Test i polynomialfordelingen

Størrelse: px
Starte visningen fra side:

Download "Test i polynomialfordelingen"

Transkript

1 Statisti og Sadsylighedsregig STAT apitel 4.4 Test i polyomialfordelige Lad X (X,..., X ) Poly (, p). Observatio: (,..., ) der agiver atal udfald, 2,..., Susae Ditlevse Istitut for Matematise Fag susae@math.u.d susae 7. udervisigsuge, osdag Sadsylighedsvetor: p (p,..., p ) Hus at i hvor i {0,,..., } p i hvor p i [0, ] 2 Statistis model: hvor Lielihoodfutio: (D (), (P p ) p ) ( ) P p (X ) p,...,... p L : D () [0, ] L(, p) ( ) p,..., Maimum lielihoodestimatorere er givet ved ˆp i i for alle i,..., Atag u at vi øser at teste hypotese: H 0 : p p 0, p 2 p 20,..., p p 0 Lidt mere ompat a vi srive: H 0 : p p 0 hvor p og p 0 er -dimesioale vetorer. De alterative hypotese er H A : p p 0 Bemær: Det er o at ogle af p i ere er forsellige fra de tilsvarede p i0 er for at ulhypotese ie gælder. 4

2 For at teste ulhypotese H 0 mod de alterative hypotese H A beyttes følgede teststørrelse: X 2 ( i p i0 ) 2 p i0 (obs i forv i ) 2 forv i idet EX i p i0 uder hypotese. Hypotese forastes, hvis X 2 er stor. Bemær: store værdier af X 2 er ritise for H 0, og dermed er X 2 et esidet test. Sætig 4. I e polyomialfordelig Poly (, p) gælder uder ulhypotese H 0 : p p 0, hvor p 0 er e edt -dimesioal vetor, at teststørrelse X 2 ( i p i0 ) 2 p i0 er approsimativt χ 2 -fordelt med ( ) frihedsgrader, og dermed a P -værdie (testsadsylighede) baseret på e observeret værdi Xobs 2 approsimativt udreges som ɛ P (X 2 X 2 obs) P (χ 2 X 2 obs) 5 6 Tommelfigerregel: F χ 2() F χ 2() f f 2 f f 4 f 5 f f f 2 f f 4 f 5 f 0 Approsimatioe a avedes år følgede betigelser begge er opfyldt:. p i0 for alle ategorier i,...,. 2. p i0 5 for midst 80% af ategoriere i,...,. Der er altså tale om et asymptotis resultat: Fordelige af X 2 uder H 0 overgerer mod e χ 2 -fordelig år atallet af observatioer voser mod. 7 8

3 Esempel 4.9. Svampesporer i boliger Jauar 4 Maj 0 September 5 Februar 26 Jui 7 Otober 7 Marts Juli 0 November 4 April 2 August 20 December 8 I alt 79 Vi atager at atallet af sporer i de i te måed, i,..., 2, er Polyomialfordelt. svampesporer Vi øser at udersøge om svampeforeomste ædrer sig heover året. For at udersøge dette atager vi at der ie er e effet heover året, dvs ulhypotese er H 0 : p p 2 p 2 2 Ja Mar Maj Juli Sep Nov Ò Ø º Ì Ø ½ 9 0 Ì Ð º Ö Ò Ò X 2 ÓÖ ÝÔÓØ Ò ÓÑ Ð Ð ÓÖ Ð Ò Ú ÑÔ ÔÓÖ Ö Ô Ö Ø ÑÒ Ö ÑÔ Ð º½ º ÅÒ ÒØ Ð ÓÖÚº ÒØ Ð X 2 ¹ Ö i N i p i0 (N i p i0 ) 2 /(p i0 ) ÒÙ Ö ½ ½ º ¾ ¼º¼ ÖÙ Ö ¾ ½ º ¾ º¾ Ñ ÖØ ½ ½ º ¾ ¼º¼ ÔÖ Ð ½¾ ½ º ¾ ¼º ¼ Ñ ½¼ ½ º ¾ ½º ¾½ ÙÒ ½ ½ º ¾ ¼º¾ ½ ÙÐ ½¼ ½ º ¾ ½º ¾½ Ù Ù Ø ¾¼ ½ º ¾ ½º ¾ ÔØ Ñ Ö ½ ½ º ¾ ¼º¼¼¼ Ó ØÓ Ö ½ ½ º ¾ ¼º¾ ½ ÒÓÚ Ñ Ö ½ ½ º ¾ ¼º¼ Ñ Ö ½ º ¾ º¾¼ Á ÐØ ½ ½ º¼ X 2 ½ º F χ 2() med frihedsgrader F χ 2(9.68) 0.95 F χ 2(24.72) ÑÔ Ð º¾¼º ËÚ ÑÔ ÔÓÖ Ö ÓÐ Ö ÓÖØ Øµº Ì Ð º Ú Ö Ù Ö Ò¹ Ò ÓÖÚ ÒØ ÒØ Ð p i0 Ó Ö Ò (Ó i ÓÖÚ i ) 2 / ÓÖÚ i Ø Ð X 2 ÓÑ Ø Ð 2 2

4 F χ 2() med frihedsgrader F χ 2() med frihedsgrader F χ 2(9.68) 0.05 F χ 2(24.72) F χ 2(7.76) F χ 2(9.68) 0.05 F χ 2(24.72) I Maple a fratiler og p-værdier slås op: > restart, with(statistics); Her agives 95% vatile i χ 2 -fordelige med frihedsgrader: Quatile(ChiSquare(),.95, umeric); Det betyder at P (X 9.675) 0.95, hvis X følger e χ 2 -fordelig med frihedsgrader. På samme måde a vi fide adre vatiler: > Quatile(ChiSquare(),.99, umeric); > Quatile(ChiSquare(),.999, umeric);.2646 P -værdie -fordeligsfutioe i de beregede teststørrelse: > -CDF(ChiSquare(), 7.76, umeric); På samme måde a vi slå vatilere i ormalfordelige op, her 97.5% og 99.5%: > Quatile(Normal(0, ),.975, umeric); > Quatile(Normal(0, ),.995, umeric); Hvis vi øser at fide P-værdie i esempel 4.8: Nedarvig hos fluer, sriver vi: > Y : ( *.25)/sqrt((76*.25)*(-.25)); > 2*(-CDF(Normal(0, ), Y, umeric));

5 Hypotese H : p p (0) (edt). Kvotietteststørrelse er Test i Polyomialfordelige Q() L(, p(0) ) L(, ˆp) Vi har lige geemgået hvorda ma a teste med X 2 teststørrelse, også aldet Pearso-testet. Vi a også teste ved vores stadardmetode i lielihood-teorie, emlig votietteststørrelse, også aldet lielihood ratio testet. (,..., ) (p i0) i (,..., ) (ˆp i) i ( ) i pi0 ˆp i ( ) i pi0 i / 7 8 Testsadsylighed ɛ() { D m():q( ) Q()} ( ),..., (p i0 ) i Approsimatio år p i0 > 0 for i,..., og er stor: ɛ() F χ 2 ( 2 log Q()) Approsimatioe til ɛ() atages at gælde, hvis p i0 5 for i,...,. Esempel: Svampesporer i boliger Nulhypotese er Vi får Q() H 0 : p p 2 p 2 2 ( 79 2 ( ) i pi0 i / ( ) i /2 i /79 ) 79 ( ) i i Bemær: 2 log(q()) X

6 F χ 2() med frihedsgrader Lad os fide P -værdie for votietteststørrelse: > -CDF(ChiSquare(), , umeric); Testsadsylighede er altså lidt større her, me dog meget tæt på testsadsylighede fra Pearso-teststørrelse F χ 2(7.9) F χ 2(7.76) F χ 2(9.68) F χ 2(24.72) Esempel: Medels ærter Fæotyper hos ade geeratios ærtefrø Fæotype Atal Hyppighed Gul, glat % Gul, ryet 0 8.2% Grø, glat % Grø, ryet 2 5.8% Ialt % Forhold mellem fæotyper uder Medels hypotese: (gule, glatte) : (gule, ryede) : (grøe, glatte) : (grøe, ryede) 9 : : : Hvis Medels arvelighedsregler gælder er ( 9 (p, p 2, p, p 4 ),,, ) (0.56, 0.9, 0.9, 0.06) Statistis model med lielihoodfutio (D 4 (556), (P p ) p 4 ) L : D 4 (556) 4 [0, ] ( ) 556 L(, p) p,...,... p4 4 4 ( 9 H : p,,, ) 2 24

7 Kvotietteststørrelse Vi får følgede maimum lielihood estimater (ˆp, ˆp 2, ˆp, ˆp 4 ) Var(ˆp s ) ( 5 556, 0 556, , 2 ) (0.567, 0.82, 0.94, 0.058) ( 0.567) 556 sˆps Q() Q(5, 0, 08, 2) ( )5( )0( log Q() 2 log Q(5, 0, 08, 2) ɛ() F χ 2 (0.475) )08( 556 )2 2 Approsimatio OK: 556 p i , i,..., Pearso-teststørrelse X 2 (5, 0, 08, 2) 9 (5 556 ) (0 556 )2 556 ( )2 ( ) ( 2 log Q() ) ɛ() F χ 2 (0.470) Fortolig? Forsøget beræfter Medels hypotese. 27

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Sammensatte hypoteser i en polynomialfordeling

Sammensatte hypoteser i en polynomialfordeling Statistik og Sadsylighedsregig 1 STAT Sætig 44 og kapitel 6 E hypotese af forme H 0 : θ θ 0 Susae Ditlevse Istitut for Matematiske Fag Email: susae@mathkudk http://mathkudk/ susae hvor der ikke idgår ukedte

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag     susanne Statistik og Sadsylighedsregig 1 STAT Sætig 4.4 og kapitel 6 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae 8. udervisigsuge 1 E hypotese af forme H 0 : θ =

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere

ÇÚ Ö Ø ½ ¾ ÅÓØ Ú Ö Ò ÑÔ Ð Ø Ñ ØÓÖ ÓÖ Ú Ö Ò Ö χ 2 ¹ ÓÖ Ð Ò Ò ÃÓÒ Ò ÒØ ÖÚ Ð ÓÖ Ò Ú Ö Ò ÀÝÔÓØ Ø Ø Ú Ö Ò Ö Ì Ø Ò Ú Ö Ò Ì Ø ØÓ Ú Ö Ò Ö F ¹ ÓÖ Ð Ò Ò ÀÝÔÓØ Ø

ÇÚ Ö Ø ½ ¾ ÅÓØ Ú Ö Ò ÑÔ Ð Ø Ñ ØÓÖ ÓÖ Ú Ö Ò Ö χ 2 ¹ ÓÖ Ð Ò Ò ÃÓÒ Ò ÒØ ÖÚ Ð ÓÖ Ò Ú Ö Ò ÀÝÔÓØ Ø Ø Ú Ö Ò Ö Ì Ø Ò Ú Ö Ò Ì Ø ØÓ Ú Ö Ò Ö F ¹ ÓÖ Ð Ò Ò ÀÝÔÓØ Ø ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò ÁÒ Ö Ò ÓÖ Ú Ö Ò Ö Ô µ Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ Ù

Læs mere

ÇÚ Ö Ø ½ ¾ ÀÝÔÓØ Ø Ø ¹ Ò Ö Ô Ø Ø ÓÒ ÀÝÔÓØ Ø Ø Ó ÓÒ Ò ÒØ ÖÚ ÐÐ Ö ËØÝÖ Ó Ø ÔÖ Ú Ø ÖÖ Ð ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÒ Ñ Ò Ø ÑÔ Ð ½ Ò Ö Ð ÓÖÑÙÐ Ö Ò Å Ò Ø Ú Ö Ò Å Ù Ò

ÇÚ Ö Ø ½ ¾ ÀÝÔÓØ Ø Ø ¹ Ò Ö Ô Ø Ø ÓÒ ÀÝÔÓØ Ø Ø Ó ÓÒ Ò ÒØ ÖÚ ÐÐ Ö ËØÝÖ Ó Ø ÔÖ Ú Ø ÖÖ Ð ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÒ Ñ Ò Ø ÑÔ Ð ½ Ò Ö Ð ÓÖÑÙÐ Ö Ò Å Ò Ø Ú Ö Ò Å Ù Ò ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò Ã Ô Ø Ð Ó ËØ Ø Ø ÓÖ ØÓ ÒÒ Ñ Ò Ø º ¹ º º½¹ º µ Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å

Læs mere

ÇÚ Ö Ø ½ ÈÖ Ø ÁÒ ÓÖÑ Ø ÓÒ ¾ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ËÓ ØÛ Ö Ê Ö Ú Ò Ø Ø Ø Æ Ð Ø Ð Ö Ö Ñ Ø ÐÐ Ò Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð

ÇÚ Ö Ø ½ ÈÖ Ø ÁÒ ÓÖÑ Ø ÓÒ ¾ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ËÓ ØÛ Ö Ê Ö Ú Ò Ø Ø Ø Æ Ð Ø Ð Ö Ö Ñ Ø ÐÐ Ò Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò ½ ÁÒØÖÓ Ó Ö Ú Ò Ø Ø Ø Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½¼ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ

Læs mere

ÒØÖÓÔÝ Ó Ò Ò ÂÈ Ø ÐÐ Ñ ÓÑÔÖ ÓÒ Â Ò ÎÓ Ð Ò Ë ÔØ Ñ Ö ¼Ø ¾¼½½ ½» ½

ÒØÖÓÔÝ Ó Ò Ò ÂÈ Ø ÐÐ Ñ ÓÑÔÖ ÓÒ Â Ò ÎÓ Ð Ò Ë ÔØ Ñ Ö ¼Ø ¾¼½½ ½» ½ ÒØÖÓÔÝ Ó Ò Ò ÂÈ Ø ÐÐ Ñ ÓÑÔÖ ÓÒ Â Ò ÎÓ Ð Ò Ë ÔØ Ñ Ö ¼Ø ¾¼½½ ½» ½ ÒÓ Ò Ò Ò Ö Ð ÒÓ Ò Ò Ò Ö Ð ¾» ½ ÖÓÑ Ù ÑÔÐ Ò ÌÖ Ò ÓÖÑ Ø ÓÒ ÒØÓ ³ Ö ÓÐÓÖ Ô» ½ ÖÓÑ Ù ÑÔÐ Ò ÌÖ Ò ÓÖÑ Ø ÓÒ ÒØÓ ³ Ö ÓÐÓÖ Ô Ê ÙØ ÓÒ Ó Ô Ø Ð Ö ÓÐÙØ

Læs mere

ÇÚ Ö Ø ½ ¾ ÃÓÒØ ÒÙ ÖØ ËØÓ Ø Ú Ö Ð Ó ÓÖ Ð Ò Ö ÌØ ÙÒ Ø ÓÒ ÓÖ Ð Ò ÙÒ Ø ÓÒ Å ÐÚÖ Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð Î Ö Ò Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð ÍÒ ÓÖÑ ÓÖ Ð Ò Ò ÑÔ Ð

ÇÚ Ö Ø ½ ¾ ÃÓÒØ ÒÙ ÖØ ËØÓ Ø Ú Ö Ð Ó ÓÖ Ð Ò Ö ÌØ ÙÒ Ø ÓÒ ÓÖ Ð Ò ÙÒ Ø ÓÒ Å ÐÚÖ Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð Î Ö Ò Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð ÍÒ ÓÖÑ ÓÖ Ð Ò Ò ÑÔ Ð ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò Ã Ô Ø Ð ÃÓÒØ ÒÙ ÖØ ÓÖ Ð Ò Ö Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ

Læs mere

Ë Ö ØÐ Ñ Ò ÙØÓÑ ØØ ÓÖ Ó Ö Ò Ð Å½ µ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ² Ø ÐÓ ËÝ Ò ÍÒ Ú Ö Ø Ø ß Ç Ò ÍÒ Ú Ö Ø Ø Ä Ö Ò ½ º ÒÙ Ö ¾¼¼ ÐÐ Ú ÒÐ ÐÔ Ñ Ð Ö Ð Ö Ó ÒÓØ Ø Ö Øºµ Ñ

Ë Ö ØÐ Ñ Ò ÙØÓÑ ØØ ÓÖ Ó Ö Ò Ð Å½ µ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ² Ø ÐÓ ËÝ Ò ÍÒ Ú Ö Ø Ø ß Ç Ò ÍÒ Ú Ö Ø Ø Ä Ö Ò ½ º ÒÙ Ö ¾¼¼ ÐÐ Ú ÒÐ ÐÔ Ñ Ð Ö Ð Ö Ó ÒÓØ Ø Ö Øºµ Ñ Ë Ö ØÐ Ñ Ò ÙØÓÑ ØØ ÓÖ Ó Ö Ò Ð Å½ µ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ² Ø ÐÓ ËÝ Ò ÍÒ Ú Ö Ø Ø ß Ç Ò ÍÒ Ú Ö Ø Ø Ä Ö Ò ½ º ÒÙ Ö ¾¼¼ ÐÐ Ú ÒÐ ÐÔ Ñ Ð Ö Ð Ö Ó ÒÓØ Ø Ö Øºµ ÑØ ÖÙ ÐÓÑÑ Ö Ò Ö Ö Ø ÐРغ Ñ Ò ØØ Ø Ø Ö ÓÔ Ú Ö Ô ÒÙÑÑ

Læs mere

ÇÚÖ Ø ½ ¾ ÁÒØÖÓ ÃÓÒÒ ÒØÖÚÐ ÓÖ Ò ÒÐ ÑÔÐ ½ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ Ò ÒÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÐ ÑÔÐ ¾ ÀÝÔÓØ Ø Ø ÓÖ Ö ÒÐ ÑÔÐ ¾

ÇÚÖ Ø ½ ¾ ÁÒØÖÓ ÃÓÒÒ ÒØÖÚÐ ÓÖ Ò ÒÐ ÑÔÐ ½ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ Ò ÒÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÐ ÑÔÐ ¾ ÀÝÔÓØ Ø Ø ÓÖ Ö ÒÐ ÑÔÐ ¾ ÃÙÖ Ù ¼¾¼ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÁÒÖÒ ÓÖ ÒÐ ÔØÐ ½¼µ ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÂÙÒ ¾¼½½ ½» ÇÚÖ Ø

Læs mere

½ Ë Ë ÔÐ Ý Ñ Ò Ö ÔÖÓ Ö ÑÑ Ö Ò µ ÔÖÓ Ö Ñ ÐÓ ÓÙØÔÙØ Ú Ò Ù Ö Ö ÔÖÓ Ù Ö ÖØ Ò ÐØ Ø Ó ÙÑ ÒØ Ö Ë Ë Æ Ä ËÌ Ñ ÒÙ» Ñ ¹ÓÖ ÒØ Ö Ø ÓÚ Ö Ý Ò Ò Ö Ú Ö Ó Ö Ö ÔÖÓ Ö ÑÑ

½ Ë Ë ÔÐ Ý Ñ Ò Ö ÔÖÓ Ö ÑÑ Ö Ò µ ÔÖÓ Ö Ñ ÐÓ ÓÙØÔÙØ Ú Ò Ù Ö Ö ÔÖÓ Ù Ö ÖØ Ò ÐØ Ø Ó ÙÑ ÒØ Ö Ë Ë Æ Ä ËÌ Ñ ÒÙ» Ñ ¹ÓÖ ÒØ Ö Ø ÓÚ Ö Ý Ò Ò Ö Ú Ö Ó Ö Ö ÔÖÓ Ö ÑÑ Ð Ø Ø Ø ¾º ÔØ Ñ Ö ¾¼¼ ÄÝÒ ÙÖ Ù Ë Ë Ò ÐÝ Ø ÁÒ Ð Ò Ò Ø Ð ÔÖÓ ÙÖ Ö Ö Ò Ù ØÞ¹Â Ö Ò Ò Ó Ø Ø Ø Ð Ò ÁÒ Ø ØÙØ ÓÖ ÓÐ ÙÒ Ú Ò Ã Ò ÚÒ ÍÒ Ú Ö Ø Ø ¹Ñ Ð Ó Ø Øº Ùº ØØÔ»» Ø ºÔÙ ÐØ º Ùº»» м ¾ ½ Ë Ë ÔÐ Ý Ñ Ò Ö ÔÖÓ Ö ÑÑ

Læs mere

ÁÒ ÓÐ ½ ÇÔÖ Ø Ò ÖÙÔÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½ ÑÖ º º º º º º º º º º º º º º º º º º º º º º

ÁÒ ÓÐ ½ ÇÔÖ Ø Ò ÖÙÔÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½ ÑÖ º º º º º º º º º º º º º º º º º º º º º º ËÎÆ Ò Ë e Î e Æ Å ÒÙØ ÆÓØ Ø Ø Ð Å ¾ ÖÙÒ Î Ú Ð ÖÚ ¼ Ñ º Ùº ÁÅ Ë Í Ç Ò º ÒÓÚ Ñ Ö ¾¼¼ ÁÒ ÓÐ ½ ÇÔÖ Ø Ò ÖÙÔÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½ ÑÖ º º º º º º

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

Uge 40 I Teoretisk Statistik, 30. september 2003

Uge 40 I Teoretisk Statistik, 30. september 2003 Uge 40 Teoretis tatisti, 30. september 003 Esidet variasaalyse Model, otatio, hypotese og hælpehypotese Test af hælpehypotese Opdaterig af variasestimat Test af hypotese om es middelværdier Variasaalysesema

Læs mere

deta = A = deta = a 11 deta 11 a 12 det A 12 + a 13 deta 13 deta = deta = 1(0 2) 5(0 0) + 0( 4 0) = 2 deta = a i,j deta i,j

deta = A = deta = a 11 deta 11 a 12 det A 12 + a 13 deta 13 deta = deta = 1(0 2) 5(0 0) + 0( 4 0) = 2 deta = a i,j deta i,j Ä Ò Ò ØÖ Ø ÓÖ Ñ Ò ÓÔ Ú Ö Ä Ú Ø ÓÖÑ Ð Ø Ö Ó Ì ÓÑ Â Ò Ò ÓÒØ ÒØ ½ Ø ÖÑ Ò ÒØ Ö ½º½ Í Ú Ð Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º½ ÑÔ Ð Í Ú Ð Ò Ø ÓÖ

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags.

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags. Praktisk ifo Liste med rettelser og meigsforstyrrede trykfejl i DS på Absalo. Statistisk aalyse af e ekelt stikprøve: kedt eller ukedt varias Sadsylighedsregig og Statistik (SaSt) Helle Sørese Projekt

Læs mere

TEKST NR 435 2004. TEKSTER fra IMFUFA

TEKST NR 435 2004. TEKSTER fra IMFUFA TEKST NR 435 2004 Basisstatisti 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Nogle anvendelser af programmel R, bl.a. til hypotesetest

Nogle anvendelser af programmel R, bl.a. til hypotesetest Frank Bengtson 2013 ÖÒºÒØ ÓÒÑкÓÑ Nogle anvendelser af programmel R, bl.a. til hypotesetest R er specielt egnet til statistik og simulering og kan frit installeres på egen pc. R udfører en programlinje

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

ŠРº Â Ö Ò Ò À ÖØÞ ÔÖÙÒ ¹ÊÙ ÐÐ Ö Ñ Ö Ñ Ò ÔÖÓ Ø Ì Ò Ö ÙÖ Ø ÓØÓÑ ØÖ ÃÙ Ð Ó Ñ Ö ¾¼¼ ÈÖ Á Ø ÖØ Ò ½ ¼¼ Ø ÐÐ Ø Ú ØÖÓÒÓÑ Ö Ò Ð Ø Ð Ú Ø ÙØÖÓÐ Ø Ñ Ò ÑÐ Ò Ö Ø ÖÒ Ö Ò Ö ÓÑ Ö Ö Ð Ø Ú Ñ Ò ØÙ Ô ØÖ Ð Ð Ö Ø Ò Ó ÔÓ

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

xi ; ˆσ 2 =, s/ n t(n 1)

xi ; ˆσ 2 =, s/ n t(n 1) ÃÙÖ Ù ¼¾¼¾ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÃÔØÐ ÀÝÔÓØ Ø Ø ÓÖ ÒÒÑ ÒØ ÓÒ¹ ÑÔÐ ØÙÔµº º¹º ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø

Læs mere

ËÓÑ ³ Ü ³ ÚÐ ÖÓÙÔº ËÓÑ ³ Ü ³ ÚÐ Ñ Ö Ò ÐÐ Ö Ú Ö Ú Ö Ö Ø Ó ÔÖÓ ÔÐÓØ Ø Ù ÖºÞ Ð ÞÓ ÔÐÓØ Ñ Ö Ò ÖÓÙÔ» Ü Ü ½ Ú Ü Ü ¾ Ö Ñ Ü ½ Ó Ø µ Ð Ð À µ Ú ÐÙ À ¾µ Ñ ÒÓÖ ÆÇ

ËÓÑ ³ Ü ³ ÚÐ ÖÓÙÔº ËÓÑ ³ Ü ³ ÚÐ Ñ Ö Ò ÐÐ Ö Ú Ö Ú Ö Ö Ø Ó ÔÖÓ ÔÐÓØ Ø Ù ÖºÞ Ð ÞÓ ÔÐÓØ Ñ Ö Ò ÖÓÙÔ» Ü Ü ½ Ú Ü Ü ¾ Ö Ñ Ü ½ Ó Ø µ Ð Ð À µ Ú ÐÙ À ¾µ Ñ ÒÓÖ ÆÇ ÇÔ Ú Ú Ö Ð Ú Ö Ò Ò ÐÝ ÇÔ º½ Ð Ö Ú Ò Ø Ö Ú Ö Ø Ò º º Ð Ø Ù ÖºÞ Ð ÞÓ ÒÔÙØ ÖÓÙÔ Ñ Ö Ò Ø Ð Ò Ø Ú º¼¼ Ø Ú º ¼ Ø Ú º Ø Ú ½¼º¼¼ Ø Ú ½ º¼¼ Ø Ú º ¼ Ô Ú ½½º¼¼ Ô Ú ½¼º¼¼ Ô Ú ½¼º¼¼ Ô Ú ½½º Ô Ú ½¼º ¼ Ô Ú ½ º¼¼ Ò Ò

Læs mere

ÁÒØÖÓ Ù Ø ÓÒØ Ð Ö Ó Ø Ò ÐÐÙ ØÖ Ø ÓÒ ÖÑ Å Ø ÈÓ Ø ÓÖ Ö Ã¹ÌÍ ÅÓÖØ ÒÀ Ö ½¾º ÔÖ Ð¾¼¼¼ ½ ÀÚ ÖÅ Ø ÈÓ Ø Å Ø ÈÓ Ø Ö ØÔÖÓ Ö ÑÑ Ö Ò ÔÖÓ ¹ Ö ØÔÅ Ø ÓÒغ ØÅ Ø ÈÓ Ø¹ÔÖÓ Ö Ñ Ö ÒÓÔ Ö ØØ Ð Ø Ò Ö Ö Ò ÐÐ Ö Ö ÙÖ Öº Å Ø ÈÓ

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Itroducerede Statistik Forelæsig 12: Iferes for adele Klaus K. Aderse og Per Bruu Brockhoff DTU Compute, Statistik og Dataaalyse Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail:

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen Bilag 5: DEA-odelle Bilaget ideholder e teis besrivelse af DEA-odelle FRSYNINGSSERETARIATET FEBRUAR 2013 INDLEDNING... 3 INPUTSTYRET DEA-MDEL... 3 UTPUTSTYRET DEA-MDEL... 7 SALAAFAST... 12 2 Idledig Data

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

ÁÒ ØÖÙØ ÓÒ Ë Ø Ö Ø ØÙÖ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ØÖÙØ ÓÒ Ë Ø ÁÒØ Ö ØÛ Ò Ó ØÛ Ö Ò Ö Û Ö Ú Ð ØÓ ÔÖÓ Ö ÑÑ Ö ËØ Ô ØÓ Ò ÁÒ ØÖÙØ ÓÒ Ë Ø ÓÖ Ú Ò Óѹ ÔÙØ Ö Û Ø Ø Ú Ð Ð ÐØ

ÁÒ ØÖÙØ ÓÒ Ë Ø Ö Ø ØÙÖ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ØÖÙØ ÓÒ Ë Ø ÁÒØ Ö ØÛ Ò Ó ØÛ Ö Ò Ö Û Ö Ú Ð ØÓ ÔÖÓ Ö ÑÑ Ö ËØ Ô ØÓ Ò ÁÒ ØÖÙØ ÓÒ Ë Ø ÓÖ Ú Ò Óѹ ÔÙØ Ö Û Ø Ø Ú Ð Ð ÐØ ÁÒ ØÖÙØ ÓÒ Ë Ø Ö Ø ØÙÖ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ØÖÙØ ÓÒ Ë Ø ÁÒØ Ö ØÛ Ò Ó ØÛ Ö Ò Ö Û Ö Ú Ð ØÓ ÔÖÓ Ö ÑÑ Ö ËØ Ô ØÓ Ò ÁÒ ØÖÙØ ÓÒ Ë Ø ÓÖ Ú Ò Óѹ ÔÙØ Ö Û Ø Ø Ú Ð Ð ÐØ ÖÒ Ø Ú Ò ØÓ ÐØ ÖÒ Ø Ú Ò ÕÙ ÒØ Ø Ú Ñ Ø Ó ÓÛ Ó Ø ÓÑÔ

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

ÇÚÖ Ø ½ ¾ ÑÔÐ À Ó ÚØ ÃÓÖÖÐØÓÒ ÊÖ ÓÒ ÒÐÝ Ô ½½µ ÅÒ Ø ÚÖØÖ ÑØÓ ÁÒÖÒ ÖÖ ÓÒ ÑÓÐ ÁÒÖÒ ÓÖ ÖÒ Ó ÐÒÒ ÃÓÒÒ ÒØÖÚÐ ÓÖ ÐÒÒ ÈÖØÓÒ ÒØÖÚÐ ÓÖ ÐÒÒ ÃÓÖÖÐØÓÒ Ó ÖÖ ÓÒ Ê Ê

ÇÚÖ Ø ½ ¾ ÑÔÐ À Ó ÚØ ÃÓÖÖÐØÓÒ ÊÖ ÓÒ ÒÐÝ Ô ½½µ ÅÒ Ø ÚÖØÖ ÑØÓ ÁÒÖÒ ÖÖ ÓÒ ÑÓÐ ÁÒÖÒ ÓÖ ÖÒ Ó ÐÒÒ ÃÓÒÒ ÒØÖÚÐ ÓÖ ÐÒÒ ÈÖØÓÒ ÒØÖÚÐ ÓÖ ÐÒÒ ÃÓÖÖÐØÓÒ Ó ÖÖ ÓÒ Ê Ê ÃÙÖ Ù ¼¾¼ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ½½ ÃÔØÐ ½½ ÊÖ ÓÒ ÒÐÝ ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ½½ ÂÙÒ ¾¼½½ ½» ÇÚÖ

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for i dag og næste gang: Kvantitative metoder Besrivende statisti og analyse af valitatitive data 7. februar 007 Besrivende statisti som grundlag for en øonometris analyse Statistise metoder til

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test:

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test: Statistik for biologer 005-6, modul 7: Tests for forskel i cetral tedes for data på ordial- og itervalskala M7, slide M7, slide Typer af statistiske test: Parametrisk statistik: - Tester for forskel i

Læs mere

Noter om Kombinatorik 2, Kirsten Rosenkilde, februar

Noter om Kombinatorik 2, Kirsten Rosenkilde, februar Noter om Kombiatori, Kirste Roseilde, februar 008 1 Kombiatori Disse oter itroducerer ogle cetrale metoder som ofte beyttes i ombiatoriopgaver, og ræver et grudlæggede edsab til ombiatori (se fx Kombiatori

Læs mere

ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ Ê Ò Ö Ï Ð ÐÑ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Û Ð ÐÑ ºÙÒ ¹ º ½ º Þ Ñ Ö ¾¼¼

ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ Ê Ò Ö Ï Ð ÐÑ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Û Ð ÐÑ ºÙÒ ¹ º ½ º Þ Ñ Ö ¾¼¼ Ê Ò Ö Ï Ð ÐÑ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Û Ð ÐÑ ºÙÒ ¹ º ½ º Þ Ñ Ö ¾¼¼ Ó Ò Ö Ø ÓÒ Ê Ð Ñ Ò Ò Ø Ó ØÖ Ø Ñ Ò Ê Ø Ö Ñ Ò Ä Ñ Ø Ö ÓÙÖ Ö Ø Ö Ñ ÑÓÖݵ Ü ÛÓÖ Þ ËØÓÖ Ö Ö Ý ÁÒØÖ ÔÖÓ ÓÖ Ô Ö ÐРРѺ È Ò Ó Ò Ö Ø ÓÒ Ó Ð Ø ÓÒ Ð Ø Ò

Læs mere

ÌÖÝ Ø ÁÅÅ ÌÍ

ÌÖÝ Ø ÁÅÅ ÌÍ Ö ÑÑ Ò Ò Ò ØÚÖ Ò Ö Å Ò À Ò Ò ½ Ä Æ ¾¼¼ ÃË Å ÆËÈÊÇ ÃÌ Æʺ ½»¼ ÁÅÅ ÌÖÝ Ø ÁÅÅ ÌÍ ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö Ú Ø ÓÑ ÐÙØØ Ò ÔÖÓ Ø ÓÖ ÓÔÒ Ð Ú Ð Ò Ò ¹ Ö Ö Ò Ö ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Øº ÇÔ Ú Ò Ö Ù ÖØ Ô ÁÒ Ø ØÙØ ÓÖ ÁÒ ÓÖÑ Ø

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

q 1 q 2 x 1 x 2. E(x, p, X, P) = 1 2M P x X.

q 1 q 2 x 1 x 2. E(x, p, X, P) = 1 2M P x X. ÁÒ Ð Ò Ò ËØ Ð Ø Ø Ý ÑÓ ÐÐ Ö Â Ò È Ð Ô ËÓÐÓÚ Å Ò ÙÐÐ Ñ ØÖÓ Ø Ø Ö Ò Ú Ö ÓÖ Ö Ö Ñ ÒÖ Ñ Ò ÓÑ Ø Ö Ø Ó Ø Ö Ð Ú Ö Ø ÐÐ Ø Ô Ö ÑÐ Ø Ò Ù ÓÖ Ð Ö Ú Ù ÒØÐ ÓÖ Ö Ø Ö Ó Ö Ø Ø Ø Ö Ö ÒÓ Ø Ò ÓÖ Ö ÐÐ Ö Ú Ð Ò ÓÖØÐÐ Ú Ø Ö Ñ

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

ÇÚÖ Ø ÁÒÖÒ ÓÖ ÒÒÑ ÒØ ÇÒ¹ ÑÔÐ ØÙÔµ ½ ÁÒØÖÓ Ó ÒÖÐÐ ÖÖ ¾ Å ÑÐ Ð Ô Ø ØÑØ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÃÓÒÒ ÒØÖÚÐ ÍÚÐ ØÐ ÙÒØ ÚÖÒ ¹ ØÙÔ ÃÒØ ÐÐÖ ÙÒØ ÚÖÒ Ê Ê ÒÓØ µ ÂÒ Ãº ÅÐ

ÇÚÖ Ø ÁÒÖÒ ÓÖ ÒÒÑ ÒØ ÇÒ¹ ÑÔÐ ØÙÔµ ½ ÁÒØÖÓ Ó ÒÖÐÐ ÖÖ ¾ Å ÑÐ Ð Ô Ø ØÑØ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÃÓÒÒ ÒØÖÚÐ ÍÚÐ ØÐ ÙÒØ ÚÖÒ ¹ ØÙÔ ÃÒØ ÐÐÖ ÙÒØ ÚÖÒ Ê Ê ÒÓØ µ ÂÒ Ãº ÅÐ ÃÙÖ Ù ¼¾¼ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÃÔØÐ ÁÒÖÒ ÓÖ ÒÒÑ ÒØ ÇÒ¹ ÑÔÐ ØÙÔµ ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½¼ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÂÙÒ

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag     susanne Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer

Læs mere

ÇÚÖ Ø ÃÔØÐ ËÑÔÐ Ö Ó ÒÐØÐ ÃÔØÐ ÖØ ÓÖÐÒÖ ÃÔØÐ ÃÓÒØÒÙÖØ ÓÖÐÒÖ ¼ ÃÔØÐ ËØÔÖÚÓÖÐÒÖ ÃÔØÐ Ó Ò Ó ØÓ ØÔÖÚÖ ÃÔØÐ ÁÒÖÒ ÓÖ ÚÖÒ Ö ÃÔØÐ ¼ ÁÒÖÒ ÓÖ ÒРʹÒÓØ ËØØ Ø Ú ÑÙ

ÇÚÖ Ø ÃÔØÐ ËÑÔÐ Ö Ó ÒÐØÐ ÃÔØÐ ÖØ ÓÖÐÒÖ ÃÔØÐ ÃÓÒØÒÙÖØ ÓÖÐÒÖ ¼ ÃÔØÐ ËØÔÖÚÓÖÐÒÖ ÃÔØÐ Ó Ò Ó ØÓ ØÔÖÚÖ ÃÔØÐ ÁÒÖÒ ÓÖ ÚÖÒ Ö ÃÔØÐ ¼ ÁÒÖÒ ÓÖ ÒРʹÒÓØ ËØØ Ø Ú ÑÙ ÃÙÖ Ù ¼¼ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ËÙÑÑÖÝ ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÂÙÒ ¼» ÇÚÖ Ø ÃÔØÐ ËÑÔÐ Ö Ó ÒÐØÐ ÃÔØÐ

Læs mere

Maja Tarp AARHUS UNIVERSITET

Maja Tarp AARHUS UNIVERSITET AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjyllad Studet år 005 fra Droiglud Gymasium Efter gymasiet: Militæret Australie Startede på matematik

Læs mere

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala Statistik for biologer 005-6, modul 5: Sadsylighedsfordeliger for kotiuerte data på iterval/ratioskala M6, slide Gægse matematiske sadsylighedsfordeliger: Diskrete data: De positive biomialfordelig Poisso-fordelige

Læs mere

HASTIGHEDSKORT FOR DANMARK VHA. GPS

HASTIGHEDSKORT FOR DANMARK VHA. GPS HASTIGHEDSKORT FOR DANMARK VHA. GPS Ove Aderse xcalibur@cs.aau.dk Istitut for Datalogi Aalborg Uiversitet Harry Lahrma lahrma@pla.aau.dk Trafikforskigsgruppe Aalborg Uiversitet Kristia Torp torp@cs.aau.dk

Læs mere

Logistisk regression. Statistik Kandidatuddannelsen i Folkesundhedsvidenskab

Logistisk regression. Statistik Kandidatuddannelsen i Folkesundhedsvidenskab Logistis regression Statisti Kandidatuddannelsen i Folesundhedsvidensab Multipel logistis regression Antagelser: Binære observationer (Y i, i=,.,n) f.es Ja/Nej Høj/Lav Død/Levende Kodet: / 0 Y i uafhængige

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse Avedt Statistik Lektio 3 Pukt- og itervalestimater Kofidesitervaller Valg af stikprøvestørrelse Pukt- og itervalestimater: Motivatio Motiverede eksempel: I e udersøgelse er adele af rygere 0.27. Det aslås

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Statistik og Sandsynlighedsregning 1. IH kapitel 6

Statistik og Sandsynlighedsregning 1. IH kapitel 6 Statistik og Sandsynlighedsregning 1 IH kapitel 6 Overheads til forelæsninger. Uge 41/2005 1 Test i Polynomialfordelingen Forsøg: n uafhængige gentagelse af forsøg med m udfald. Vi observerer x = x 1,...,

Læs mere

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Meigsmåliger KLADDE Thomas Heide-Jørgese, Rosborg Gymasium & HF, 2017 Idhold 1 Meigsmåliger 2 1.1 Idledig................................. 2 1.2 Hvorda skal usikkerhede forstås?................... 3 1.3

Læs mere

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Bestemmelse af vandføring i Østerå

Bestemmelse af vandføring i Østerå Bestemmelse af vadførig i Østerå Geerelt varierer vadstade og vadførige i daske vadløb over året. Normalt er vadførige lille om sommere for derpå at øge om efteråret. Om vitere ses ormalt de højeste vadføriger

Læs mere

w j p j 1 w j / p / = 1

w j p j 1 w j / p / = 1 ÆÝ Ö Ö ÙÐØ Ø Ö Ò Ò ÓÖ ÔÖÓ Ð Ñ Ø Ë ÙÐ Ö Ò Ñ Ö Ú Ð Ø Ö Ô Ò ÐØ¹Ñ Ò Öº Ò Ö Ð ¹ÈÓÚÐ Ò ² Æ ÓÐ Ò Ò ½¼º ÒÙ Ö ¾¼¼ ÁÒ ÓÐ ½ ÁÒØÖÓ Ù Ø ÓÒ ¾ ÈÖÓ Ð Ñ Ø Ð ÓÖ ØÑ Ö º½ Ã Ö Ø º º º º º º º º º º º º º º º º º º º º º º

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Algoritmer og Datastrukturer 2 (Sommer 2004)

Algoritmer og Datastrukturer 2 (Sommer 2004) Algoritmer og Datastrukturer 2 (Sommer 2004) 1a n = rk + 2. m = 2k + 2(r 1)(k 1). Dijkstra: O(m log n) = O((2k + 2(r 1)(k 1))log(rk + 2)) = O(rk log(rk)). 1b 2 / 1 t 1 2 1 / 1 3 / 3 1 3 s 0 / 0 På grafen

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Pearsons formel for χ 2 test. Den teoretiske forklaring

Pearsons formel for χ 2 test. Den teoretiske forklaring Pearsos formel for χ test De teoretse forlarg Ole Wtt-Hase 04 Idhold. Normalfordelge og χ.... Pearsos formel for χ test... 3. Forlarg på Pearsos formel....4 Pearsos formel for χ test. Normalfordelge og

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö ÙÐØ Ø Ø Ø Ñ Ö Ñ ÈÓ Ø ÒÑ Ö ÓÑ Ø ÐÓ ¹ Ð Ö Ò ÔÖÓ Ð Ñ ÓÖ Ô ÒØÖ ÆÓÖ ÐÐ Ò º Î Ð Ø Ø Ù Ö ÚÓÖ Ñ Ò ÔÖÓ Ø Ñ Ö Ñ Ò Ú Ö ÓÑ Ö ÓÖ ÚÓÖ Ú ÓÑÑ Ò ÚÖ Ø

ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö ÙÐØ Ø Ø Ø Ñ Ö Ñ ÈÓ Ø ÒÑ Ö ÓÑ Ø ÐÓ ¹ Ð Ö Ò ÔÖÓ Ð Ñ ÓÖ Ô ÒØÖ ÆÓÖ ÐÐ Ò º Î Ð Ø Ø Ù Ö ÚÓÖ Ñ Ò ÔÖÓ Ø Ñ Ö Ñ Ò Ú Ö ÓÑ Ö ÓÖ ÚÓÖ Ú ÓÑÑ Ò ÚÖ Ø ÅÙÐØ Ñ ØÓ ÓÐÓ Ø ÐÓ Ð Ö Ò ÔÖÓ Ð Ñ ¹ ØÖÙ ØÙÖ Ö Ò Ó ÓÔØ Ñ Ö Ò À ÒÒ Ä Ñ ÒÒ È Ø Ö Ò ½¼¾½ Ë Ö Ö Ã Ñ Ë ÙÐ Ð ½¼ Ä Æ ÂÍÆÁ ¾¼¼ ÃË Å ÆËÈÊÇ ÃÌ Æʺ IMM ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö ÙÐØ Ø Ø Ø Ñ Ö Ñ ÈÓ Ø ÒÑ Ö ÓÑ Ø ÐÓ ¹ Ð Ö Ò ÔÖÓ

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Nogle Asymptotiske Resultater. Jens Ledet Jensen Matematisk Institut, Aarhus Universitet. 1 Indledning 1

Nogle Asymptotiske Resultater. Jens Ledet Jensen Matematisk Institut, Aarhus Universitet. 1 Indledning 1 Nogle Asymptotiske Resultater Jes Ledet Jese Matematisk Istitut, Aarhus Uiversitet Idhold Idhold i Idledig 2 Resultater i et geerelt set-up 7 2. Eksistes af et kosistet estimat............... 7 2.2 Asymptotisk

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Variansanalyse. på normalfordelte observationer af Jens Friis

Variansanalyse. på normalfordelte observationer af Jens Friis Varasaalyse på ormalfordelte observatoer af Jes Frs Esdg varasaalyse Model eelt ormalfordelt observatosræe Lad X, X, X er dbyrdes uafhægge N(μ, σ ) - fordelt stoastse varable Det tlhørede observatossæt

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2 Idhold 1 Pukt- og itervalestimatio 2 1.1 Puktestimatorer: Cetralitet(bias) og efficies.................... 2 2 Kofidesiterval 3 2.1 Kofidesiterval for adel................................ 4 2.2 Kofidesiterval

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN Projekt 3.2 Alægsøkoomie i Storebæltsforbidelse Dette projekt hadler, hvorda økoomie var skruet samme, da ma byggede storebæltsforbidelse. Store alægsprojekter er æste altid helt eller delvist låefiasieret.

Læs mere

Homepage: Literature: Work environment: library(rcmdr) Why R: 1 R-language. 1.1 Data

Homepage:   Literature: Work environment: library(rcmdr) Why R: 1 R-language. 1.1 Data Ê ¹ ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÇÐ Ú Ö Ã Ö ÑÔ ½ º ÂÙÐ ¾¼¼ ÍÒ Ú Ö ØĐ Ø Â Ò ¹¼ Â Ò Ñ Ð ÓÐ Ú Ö Ö ÑÔº ½ ½ Homepage: http://www.kirchkamp.de/ Literature: Î Ò Ð ËÑ Ø Ò ÁÒØÖÓ ÙØ ÓÒ ØÓ Ê Î ÖÞ Ò Ë ÑÔÐ Ê ÖÒ ÛÓÖØ ÓÒÓÑ ØÖ Ò

Læs mere

Program. Middelværdi af Y = t(x ) Transformationssætningen

Program. Middelværdi af Y = t(x ) Transformationssætningen Program Statistik og Sadsylighedsregig 2 Trasformatio af kotiuerte fordeliger på R, flerdimesioale kotiuerte fordeliger, mere om ormalfordelige Helle Sørese Uge 7, osdag I formiddag: Opfølgig på trasformatiossætige

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Matematiklærerdag 2008

Matematiklærerdag 2008 Matematiklærerdag 2008 Klaus Thomsen Institut for Matematiske Fag Det Naturvidenskabelige Fakultet Aarhus Universitet March 27, 2008 Matematik og kemi. Matematik og kemi. Intelligente tællemetoder - frit

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

ÓÖÑ Ð Ô Ø ÓÒ Ò ÔÖÓÓ ÓÖ Ø ØÓÔÓÐÓ Ý Ò Ð Ø ÓÒ Ó ÓÑ Ò ØÓÖ Ð ÙÖ Ö ØÓÔ Ð Ò Ö Ò Â Ò¹ Ö ÒÓ Ù ÓÙÖ Ä ÓÖ ØÓ Ö Á Í ÍÒ Ú Ö Ø ËØÖ ÓÙÖ ÆÊË ÈÐ ³ÁÒÒÓÚ Ø ÓÒ Ì ÒÓÐÓ ÕÙ Ó

ÓÖÑ Ð Ô Ø ÓÒ Ò ÔÖÓÓ ÓÖ Ø ØÓÔÓÐÓ Ý Ò Ð Ø ÓÒ Ó ÓÑ Ò ØÓÖ Ð ÙÖ Ö ØÓÔ Ð Ò Ö Ò Â Ò¹ Ö ÒÓ Ù ÓÙÖ Ä ÓÖ ØÓ Ö Á Í ÍÒ Ú Ö Ø ËØÖ ÓÙÖ ÆÊË ÈÐ ³ÁÒÒÓÚ Ø ÓÒ Ì ÒÓÐÓ ÕÙ Ó ÓÖÑ Ð Ô Ø ÓÒ Ò ÔÖÓÓ ÓÖ Ø ØÓÔÓÐÓ Ý Ò Ð Ø ÓÒ Ó ÓÑ Ò ØÓÖ Ð ÙÖ Ö ØÓÔ Ð Ò Ö Ò Â Ò¹ Ö ÒÓ Ù ÓÙÖ Ä ÓÖ ØÓ Ö Á Í ÍÒ Ú Ö Ø ËØÖ ÓÙÖ ÆÊË ÈÐ ³ÁÒÒÓÚ Ø ÓÒ Ì ÒÓÐÓ ÕÙ ÓÙÐ Ú Ö Ëº Ö ÒØ È½¼ ½ ¼¼ ÁÐÐ Ö Ö Ò Ñ Ð ÙÒ ØÖ º Ö Ö ØÓÔ

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere