MATEMATIK 4 PROJEKT 3. marts 2006 Oversigt nr. 1

Størrelse: px
Starte visningen fra side:

Download "MATEMATIK 4 PROJEKT 3. marts 2006 Oversigt nr. 1"

Transkript

1 PROJEKT 3. marts 2006 Oversigt nr og 2. møde (15/2 og 2/3). Her har vi læst og gennemgået kapitel 1 i [GKP] om mængdeteoretisk topologi. Dog er følgende kursorisk: 1.1; ; gang, torsdag den 9/3. Her studerer vi hvordan man alment kan forsyne et vektorrum med en fornuftig topologi, så snart der er givet en tilpas stor familie af seminormer. Konkret diskuterer vi kapitel i [GKP]; medtag gerne allerede nu. For at illustrere den svage topologi hørende til en familie af seminormer kan I overveje at på et Hilbertrum H giver hver vektor y H en afbildning H C ved forskriften x ( x y ). (1) Denne er en seminorm (vis det!). Herved udstyres H med den svage topologi; kaldes denne σ bliver H σ (dvs. parret (H, σ)) et topologisk vektorrum (forklar vha. kapitel 2.4!). Giv to argumenter for at σ er svagere end normtopologien: (1) antag x λ x 0, vis da at x λ x i H σ ; (2) se på en omegnsbasis for x = 0 via ( ) i 2.4.1; tag gerne H = l 2 og tænk over hvor mange koordinatretninger en sådan basisomegn kontrollerer. rummet C N (Ω), hvor Ω R n er en vilkårlig åben mængde, og N N 0, har et system af seminormer u N,K = sup{ D α u(x) x K, α N }. (2) Her er K Ω en vilkårlig kompakt mængde. α = (α 1,..., α n ) N n 0 er et multiindex med længde α = a α n som bruges til at indføre den bekvemme notation D α = D α 1 x 1... D αn x n = ( i) α α 1 x α αn x αn n. (3) Med seminormerne N,K er C N (Ω) et topologisk vektorrum. (Hvad med C (Ω)?) 1

2 PROJEKT 17. marts 2006 Oversigt nr gang, torsdag den 16/3. Her har vi gennemgået i [GKP], foruden opgaverne fra 1. seddel. 5. gang, torsdag den 23/3, kl Her ser vi på og i [GKP], men som baggrund for må I nok også læse Som konkrete eksempler må vi pt. notere at L 2 (Ω) står for mængden af funktioner f : Ω C, hvor Ω R n er en åben mængde, som opfylder at f 2 er Lebesgueintegrabel på Ω, dvs. Ω f(x) 2 dx <. (Mere præcist er der tale om mængder af ækvivalensklasser af funktioner stemmende overens n.o.) Som vi senere skal få at se i Integrations- og Fourierteori, så er L 2 (Ω) fuldstændigt mht. metrikken induceret af det indre produkt ( f g ) = Ω f(x)g(x) dx. Mao. er L2 (Ω) et Hilbertrum. På den baggrund bedes I læse kapitel 5.1 og om Fourierrækker i mine noter om funktionalanalyse; disse er tilgængelige fra mit websted. (NB! Det kunne tænkes at der kommer væsentlige tilføjelser senere i semestret, så det nok bedst at I ej refererer til sidetal men til afsnit osv.) Bemærk at Weierstrass approximationssætning fra afsnit 2.3 også indgår i argumenterne. 2

3 PROJEKT 23. marts 2006 Oversigt nr. 3 Jeg har nu rettet trykfejl i mine noter, circa i det omfang vi diskuterede idag. 6. gang, mandag den 10. april, kl Vi har aftalt at I læser hele kapitel 4 og resten af 5 i noterne. (Kapitel 4 for en oversigt over basale forhold ifm. Hilbertrum.) Desuden vil vi tage hul på de ubegrænsede operatorer i Hilbertrum. Som en god kilde foreslår jeg vi bruger et notesæt af Gerd Grubb (KU), nærmere bestemt kapitel 10 som er tilgængeligt fra grubb/dist10.pdf De er også tilgængelige fra /user/jjohnsen/kurser/noter/ggnoter/ Dist06/dist10.pdf. Heri ser vi på afsnittene til næste gang; I kan også regne opgaverne (sidstnævnte vil nok være en seriøs udfordring). Det er en stor mundfuld, men I har jo ikke så meget kursusaktivitet pt. Læs for eksempel 2 sider og regn en opgave om dagen. (NB! Det bliver sværere jo længere i kommer... ) Nysgerrige kan læse om atom/kvantefysikkens matematik i et notesæt af Michael Loss, som jeg har fået anbefalet af Thomas Østergaard. Det kan tilgås på /user/jjohnsen/kurser/noter/michlossnoter/stability pdf. 3

4 PROJEKT 21. april 2006 Oversigt nr. 4 Mine noter er idag blevet opdateret, hovedsageligt med et bedre afsnit om Sobolevrum i kapitel gang, onsdag den 19. april.. Her fik vi diskuteret afsnit 10.3 og det meste af 10.4 fra Gerd Grubbs noter om ubegrænsede operatorer. Desuden havde vi en indledende snak om spektret σ(t ) og resolventmængden ρ(t ) for en operator T B(H). Horia vil gennemgå spektralteori for kompakte operatorer for jer i kurset, og vi vil senere komme til spektralteorien for operatorer i B(H). En generel indføring i emnet findes i kapitel 7 af mine noter (som man kan orientere sig i allerede nu). 8. gang, torsdag den 4. maj klokken Vi diskuterer her evt. resterende uklarheder i Gerd Grubbs kapitel 10.4 og fortsætter med kapitel 10.5; regn i den forbindelse opgave Afsnit 10.5 er af stor betydning for studiet af Schrödinger operatorer T u = u + V (x)u, idet det for kvantemekanikken er alfa og omega at give mening til den slags som selvadjungerede operatorer i f.eks. H = L 2 (R 3 ). (Til at begynde med er de kun tæt definerede og symmetriske, dvs. T T ; jvf. lemma ) Til almen træning i kapitel 10 forventes I at regne Desuden opgave 10.12, som giver typiske fænomener blot for simple differentialoperatorer. Endelig opgave 10.16, som ofte er nyttig når Hilbertrum anvendes. Desuden kan I regne opgaverne 10.(35+)36+37 for at belyse Lax Milgrams lemma. Vi vil også tale om

5 PROJEKT 5. maj 2006 Oversigt nr gang, onsdag den 10. maj, kl Her vil vi se på inklusionerne S(R n ) L 2 (R n ) S (R n ), hvor S(R n ) og S (R n ) betegner Schwartzrummet og dets dualrum. Hovedsigtet er at forklare, hvorfor (og hvordan) alle elementer af S (R n ) kan Fouriertransformeres og sågar differentieres. En forklaring kan bekvemt gives vha. de generelle resultater, vi tidligere har set. F.eks. ved at I gør følgende (det meste er ret ligetil): (1) Vis at når S(R n ) defineres som i kapitel 8 af noterne til integrationsteorien, så har S(R n ) en familie af seminormer givet ved p N (ψ) = sup { (1 + x 2 ) N D α ψ(x) x R n, α N }. (4) Slut via [2.4.2, GKP] at S(R n ) herved er et lokalkonvekst topologisk vektorrum. (2) Vis at p 1 p 2... og at 0 i S(R n ) derfor har en tællelig omegnsbasis givet ved mængderne V N,k = { ψ S(R n ) pn (ψ) 1 k }. (5) Repeter at følgekonvergens er tilstrækkeligt, og at ψ j ψ i S(R n ) for j hvis og kun hvis, for hvert N, p N (ψ j ψ) 0 for j. (3) Vis at der på S(R n ) er givet en metrik ved d(ψ, ϕ) = 2 N min(1, p N (ψ ϕ)). (6) N=1 Bevis at S(R n ) er metriserbart (d giver samme topologi som seminormerne p N, N N). (4) S(R n ) er fuldstændigt: Hvis (ψ j ) er en Cauchyfølge, så konvergerer alle afledte D α ψ j ligeligt på enhver kompakt delmængde K R n mod en funktion ψ C (R n ). Og for α N, (1 + x 2 ) N D α ψ(x) lim sup p N (ψ j ) j lim sup p N (ψ j ψ j0 ) + p N (ψ j0 ) <. j (7) (5) Slut at S(R n ) er et Frechétrum. Iht. definitionen er et topologisk vektorrum X et Frechétrum, hvis det er lokalkonvekst og metriserbart med en translationsinvariant metrik (dvs. d(x, y) = d(x + a, y + a) for alle a, x, y), samt fuldstændigt. 5

6 (6) Vis at enhver differential operator D α : S(R n ) S(R n ) er kontinuert. Vis også at Fourier transformationen F er en homeomorfi af S på sig selv. Videre har man om funktionalerne på det topologiske vektorrum S(R n ): (1) En linearform Λ: S(R n ) C er kontinuert fra S(R n ) til C hvis og kun hvis der eksisterer c > 0 og N N så Λ(ψ) cp N (ψ) = c sup{ (1 + x 2 ) N D α ψ(x) x R n, α N }. (8) Dualrummet S (R n ) udgøres af alle kontinuerte lineære funktionaler, og det er et topologisk vektorrum med w -topologien. S (R n ) kaldes rummet af tempererede distributioner på R n. (2) Hvis f L p (R n ) for 1 p opnås et element Λ f i S (R n ) ved forskriften Λ f, ψ = f(x)ψ(x) dx. (9) R n Vis dette, og slut at L p (R n ) S (R n ) er et underrum for alle 1 p. (3) Specielt er S(R n ) et underrum af S (R n ), som endda er tæt! (Dette ses fra [2.4.10, GKP] for X = S og Z = S(R n ) overvej! (Forudsætningen i om at X er et normeret rum bliver intetsteds brugt i beviset.) Nu har enhver kontinuert lineær afbildning T : S(R n ) S(R n ) en adjungeret T : S (R n ) S (R n ), som for alle ψ (S), u S opfylder T u, ψ = u, T ψ. (10) Dette fremgår af at højresiden klart afhænger lineært og kontinuert af ψ, så det netop definerer et vist element (kaldet T u) af dualrummet. (1) Vis at T er kontinuert S S, idet S udstyres med w -topologien. (2) Vis at der er kontinuerte operatorer F og D α på S. (3) Parsevals ligning giver for alle ψ, ϕ S, Fϕ, ψ = Fϕψ dx = ϕfψ dx = ϕ, Fψ. (11) Slut heraf at F i underrummet S virker som F selv, så vi herved har en udvidelse af F til en afbildning F : S S, som er kontinuert! Faktisk er F en homeomorfi på S (R n ) med F 1 = (2π) n F. (4) Ved gentagen delvis integration ses for ϕ, ψ S at D α ϕ, ψ = ϕ, D α ψ = ϕd α ψ dx = ( 1) α D α ϕψ dx = D α ϕ, ψ. (12) Dette viser at D α = ( 1) α D α i det tætte underrum S, så man har at D α (via ( 1) α D α ) udvider til en kontinuert operator D α : S (R n ) S (R n )! 6

7 Til illustration har man f.eks. Dirac målet δ 0 som er afbildningen ψ ψ(0). Dvs. δ 0, ψ = ψ(0). (Vis at δ 0 er i S, idet kontinuiteten fås af ovenstående.) Fouriertransformering af δ 0 foregår således: For vilkårligt ψ S(R n ) er Fδ 0, ψ = δ 0, Fψ = e i x ξ ψ(x) dx ξ=0 = ψ dx = 1, ψ. (13) Altså er Fδ 0 = 1 R n. NB! Der er altså ingen vanskelige konvergensspørgsmål for integraler ved udregingen af Fδ 0 ej heller ved F1 R n = F 2 δ 0 = (2π) n δ 0! Differentiation af δ 0 foregår analogt ved transponering, D α δ 0, ψ = δ 0, ( 1) α D α ψ = ( 1) α D α ψ(0). (14) Altså er D α δ 0 selve afbildningen ψ ( 1) α D α ψ(0) som altså er veldefineret, trods det at δ 0 bestemt ikke er nogen differentiabel funktion. (For α = 1 modelleres en elektrisk dipol ved D j δ 0.) Ovenstående er kun en forsmag på den såkaldte distributionsteori. Denne er meget omfattende og generel (og udgør et helt uundværligt værktøj i moderne matematisk analyse), men ovenstående giver alligevel indblik i de helt centrale teknikker og eksempler. Til yderligere studium af distributionsteorien kan anbefales noterne fra Gerd Grubbs websted, eller bind I af Lars Hörmander, The analysis of linear partial differential operators, Springer

8 PROJEKT 8. juni 2006 Oversigt nr. 6 Eksamensspørgsmål. Projekteksamen d. 19. juni er mundtlig med omkring en halv times eksamination i et af de emner, der er nævnt nedenfor. (1) Hilbertrum basis, projektionssætningen, lineære funktionaler. (2) Banachrum og Hahn Banachs separationssætning. (3) Åben afbildningsætningen. (4) Operatorer med lukket graf. (5) Svag*-topologier og deres egenskaber. (6) Spektrum for en begrænset operator på et Hilbertrum; (7) Kompakte operatorer på Hilbertrum og deres funktionskalkyle. (8) Spektralsætningen for kompakte operatorer. (9) Operatorer defineret ved sequilinearformer. Bemærk at det er en del af jeres opgave at afgrænse de brede eksamensspørgsmål. 8

MATEMATIK 4 OPR. I HILBERTRUM 6. februar 2001 Oversigt nr. 1

MATEMATIK 4 OPR. I HILBERTRUM 6. februar 2001 Oversigt nr. 1 OPR. I HILBERTRUM 6. februar 2001 Oversigt nr. 1 Lærebogen for kurset er [P] Functional analysis in applied mathematics and engineering, CRC Press 1999. Jeg regner med at vi gennemgår kapitel 1 6 med tillæg

Læs mere

Supplerende note om Hilbertrum og Banachrum

Supplerende note om Hilbertrum og Banachrum Supplerende note om Hilbertrum og Banachrum Jimi Lee Truelsen Om Noten Vi vil i denne note uddybe nogle af emnerne fra de første 3 apitler af [Ve] og komme med nogle eksempler. Det drejer sig især om begreberne

Læs mere

Punktmængdetopologi. Mikkel Stouby Petersen. 1. marts 2013

Punktmængdetopologi. Mikkel Stouby Petersen. 1. marts 2013 Punktmængdetopologi Mikkel Stouby Petersen 1. marts 2013 I kurset Matematisk Analyse 1 er et metrisk rum et af de mest grundlæggende begreber. Et metrisk rum (X, d) er en mængde X sammen med en metrik

Læs mere

3. Operatorer i Hilbert rum

3. Operatorer i Hilbert rum 3.1 3. Operatorer i Hilbert rum 3.1. Riesz repræsentationssætning og den adjungerede operator. Vi vil nu se mere systematisk på lineære afbildninger mellem Hilbert rum. Der er en tradition for at afbildninger

Læs mere

1.1. n u i v i, (u, v) = i=1

1.1. n u i v i, (u, v) = i=1 1.1 1. Hilbert rum 1.1. Hilbert rum og deres geometri. Definition 1.1. Et komplekst vektor rum V kaldes et indre produkt rum (eller præ-hilbert rum), når det er forsynet med en funktion (, ): V V C, som

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

n=1 er veldefineret for alle følger for hvilke højresiden er endelig. F.eks. tilhører følgen

n=1 er veldefineret for alle følger for hvilke højresiden er endelig. F.eks. tilhører følgen 2 Hilbert rum 2. Eksempler på Hilbert rum Vi skal nu først forsøge at begrunde, at de indre produkt rum af funktioner eller følger, som blev indført i Kapitel, ikke er omfattende nok til vores formål.

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

2. Fourierrækker i en variabel

2. Fourierrækker i en variabel .1. Fourierrækker i en variabel I Kapitel II 7 blev der indført, dels funktionsrummene L p (X, µ) (mere udførligt skrevet L p (X, E, µ)), dels rummene L p (X, µ), der fås af L p (X, µ) ved at funktioner

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

MATEMATIK 6 INTEGRATIONSTEORI 28. januar 2016 Oversigt nr. 1

MATEMATIK 6 INTEGRATIONSTEORI 28. januar 2016 Oversigt nr. 1 INTEGRATIONSTEORI 28. januar 2016 Oversigt nr. 1 Lærebogen for kurset er [BM] Mål- og integralteori, af Christian Berg og Tage Gutmann Madsen, Københavns Universitet, 2001. Den kan tilgås via nettet: http://www.math.ku.dk/uddannelser/noter/

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Matematik 3AN. Søren Eilers. Trykt version, fjerde udgave

Matematik 3AN. Søren Eilers. Trykt version, fjerde udgave Matematik 3AN Nøgle Søren Eilers Trykt version, fjerde udgave Søren Eilers, email: eilers@math.ku.dk Matematik 3AN: Nøgle Matematisk Afdeling Universitetsparken 5 2100 København Ø ISBN 87-91180-09-0 c

Læs mere

Første konstruktion af Cantor mængden

Første konstruktion af Cantor mængden DYNAMIK PÅ CANTOR MÆNGDEN KLAUS THOMSEN Første konstruktion af Cantor mængden For de fleste der har hørt on Cantor-mængden, er den blevet defineret på flg måde: I = 0 I = I = 0 0 OSV Cantor mængden C er

Læs mere

Besvarelse, Eksamen Analyse 1, 2013

Besvarelse, Eksamen Analyse 1, 2013 Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 23 Besvarelse, Eksamen Analyse, 23 Opgave Lad, for n N, funktionen f n : [, ) R være givet ved NB. Trykfejl. Burde være x. f n (x)

Læs mere

Gult Foredrag Om Net

Gult Foredrag Om Net Gult Foredrag Om Net University of Aarhus Århus 8 th March, 2010 Introduktion I: Fra Metriske til Topologiske Rum Et metrisk rum er en mængde udstyret med en afstandsfunktion. Afstandsfunktionen bruges

Læs mere

Analyse 1, Prøve 4 Besvarelse

Analyse 1, Prøve 4 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 2011 1 Analyse 1, Prøve 4 Besvarelse Lad Opgave 1 (50%) M = {T R 2 T er en åben trekant} og lad A : M R være arealfunktionen, dvs.

Læs mere

Distributioner og currents. Dan Elmkvist Albrechtsen

Distributioner og currents. Dan Elmkvist Albrechtsen Distributioner og currents Dan Elmkvist Albrechtsen Videnskabsfagsprojekt, forår 2011 Vejleder: Carsten Lunde Pedersen Imfufa - NSM Roskilde Universitet 20. juni 2011 Abstract The report deals with the

Læs mere

Hilbert rum. Chapter Indre produkt rum

Hilbert rum. Chapter Indre produkt rum Chapter 4 Hilbert rum 4.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til.

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. DESIGNMAT FORÅR 2012: UGESEDDEL 13 INSTITUT FOR MATEMATIK 1. Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. 2. Aktiviteter mandag 13 17 2.1.

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

[BM] Mål- og integralteori, af Christian Berg og Tage Gutmann Madsen, Københavns Universitet, 2001.

[BM] Mål- og integralteori, af Christian Berg og Tage Gutmann Madsen, Københavns Universitet, 2001. INTEGRATIONS- OG FOURIERTEORI 2. februar 2009 Oversigt nr. 1 Lærebogen for kurset er [BM] Mål- og integralteori, af Christian Berg og Tage Gutmann Madsen, Københavns Universitet, 2001. Den skulle være

Læs mere

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

[BM] Mål- og integralteori, af Christian Berg og Tage Gutmann Madsen, Københavns Universitet, 2001.

[BM] Mål- og integralteori, af Christian Berg og Tage Gutmann Madsen, Københavns Universitet, 2001. INTEGRATIONS- OG FOURIERTEORI 31. januar 2012 Oversigt nr. 1 Lærebogen for kurset er [BM] Mål- og integralteori, af Christian Berg og Tage Gutmann Madsen, Københavns Universitet, 2001. Den skulle være

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

ANALYSE 1, 2014, Uge 5

ANALYSE 1, 2014, Uge 5 ANALYSE, 204, Uge 5 Afleveringsfrist for Prøve 2 er Tirsdag den 20/5 kl 0:5. Forelæsninger Tirsdag Vi går videre med Afsnit 4 om uniform konvergens af Fourierrækker, hvor hovedsætningen er Sætning 4.3.

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Klassisk Taylors formel

Klassisk Taylors formel p. 1/17 Klassisk Taylors formel Sætning Lad f : (a, b) R være n gange differentiabel. For x 0, x (a, b) findes et ξ mellem x 0 og x der opfylder at f(x) = f(x 0 )+ f (x 0 ) 1! (x x 0 )+...+ f(n 1) (x 0

Læs mere

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α ) GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder

Læs mere

Matematik 2 AN. Matematisk Analyse. Metriske rum. Christian Berg

Matematik 2 AN. Matematisk Analyse. Metriske rum. Christian Berg Matematik 2 AN Matematisk Analyse Metriske rum Christian Berg 1997 Matematisk Afdeling Universitetsparken 5 2100 København Ø c Matematisk Afdeling 1997 Forord Nærværende notehæfte er oprindelig skrevet

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere

Indledning. 1 Martingalerepræsentationssætningen

Indledning. 1 Martingalerepræsentationssætningen Indledning I disse noter vil uddybe nogle af Øksendals resultater i afsnittene 4 og 7 samt give andre beviser for dem. Disse resultater er gennemgået til forelæsningerne. 1 Martingalerepræsentationssætningen

Læs mere

Den Brownske Bevægelse

Den Brownske Bevægelse Den Brownske Bevægelse N.J. Nielsen 1 Notation I dette notesæt vil vi generelt benytte samme notation som i det øvrige undervisningsmateriale i MM23. For ethvert n N betegner B n Borelalgebraen på R, og

Læs mere

Mat2AN Minilex. Indhold. Henrik Dahl 6. januar Definitioner 2. 2 Sætninger Uligheder 28

Mat2AN Minilex. Indhold. Henrik Dahl 6. januar Definitioner 2. 2 Sætninger Uligheder 28 Mat2AN Minilex Henrik Dahl hdahl@tdc-broadband.dk 6. januar 2004 Resumé ADVARSEL - dette er et total underground-dokument!. Det er livsfarligt at bruge ukritisk. Der er næsten sikkert graverende fejl.

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

Wigner s semi-cirkel lov

Wigner s semi-cirkel lov Wigner s semi-cirkel lov 12. december 2009 Eulers Venner Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Diagonalisering af selvadjungeret matrix Lad H være en n n matrix med komplekse

Læs mere

Matematik 2 AN. Hilbert rum. med anvendelser. Bergfinnur Durhuus

Matematik 2 AN. Hilbert rum. med anvendelser. Bergfinnur Durhuus Matematik 2 AN Hilbert rum med anvendelser Bergfinnur Durhuus 1997 Matematisk Afdeling Universitetsparken 5 2100 København Ø c Matematisk Afdeling 1997 Forord Sammen med hæftet Metriske rum ved Christian

Læs mere

Side 9 sætningen: Kolmogorov s konsistensætning Tue Tjur, Institut for Matematisk Statistik

Side 9 sætningen: Kolmogorov s konsistensætning Tue Tjur, Institut for Matematisk Statistik Side 9 sætningen: Kolmogorov s konsistensætning Tue Tjur, Institut for Matematisk Statistik Advarsel: I denne artikel gives udtryk for holdninger til sandsynlighedsregningens grundlag. Disse er forfatterens

Læs mere

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1 Analyse Reeksamen 00 Rasmus Sylvester Bryder 5. august 0 Opgave Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. ( ) n n +3n+7 n= n + For alle n N vil

Læs mere

ANALYSE 1. Uge 7, 4. juni juni, 2007

ANALYSE 1. Uge 7, 4. juni juni, 2007 ANALYSE 1 Uge 7, 4. juni - 10. juni, 2007 Forelæsninger Mandag 4. juni Formålet med denne dags forelæsninger er at etablere en overgang til emnet metriske rum, hvis hovedformål er at udvide begreber som

Læs mere

Eksamensnoter til Analyse 1

Eksamensnoter til Analyse 1 ksamensnoter til Analyse 1 Martin Geisler gimpster@daimi.au.dk Sommer 23 Indledning Disse noter gennemgår de 26 spørgsmål stillet til den mundtlige eksamen i Analyse 1 ved Aarhus Universitet sommeren 23.

Læs mere

Konvergens i L 1 -forstand. Definition af L 1 -seminorm. Topologi i pseudometrisk rum. Seminorm til norm

Konvergens i L 1 -forstand. Definition af L 1 -seminorm. Topologi i pseudometrisk rum. Seminorm til norm Definition af L 1 -seminorm Konvergens i L 1 -forstand Lad (X, E, µ) være et målrum. Husk at L(µ) er et reelt vektorrum. Vi definerer f 1 = f dµ for f L Definition En følge af funktioner f 1, f 2, L siges

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober 2017 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne de små opgaver i afsnittene 1 5 i løbet af de første 4 halve dage. Dernæst tilføjes

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Matematik 2 MA Matematisk Analyse. Gerd Grubb

Matematik 2 MA Matematisk Analyse. Gerd Grubb 1 Matematik 2 MA Matematisk Analyse 1994 95 Kapitel IV. Fourier Analyse Gerd Grubb 1 1 Matematik 2. Matematisk Analyse 1994-95 Kapitel IV. Fourier analyse 0. Indledning 1. Hilbert rum 1.1. Hilbert rum

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

p = d, q = multiplikation med x, dx hvor d T θ har entydig (normaliseret) spor, dvs. en linear afbilding τ : T θ C

p = d, q = multiplikation med x, dx hvor d T θ har entydig (normaliseret) spor, dvs. en linear afbilding τ : T θ C 1. Den ikke-kommutative verden 1.1. Lidt historie. Historien begynder samtidig med det tyvende århundrede, med opdagelse af de sære egenskaber af mikrokosmos såsom spektra af atomer og molekyler, fotoelektrisk

Læs mere

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere

Hvad vi mangler fra onsdag. Vi starter med at gennemgå slides fra onsdag.

Hvad vi mangler fra onsdag. Vi starter med at gennemgå slides fra onsdag. Hvad vi mangler fra onsdag Vi starter med at gennemgå slides 34-38 fra onsdag. Slide 1/17 Niels Richard Hansen MI forelæsninger 6. December, 2013 Momenter som deskriptive størrelser Sandsynlighedsmål er

Læs mere

ANALYSE 1, 2014, Uge 6

ANALYSE 1, 2014, Uge 6 ANALYSE 1, 2014, Uge 6 Forelæsninger Tirsdag Topologiske begreber i generelle metriske rum, dvs. begreber som åbne og afsluttede delmængder og rand af en mængde. For talrummene R k er disse begreber indført

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1 1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy

Læs mere

1 Punktmængdetopologi. metriske rum, fuldstændighed

1 Punktmængdetopologi. metriske rum, fuldstændighed Punktmængdetopologi, metriske rum, fuldstændighed Morten Grud Rasmussen 23. november 2015 1 Punktmængdetopologi I algebra beskæftiger man sig bl.a. med abstrakte strukturer, hvori forskellige regneoperationer

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Eksamen 2014/2015 Mål- og integralteori

Eksamen 2014/2015 Mål- og integralteori Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt

Læs mere

Indhold. Litteratur 11

Indhold. Litteratur 11 Indhold Forord ii 00-sættet 1 Opgave 1....................................... 1 Spørgsmål (a).................................. 1 Spørgsmål (b).................................. 1 Spørgsmål (c)..................................

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Skriftlig eksamen - med besvarelse Topologi I (MM508)

Skriftlig eksamen - med besvarelse Topologi I (MM508) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen - med besvarelse Topologi I (MM508) Mandag d. 14. januar 2007 2 timer med alle sædvanlige hjælpemidler tilladt. Opgavesættet

Læs mere

N o t e r t i l G e o m e t r i

N o t e r t i l G e o m e t r i N o t e r t i l G e o m e t r i I b M a d s e n o g J o h a n D u p o n t J a n u a r 2 0 0 5 I n s t i t u t f o r M a t e m a t i s k e Fa g D e t N a t u rv i d e n s k a b e l i g e Fa k u l t e t

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

Differentiation af sammensatte funktioner

Differentiation af sammensatte funktioner 1/7 Differentiation af sammensatte funktioner - Fra www.borgeleo.dk En sammensat funktion af den variable x er en funktion, vor x først indsættes i den såkaldte indre funktion. Resultatet fra den indre

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne en mængde af opgaver, som tilsammen dækker 100 point. De små opgaver giver hver 5 point,

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Udbredelsen af distributionsteorien siden 1950

TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Udbredelsen af distributionsteorien siden 1950 TEKST NR 428 2004 Udbredelsen af distributionsteorien siden 1950 Anders Albrechtsen, Kasper G. Christensen, Tina Hecksher TEKSTER fra ÁÅ Í INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK

Læs mere

Dette materiale er ophavsretligt beskyttet og må ikke videregives

Dette materiale er ophavsretligt beskyttet og må ikke videregives Grundlæggende mål- og integralteori Grundlæggende mål- og integralteori Steen Thorbjørnsen Aarhus Universitetsforlag Grundlæggende mål- og integralteori Steen Thorbjørnsen og Aarhus Universitetsforlag

Læs mere

SINGULÆR PERTURBATIONSTEORI

SINGULÆR PERTURBATIONSTEORI SINGULÆR PERTURBATIONSTEORI FOR DISKRETE LINEÆRE OPERATORER AALBORG UNIVERSITET Institut for Matematiske Fag Niels Lund 0. semester på matematik Foråret 04 AALBORG UNIVERSITET INSTITUT FOR MATEMATISKE

Læs mere

Funktionsrum. Kapitel 1. 1.1 Funktionsrummet L = L(X, E, µ)

Funktionsrum. Kapitel 1. 1.1 Funktionsrummet L = L(X, E, µ) Kapitel Funktionsrum. Funktionsrummet L = L(X, E, µ) For et vilkårligt målrum (X,E,µ) er mængdenl=l(x,e,µ) afµ-integrable funktioner f :X R et reelt vektorrum ifølge Theorem 7.3 i [EH]. Hvis vi indfører

Læs mere

Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h.

Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h. Differentiabilitet 1 Funktioner af én reel variabel Tilvækstfunktionen f med udgangspunkt i x 0 er en reel funktion af tilvæksten : f() = f(x 0 +) f(x 0 ). y = f(x) Tangent (x 0,f(x 0 )) df() f() x 0 x

Læs mere

Mordell s Sætning. Henrik Christensen og Michael Pedersen. 17. december 2003

Mordell s Sætning. Henrik Christensen og Michael Pedersen. 17. december 2003 Mordell s Sætning Henrik Christensen og Michael Pedersen 17. december 2003 Mordells sætning siger at gruppen C(Q) af rationale punkter over en ellipse C er en endeligt frembragt abelsk gruppe. Elliptiske

Læs mere

Bachelorprojekt. Fourieranalyse på lokalkompakte abelske grupper. Fourier analysis on locally compact abelian groups. SDU, 28.

Bachelorprojekt. Fourieranalyse på lokalkompakte abelske grupper. Fourier analysis on locally compact abelian groups. SDU, 28. Bachelorprojekt Fourieranalyse på lokalkompakte abelske grupper Fourier analysis on locally compact abelian groups SDU, 28. februar 2007 Asger Christiansen Projektformulering Bachelorprojektet skal indeholde

Læs mere

S A B R I N A M U N C H H A N S E N

S A B R I N A M U N C H H A N S E N S A B R I N A M N C H H A N S E N D I F F S I O N S - O G R E A K T I O N S - L I G N I N G E R V E J L E D E R : J O N J O H N S E N S P E C I A L E A F H A N D L I N G I M A T E M A T I K I N S T I T

Læs mere

Om begrebet relation

Om begrebet relation Om begrebet relation Henrik Stetkær 11. oktober 2005 Vi vil i denne note diskutere det matematiske begreb en relation, herunder specielt ækvivalensrelationer. 1 Det abstrakte begreb en relation Som ordet

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:

Læs mere

Gamle eksamensopgaver (MASO)

Gamle eksamensopgaver (MASO) EO 1 Gamle eksamensopgaver (MASO) Opgave 1. (Vinteren 1990 91, opgave 1) a) Vis, at rækken er divergent. b) Vis, at rækken er konvergent. Opgave 2. (Vinteren 1990 91, opgave 2) Gør rede for at ligningssystemet

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Punktmængdetopologi, metriske rum, fuldstændighed. Morten Grud Rasmussen 17. november 2017

Punktmængdetopologi, metriske rum, fuldstændighed. Morten Grud Rasmussen 17. november 2017 Punktmængdetopologi, metriske rum, fuldstændighed Morten Grud Rasmussen 17. november 2017 Indhold 1 Punktmængdetopologi 2 1.1 Topologiske rum................................. 2 1.2 Kontinuitet...................................

Læs mere

n+2 n(n + 2) n=1 konvergerer ikke uniformt på [0, 1], så teknikkerne fra

n+2 n(n + 2) n=1 konvergerer ikke uniformt på [0, 1], så teknikkerne fra INTEGRATIONSTEORI 1. februar 2018 Oversigt nr. 1 Lærebog. I dette kursus følger vi i store træk [BM] Mål- og integralteori; Christian Berg og Tage Gutmann Madsen, Københavns Universitet, 2001. Den kan

Læs mere

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen S.&P. DIFFERENTIALLIGNINGER 2. februar 2006 Oversigt nr. 1 I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen [EP] Elementary differential equations with boundary

Læs mere

Exponentielle familer, ark 2

Exponentielle familer, ark 2 1 Exponentielle familer, ark 2 Eksponentielle familier OPGAVE 21 Beksriv den eksponentielle familie på (R, B) givet ved følgende data: V er R med det sædvanlige indre produkt, den kanoniske stikprøvefunktion

Læs mere

DesignMat Uge 11 Lineære afbildninger

DesignMat Uge 11 Lineære afbildninger DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

MATEMATIK 6 INTEGRATIONSTEORI 1. februar 2017 Oversigt nr. 1

MATEMATIK 6 INTEGRATIONSTEORI 1. februar 2017 Oversigt nr. 1 INTEGRATIONSTEORI 1. februar 2017 Oversigt nr. 1 Lærebog. I dette kursus følger vi [BM] Mål- og integralteori; Christian Berg og Tage Gutmann Madsen, Københavns Universitet, 2001. Den kan tilgås via nettet:

Læs mere

Lineære systemer med hukommelse.

Lineære systemer med hukommelse. Lineær Response Teori. I responseteorien interesserer man sig for, hvad der kan siges generelt om sammenhængen mellem input φ(t) og output γ(t) for et system. Valg af variable. Det betragtede systems forskellige

Læs mere

Youngs dobbeltspalteforsøg 1

Youngs dobbeltspalteforsøg 1 Kvantemekanik Side af Youngs dobbeltspalteforsøg Klassisk beskrivelse Inden for den klassiske fysik kan man forklare forekomsten af et interferensmønster ud fra flg. bølgemodel. x Før spalterne beskrives

Læs mere