise ved en numerisk rutine, for uanset hvor mange decimaler de to steder synes at have fælles kan de næste decimaler skille dem ad. Det giver umiddelbart et problem: For løsningen på ekstremumsproblemet er ikke eksakt, da vi netop ender med en ligning, cos(t ) = t sin(t), der ikke kan løses symbolsk. Her gælder det derfor om at holde hovedet koldt: Selv om vi ikke kan løse ligningen eksakt kan vi rent faktisk godt checke ved en symbolsk udregning, om de to problemer fører til den samme ligning. Vi differentierer derfor B(t ) og ser, hvad der sker: Jo, der dukker præcis den samme faktor, cos(t ) t sin(t), op i den afledede for B(t ). Og de andre faktorer har konstant fortegn i intervallet ]0; π/2[. Det er godt nok ikke noget, som maskinen kan overskue, så den advarer om, at der principielt kan være flere løsninger. De skulle i så fald komme fra den anden ligning, cos(t ) = t sin(t). Men vi ved bedre! Der skete altså faktisk et mirakel: Maksimumsstedet og minimumsstedet falder sammen. Spørgsmålet er så om det er et tilfælde, som skyldes særlige omstændigheder ved cosinusfunktionen eller om det er et alment fænomen, som i en vis forstand vil indtræffe for alle funktioner, hvor problemstillingen giver mening. Det er her muligheden opstår for at udfordre eleverne med et projekt: Undersøg sammenhængen mellem det største indskrevne areal og det mindste omskrevne areal for grafen til en differentiabel funktion. Tampen brænder Vi er vant til de kognitive problemer elever har med at forstå funktionsbegrebet: Overgangen fra at beregne en konkret værdi for et areal til at betragte sammenhængen mellem arealet og grafpunktets x-koordinat som et konkret objekt, en arealfunktion man kan manipulere, er et stort kognitivt skridt. 4

5 Men til sidst lærer de at mestre håndteringen af sådanne konkrete funktioner, på samme måde som de lærte at håndtere først tal, og dernæst variable. Men ovenpå dette trin findes endnu et lag, hvor man i stedet for at arbejde med konkrete funktioner, fx cos(x), betragter vilkårlige abstrakte funktioner, dvs. f (x), g(x) osv. som objekter, man kan manipulere. Computeralgebrasystemer har det ligesom eleverne bedst med konkrete funktioner: Dem kan de uden videre differentiere symbolsk, og de er også ret gode til at integrere dem symbolsk henholdsvis til at udregne konkrete grænseværdier symbolsk. Men når det kommer til at håndtere abstrakte funktioner skiller vandene. Det går så nogenlunde med differentiation, men så snart vi kommer til fx de symbolske grænseovergange er der stor forskel, på hvad et lille system som Derive henholdsvis et stort system som fx Maple kan præstere. Men her vil vi kun kigge på differentiation, og der kan Derive godt følge med. Vi kan altså også bruge CAS-systemerne til at assistere eleverne med at manipulere med abstrakte funktioner og dermed hjælpe dem med at udvikle Højere Ordens Tænkning om funktioner. Det er her, tampen brænder! Til det formål har vi brug for et projekt, hvor eleverne kan gå på udforskning i en matematisk problemstilling med abstrakte funktioner, hvor de selv kan prøve at afklare, hvad der gælder i den pågældende problemstilling. Det er her årets opgave kommer som sendt fra himlen. Lad os prøve at skitsere, hvad der kunne komme ud af et sådant projekt. Vi skal altså have løftet problemstillingen med de indskrevne og omskrevne figurer til grafen for en funktion, der blot i grove træk opfører sig som en cosinus funktion. Som eksempler på sådanne funktioner kan vi foruden cosinusfunktionerne π f( x) = y0 cos x x0 2 se på parabelfunktioner af typen 2 x gx ( ) = y0 1 2 x0 og ellipsefunktioner af typen x hx ( ) = y x0 alle med x 0 og y 0 som værende positive parametre, der angiver skæringerne med de to akser. En simpel aktivitet kan bestå i at undersøge problemstillingen for andre funktioner end cosinusfunktionen fx de to sidstnævnte. Hvis vi giver parametrene konkrete værdier (som i eksamensopgaven) bør alle kunne være med i dette første trin. Men mange vil også kunne håndtere variable parametre i funktionerne (hvilket udelukker grafisk analyse) en kompetence, der jo netop dyrkes meget i eksamenskommissionens CAS-opgaver., 5

6 For elever med sans for højere ordens tænkning er det imidlertid de abstrakte funktioner, der blot ligner cosinusfunktionen, der skal undersøges. Vi må så først præcisere, hvad det vil sige at en abstrakt funktion opfører sig på samme måde som cosinus-funktionen. I et projekt skal det selvfølgelig være et åbent spørgsmål, men lad os give et bud og tænke os, at vi er kommet frem til de følgende krav for funktionen f : 1) Funktionen f er defineret på et interval af formen [0; x 0 ] som afbildes aftagende på et interval af formen [0; y 0 ], hvor x 0 og y 0 er positive reelle tal, dvs. der gælder specielt f (0) = y 0 og f (x 0 ) = 0. 2) Funktionen f er vilkårligt ofte differentiabel i det indre af definitionsintervallet ]0; x 0 [ hvor såvel f ' som f '' er negative. Det første krav at f ' er negativ i det indre af intervallet - er selvfølgelig i overensstemmelse med at f er aftagende på intervallet, mens det andet krav tilsvarende udtrykker at grafen er nedad hul i intervallet. I forbifarten bemærker vi, at de tre funktionseksempler også viser, at vi intet kan sige om fortegnet for den tredje afledede, idet den tredje afledede er positiv for cosinusfunktionen, forsvinder identisk for parabelfunktionen, mens den er negativ for ellipsefunktionen. Specielt den tredje afledede af ellipsefunktionen er rimeligt krydret. Det er ikke en differentiation jeg sådan lige klarer på bagsiden af en serviet til morgenbordet. Men jeg er nok også ved at være lidt gammel og synes ikke det er så sjovt at differentiere løs som i mine unge dage! 6

7 Cas i ilden Så er vi klar til at undersøge den generelle opførsel af arealet for det indskrevne rektangel henholdsvis arealet for den omskrevne trekant. Det indskrevne rektangel. Det har selvfølgelig arealet A(t) = t f (t). Vi finder nu de to første afledede: Da A''(t ) = f ''(t ) t + 2f '(t ) ses det, at begge leddene er negative, dvs. den anden afledede er negativ, så grafen for A er nedad hul. Vi ser derfor, at arealfunktionen for det indskrevne rektangel opfører sig ligesom i tilfældet med cosinusfunktion. Specielt er der præcis ét maksimumssted som løser ligningen A' (t ) = 0 dvs. f '(t ) t + f (t ) = 0 Denne ligning kan i almindelighed ikke løses symbolsk, men det afgørende for os er jo også blot at vide, at den har en entydig løsning i det indre af intervallet ]0; x 0 [. Den omskrevne trekant. Den har arealet ½h g, og vi skal blot finde et passende udtryk for højden h og grundlinjen g. Vi opskriver derfor tangentligningen. Det kan ikke gøres med taylorkommandoen, da den ikke virker på abstrakte funktioner. Men vi kan sagtens indskrive tangentligningen direkte, fx på den symmetriske form: y f (t) = f '(t) (x t): 7

8 Læg mærke til at maskinen selv faktoriserer udtrykket for B(t ), og at det direkte af udtrykket fremgår, at B(t ) er positiv i det indre af intervallet, idet vi jo har forudsat, at f '(t ) er negativ. Derimod behøver trekantarealet ikke være defineret i det venstre endepunkt, idet grafen for f godt kan have en vandret tangent i dette punkt. Det er netop tilfældet for vores tre eksempelfunktioner, hvorfor B(t ) får en lodret asymptote på dette sted. Spørgsmålet er så hvordan trekantarealet opfører sig som funktion. Det kan vi nok nemmest finde ud af ved at beregne den første afledede. For trænede symbolekvilibrister uddannet i fordums tid på Universitetet kan det selvfølgelig sagtens gøres i hånden, men for vore elever er det et rimeligt snasket udtryk, så her er det bestemt rart at få lidt teknisk assistance: Læg igen mærke til, hvor pænt udtrykket faktoriseres og ikke mindst at den første af faktorerne netop er den samme som vi fandt før, da vi differentierede arealfunktionen A(t ) for det indskrevne rektangel. Det viser netop at alle nulpunkterne for A'(t ) også dukker op som nulpunkter for B'(t ). Men faktisk kan vi sige noget mere. De øvrige faktorer har nemlig konstant fortegn, idet der jo åbenlyst gælder at (f '(t ) t f (t )) er negativ i det indre af intervallet ]0; x 0 [. Der er derfor ikke andre nulpunkter end dem der nedarves fra A'(t )! Og da B '(t ) samlet har det modsatte fortegn af A'(t ) betyder det, at B netop har et minimumssted hvor A har et maksimumssted. Der må endda være tale om et globalt minimum, da det er det eneste nulpunkt. Dermed har vi vist, hvad vi lovede, nemlig at sammenfaldet mellem maksimumsstedet for det indskrevne rektangel og minimumsstedet for den omskrevne trekant ikke er noget tilfælde: Det er en hel generel egenskab for alle funktioner, der opfører sig tilstrækkeligt pænt i første kvadrant. Med CAS ved hånden kan vi endda checke fortegnet for den anden afledede af B(t) direkte: 8

9 Den anden afledede består altså af to led. Det første af leddene indeholder faktoren den tredje afledede af f, dvs. f '''. Men fortegnet for f ''' kan vi intet sige om i almindelighed. Heldigvis indeholder dette led også faktoren (f '(t ) t + f (t )) som er lig med nul i ekstremumsstedet. Vi skal altså kun kigge på det andet led i ekstremumsstedet. Det er til gengæld et pænt led, idet alle faktorerne har konstant fortegn i det indre af intervallet ]0; x 0 [. En samlet vurdering af fortegnet viser faktisk, at det nødvendigvis er positivt. Selv om grafen for B(t) i almindelighed har mulighed for at slingre lidt (dvs. den behøver ikke være opad hul), så er den altid opad hul i ekstremumsstedet, der derfor nødvendigvis er et minimumssted. På dette sted i projektet kan vi så begynde at slække på kravene for f: Kan vi fx opgive kravet om at grafen for f er nedad hul? Men nu bør vi ikke røbe mere, for der er stadigvæk lidt godter tilbage i undersøgelsen. I stedet håber vi, at vi med dette eksempel har sandsynliggjort, at CAS-systemer kan medvirke til en større bredde i de projekter, små som store, som eleverne kan kaste sig over i løbet af deres gymnasietid projekter, som måske endda kan kulminere med en tredjeårsopgave, som ikke bare er et rent biblioteksspeciale, hvor eleverne kan slå svarene op i diverse bøger uden selv at gå på opdagelse. 9

Første del: Eksempel på en eksamensopgave løst med GeoMeter

Første del: Eksempel på en eksamensopgave løst med GeoMeter Optimeringsproblemer med GeoMeter Bjørn Felsager, Haslev Gymnasium & HF, 2003 Den følgende artikel er skrevet for at illustrere hvor langt man egentlig kan komme med GeoMeter som værktøj i undervisningen,

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4 Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

Facitliste til eksamensopgaver hf-tilvalgsfag 1999-2005

Facitliste til eksamensopgaver hf-tilvalgsfag 1999-2005 Facitliste til eksamensopgaver hf-tilvalgsfag 1999-005 99-8-1 C = (,-) radius = 7 f (x) = 6x + 4x 5 + y = x + : dist(t, ) = 1,0607 A(1,) og B(5,-1) M AB = (,1) m: y = x 1 x Redegørelse! f(x) = 70,74 x

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Opgaver med hjælp Funktioner 2 - med Geogebra

Opgaver med hjælp Funktioner 2 - med Geogebra Opgaver med hjælp Funktioner 2 - med Geogebra Nulpunkter, monotoniforhold og ekstrema Formålet med denne note er at tegne os frem til nulpunkter, monotoniforhold og ekstrema for en funktion ved hjælp af

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Funktionsterminologi

Funktionsterminologi Funktionsterminologi Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Grafregnerkravet på hf matematik tilvalg

Grafregnerkravet på hf matematik tilvalg Grafregnerkravet på hf matematik tilvalg Dette dokument er en sammenskrivning af uddrag af følgende skrifter: Undervisningsvejledning nr. 21 for matematik i HF (september 1995); findes på adressen: http://us.uvm.dk/gymnasie/almen/vejledninger/undervishf/hfvej21.htm;

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Grafværktøjer til GeoMeter Grafværktøjer Hjælp Grafværktøjer.gsp Grafværktøjer

Grafværktøjer til GeoMeter Grafværktøjer Hjælp Grafværktøjer.gsp Grafværktøjer Grafværktøjer til GeoMeter Bjørn Felsager, Haslev Gymnasium & HF, 2003 Når man installerer GeoMeter på sin maskine følger der en lang række specialværktøjer med. Men det er også muligt at skræddersy sine

Læs mere

Grænseværdier og Kontinuitet

Grænseværdier og Kontinuitet Grænseværdier og Kontinuitet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Harmoniske Svingninger

Harmoniske Svingninger Harmoniske Svingninger Frank Villa 16. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

Differentialregning 2

Differentialregning 2 Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Betydningen af ordet differentialkvotient...2. Sekant...2

Betydningen af ordet differentialkvotient...2. Sekant...2 PeterSørensen.dk Differentiation Indold Betydningen af ordet differentialkvotient... Sekant... Differentiable funktioner...3 f (x) er grafens ældning i punktet med første-koordinaten x....3 Ikke alle grafpunkter

Læs mere

MatematikB 2011 Supplerende stof Trigonometri og trekanter

MatematikB 2011 Supplerende stof Trigonometri og trekanter Trigonometriske funktioner Dette kapitel handler om de såkaldte trigonometriske funktioner, hvilket vil sige funktionsudtryk med sin, cos og tan Ikke kernestof på B Funktionerne vil kun forekomme i forbindelse

Læs mere

Kapitel 3: Modeller i Derive

Kapitel 3: Modeller i Derive 3. Modeller i Derive 3.1 Indledende knæbøjninger For at regne på modeller i Derive skal vi bruge FIT-funktionen som tilpasser et datasæt til et vilkårligt udtryk med lineære parametre ved hjælp af mindste

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5 Lineære funktioner Indhold Definition:... Hældningskoefficient... 3 Begndelsesværdi... 3 Formler... 4 Om E-opgaver a... 5 Definition: En lineær funktion er en funktion, hvor grafen er lineær. Dvs. grafen

Læs mere

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Baggrund: I de senere år har en del gymnasieskoler eksperimenteret med HOT-programmet i matematik og fysik, hvor HOT står for Higher

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i 1 af 41 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1 Voksende Voksende Konstant Aftagende ØVELSE 2 f aftagende i f aftagende i f aftagende i f aftagende i ØVELSE 3 Hældningen

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Træningsopgaver 1 Indhold Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Ligninger Opgave L0) Opgave L1) Opgave L2) a) 2x 5 5x 7 b) 3x 7 3x 11 c) 3 (2x 3) 2( x 1) d) En funktion

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Teorien. solkompasset

Teorien. solkompasset Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX Anders Jørgensen & Mark Kddafi 2016 matematikhfsvar.page.tl 8. august 2016 15. august 2016 Anders Jørgensen & Mark Kddafi MATEMATIK

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: 333247 2015 Projekt Matematik B-niveau Differentialregning Anders Jørgensen, Kirstine Irming, Mark Kddafi, Zehra Köse og Tobias Winberg Indledning I dette

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Matematik og magi. eller Næste stop Las Vegas. 14 Anvendt matematik. Rasmus Sylvester Bryder

Matematik og magi. eller Næste stop Las Vegas. 14 Anvendt matematik. Rasmus Sylvester Bryder 14 Anvendt matematik Matematik og magi eller Næste stop Las Vegas Rasmus Sylvester Bryder Da jeg var mindre, morede jeg mig ofte når min halvfætter Casper viste mig korttricks. Det trick han viste mig

Læs mere

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Opgaverne er udregnet i samarbejde med Thomas Salling, s110579 og Mikkel Seibæk, s112987. 11/12-2012

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Differentiation af Trigonometriske Funktioner

Differentiation af Trigonometriske Funktioner Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Evaluering Matematik A på htx

Evaluering Matematik A på htx Evaluering af Matematik A på htx Sommeren 2013 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 9 Forberedelsesmaterialet...

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression.

Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression. Bilag 3: Uddrag af Matematik 1999. Skriftlig eksamen og større skriftlig opgave ved studentereksamen og hf. Kommentarer på baggrund af censorernes tilbagemeldinger HF-tilvalgsfag (opgavesæt HF 99-8-1)

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Projekt 4.6 Didaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer

Projekt 4.6 Didaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer rojekter: Kapitel. rojekt.6 Eksperimenterende forløb med fokus på modellering og repræsentationsformer rojekt.6 idaktisk oplæg til et eksperimenterende forløb med fokus på modellering og repræsentationsformer

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Differentialregning ( 16-22)

Differentialregning ( 16-22) Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)

Læs mere

Løsninger til eksamensopgaver på B-niveau 2014

Løsninger til eksamensopgaver på B-niveau 2014 Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Det tilstræbte matematikindhold og teknologi spiller det sammen?

Det tilstræbte matematikindhold og teknologi spiller det sammen? 75 K O M M E N TA R E R Det tilstræbte matematikindhold og teknologi spiller det sammen? Henrik Bang Center for Computerbaseret Matematikundervisning, CMU Claus Larsen Center for Computerbaseret Matematikundervisning,

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Nogle didaktiske overvejelser vedrørende indledende undervisning i funktionsbegrebet i gymnasiet og nærværende hæftes nytte i så henseende.

Nogle didaktiske overvejelser vedrørende indledende undervisning i funktionsbegrebet i gymnasiet og nærværende hæftes nytte i så henseende. Nogle didaktiske overvejelser vedrørende indledende undervisning i funktionsbegrebet i gymnasiet og nærværende hæftes nytte i så henseende. af Dinna Balling og Jørn Schmidt. Hæftet Lige og ulige sætter

Læs mere

matx.dk Mikroøkonomi

matx.dk Mikroøkonomi matx.dk Mikroøkonomi Dennis Pipenbring 31. august 2011 Indold 1 Udbuds- og efterspørgselskurver 3 1.1 Lineær.............................. 4 1.2 Eksponentiel........................... 5 1.3 Potens..............................

Læs mere