HASTIGHEDSKORT FOR DANMARK VHA. GPS
|
|
|
- Torben Møller
- 9 år siden
- Visninger:
Transkript
1 HASTIGHEDSKORT FOR DANMARK VHA. GPS Ove Aderse Istitut for Datalogi Aalborg Uiversitet Harry Lahrma Trafikforskigsgruppe Aalborg Uiversitet Kristia Torp Istitut for Datalogi Aalborg Uiversitet Itroduktio Et kort over vejettet, der viser geemsitshastighede på de ekelte vejsegmeter, har mage avedelser i trafikaalyse, f.eks. ka ma berege rejsetider mellem forskellige pukter i vejettet, me der ka også lokaliseres strækiger med trægsel (1) eller strækiger, hvor bilister geerelt kører for hurtigt. Dee artikel beskriver hvorledes et hastighedskort for Damark er skabt udelukkede vha. GPS data. E stor fordel ved at bruge GPS data er, at der er store mægder data tilgægeligt fra mage forskellige kilder. Det store problem er at sikre e passede dækigsgrad og et tilstrækkeligt atal GPS data observatioer per segmet. Herudover er der ved GPS data e række fejlkilder, som det er ødvedigt at elimiere (2) (3) (4) Metode Der vil i artikle blive præseteret to måder til beregig af hastigheder på et segmet vha. GPS data. De første måde kaldes puktbaseret og avedes for lav frekvet data f.eks. hvis GPS data ku modtages hver 30. sekud fra et køretøj. De ade måde kaldes turbaseret og avedes, år GPS data afsedes så ofte, at data fra et ekelt køretøj ka sammesættes til e tur (2). Formålet med at have to måder er, at de puktbaserede altid ka avedes, me det atages at de turbaserede er mere retvisede. Hver måde at berege hastigheder på ka implemeteres ved flere kokrete metoder. For både de puktbaserede og de turbaserede er to kokrete metoder avedt (fire metoder i alt). Disse fire kokrete metoder beskrives i flere detaljer i det efterfølgede. De puktbaserede måde er illustreret i Figur 1, som viser et kort udsit med 3 segmeter. De 7 cirkler repræseterer GPS data og er markeret med id/hastighed. Bemærk at det atages, at alle GPS måliger er fra forskellige køretøjer Segmet Segmet 200 Segmet Figur 1 Puktbaseret måde (avedes både til simpel og vægtet puktbaseret metode).
2 Det atages, at hvert GPS pukt mapmatches til ærmeste segmet, som er idikeret vha. cirkles farver. E simpel geemsitshastighed for hvert segmet ka u bereges med formle: v = i=1 v i (1) Dee kokrete metode kaldes simpel puktbaseret. Problemet med dee metode er imidlertid, at observatioere er logget efter e tidsfrekves. Dette betyder, at der på det ekelte segmet vil være e overrepræsetatio af observatioer med lave hastigheder. Dee fejl ka elimieres ved at vægte de ekelte observatio i forhold til observatioes hastighed. Dette er gjort i formel 2 heruder. v = i=1 (v i 2 3,6) i=1 (v i 3,6) ( 2) Hvor v i er hastighed og l i er distace, der er kørt med i ét sekud, med hastighede v i. Dee kokrete metode kaldes vægtet puktbaseret. Hvis de 7 pukter i figur 1 bruges i de puktbaserede hastigheds beregig bliver resultatet som vis i Tabel 1, og det bemærkes, at formel 2 giver højere geemsitshastigheder ed formel 1 Segmet Obs. Geemsitshastighed Geemsitshastighed Observatioer Hastighed simpel (formel 1) vægtet (formel 2) ,00 80, ,50 70, ,50 79,53 2 Tabel 1: Resultat af pukt baseret beregig De turbaserede måde er illustreret i Figur 2. De viser to køretøjer, der begge har passeret tre segmeter, me køretøj A har kørt med cirka de halve hastighed af køretøj B Køretøj A x x x x x x x x x x x x x x x x x Køretøj B o o o o o o o o Segmet 10 Segmet 11 Segmet 12 Figur 2 Turbaseret måde.
3 Når køretider bereges vha. ture skal det udgås, at e lagsomt kørede vægter højere ed e hurtigt kørede. Dette er vist i Tabel 2, hvorda hver tur, der passerer et segmet, ku tælles med é gag per køretøj. Segmet Køretøj Beregig Observatioer Geemsit 10 A ( )/ B ( )/ Geemsit ( )/ A ( )/ B ( )/ Geemsit ( )/ A ( )/ B (93+95)/ Geemsit ( )/ Tabel 2 Ture baseret beregig De kokrete beregigsmetode vist overfor kaldes simple turbaseret. Problemet med dee metode er, at de blot samler observatioer per segmet. For at få selve ture bedre repræseteret Køretøj A x x x x x x x x x x x x x x x x x Segmet 10 Segmet 11 Segmet 12 Figur 3: Sammehægede turbaseret metode. i beregiger afprøves e sammehægede turbaseret metode, som er illustreret i Figur 3. Hovedidee er, at de først GPS målig på segmet 10 kobles med de første målig på segmet 11 (det æste segmet på ture). Ud fra disse GPS måligers afstad i tid og rum bereges køretide for dee tur på segmet 10. Tilsvarede ka hastighed bereges på segmet 11, me ikke på segmet 12, hvis det atages at dette er det sidste segmet på ture. Resultater Følgede resultater vil blive vist i artikle. Køretider bereget vha. puktbaseret og turbaseret og kombieret o Hvor mage pukter og hvor mage ture har datasættet Dækigsgrade for hele Damark o Her vil de procetvise dækig af de forskellige vejklasser blive listet
4 For udvalgt kedt strækiger med trægsel f.eks. Køge Bugt motorveje vil det bliver udersøgt, om trægsel ka idetificeres og hvor lage perioder på hverdage, der er trægsel? Resultater for motorveje vil sammeliget med veje i bymidte for at udersøge om GPS data ka avedes begge steder. Som et eksempel på dækigsgrade viser Figur 3 tre måeders data (bemærk Østsjællad heruder Købehav er i øjeblikket frasorteret. Disse data haves me er edu ikke mapmatched og idlæste). I Figur 3 er alle vejklasser idlæst for at vise dækige iklusive færgeruter som er e del af kortet, der bruges. Farvekodere er følgede: Farve Atal observatioer 0 Sort 0-10 Rød Gul Grø Blå >250 Lilla Figur 4 Dækig for Damark med 3 måeders data [Billede er kort vist med Google Earth]
5 Diskussio I diskussio vil bl.a. følgede emer blive berørt: Fordele og ulemper ved pukt baseret GPS data o Hvorda mapmatches foruftigt? o Hvorda hådteres observatioer med ul hastigheder? Fordele og ulemper med tur baseret o Hvor lav ka sampligsfrekves være Hvor meget data skal der være til rådighed for at få et retvisede resultat? o Dette gælder både pukt- og turmetodere Hvorda vægtes tur- og puktbaserede hastigheder år begge haves på et segmet? o Uder atagelse af at turbaseret er mere retvisede. Hvorda er de beregede hastigheder sammeliget med f.eks. Google Maps, Kraks, eller Sithastigheder fra Mastradatabase? Styrker og svagheder ved at avede GPS data sammeliget med eksisterede metoder o Beskidte GPS data (hastighed, placerig forkert, ul hastighed) Referecer 1. COWI A/S. Projekt Trægsel ISBN: GPS pilotprojekt. Holm, J. og Foller, Jes Trafikdage på Aalborg Uiversitet. 3. GPS data som grudlag for e atioal rejsehastighedsdatabase. Holm, Ja. s.l. : Trafikdage på Aalborg Uiversitet, ISSN Metode til beregig af køretider, trægsel og forsikelser i kryds vha. GPS Data. Torp, Kristia og Lahrma, Harry. Aalborg : Trafikdage på Aalborg Uiversitet, ISSN Pereira, Fracisco, Costa, Hugo og Pereira, Nuo. A off-lie map-matchig algorithm for icomplete map databases. Europea Trasport Research Review. 1, 2009, 3, s
Renteformlen. Erik Vestergaard
Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard
Lys og gitterligningen
Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar
Bestemmelse af vandføring i Østerå
Bestemmelse af vadførig i Østerå Geerelt varierer vadstade og vadførige i daske vadløb over året. Normalt er vadførige lille om sommere for derpå at øge om efteråret. Om vitere ses ormalt de højeste vadføriger
Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)
Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler
Køretider, belastningsgrader og forsinkelser i kryds beregnet ud fra Floating Car Data
Køretider, belastningsgrader og forsinkelser i kryds beregnet ud fra Floating Car Data Kristian Torp [email protected] Institut for Datalogi Aalborg Universitet Harry Lahrmann [email protected] Trafikforskningsgruppen
Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros
Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse
Claus Munk. kap. 1-3
Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor
Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro
Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro
Matematik A. Højere handelseksamen. Tirsdag den 26. maj 2015 kl hhx151-mat/a
Matematik A Højere hadelseksame hhx151-mat/a-26052015 Tirsdag de 26. maj 2015 kl. 9.00-14.00 Matematik A Prøve består af to delprøver. Delprøve ude hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.
hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i
Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,
Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros
Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet
Motivation. En tegning
Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget
9. Binomialfordelingen
9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der
Løsninger til kapitel 7
Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed
Maja Tarp AARHUS UNIVERSITET
AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjyllad Studet år 005 fra Droiglud Gymasium Efter gymasiet: Militæret Australie Startede på matematik
GPS data til undersøgelse af trængsel
GPS data til undersøgelse af trængsel Ove Andersen Benjamin B. Krogh Kristian Torp Institut for Datalogi, Aalborg Universitet {xcalibur, bkrogh, torp}@cs.aau.dk Introduktion GPS data fra køretøjer er i
Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017
Meigsmåliger KLADDE Thomas Heide-Jørgese, Rosborg Gymasium & HF, 2017 Idhold 1 Meigsmåliger 2 1.1 Idledig................................. 2 1.2 Hvorda skal usikkerhede forstås?................... 3 1.3
Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n
Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - [email protected] Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi
Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion
Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi
Projekt 1.3 Brydningsloven
Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme
Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1
Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter
Elementær Matematik. Polynomier
Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere
Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)
Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt
Introduktion til uligheder
Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og
Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007
Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude
Sprednings problemer. David Pisinger
Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de
Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6
Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig
Begreber og definitioner
Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster
Matematisk trafikmodellering
- Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige
Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik
Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt
Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse
Avedt Statistik Lektio 3 Pukt- og itervalestimater Kofidesitervaller Valg af stikprøvestørrelse Pukt- og itervalestimater: Motivatio Motiverede eksempel: I e udersøgelse er adele af rygere 0.27. Det aslås
Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger
Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: [email protected] Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem
Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.
STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,
Introduktion til uligheder
Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles
Projekt 9.10 St. Petersborg paradokset
Hvad er matematik? ISBN 978877066879 Projekt 9.0 St. Petersborg paradokset. De store tals lov & viderchacer I grudboges kapitel 9 omtales de store tals lov, som ka formuleres således: Hvis e spiller i
Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner
Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig
1.0 FORSIKRINGSFORMER
eam Lv forskrgsakteselskab Bereggsgrudlaget sgrp217 tl præmeberegg for gruppeforskrg e-am Lv forskrgsakteselskab 1. FORIKRINGFORMER 1.1 Oblgatorske ordger Alle gruppeforskrgsordger teget på dette grudlag
Kapitel 10 KALIBRERING AF STRØMNINGSMODEL
Kapitel 0 KALIBRERING AF STRØMNINGSMODEL Torbe Obel Soeborg Hydrologisk afdelig, GEUS Nøglebegreber: Kalibrerigsprotokol, observatiosdata, kalibrerigskriterier, idetificerbarhed, etydighed, parameterestimatio,
Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN
Projekt 3.2 Alægsøkoomie i Storebæltsforbidelse Dette projekt hadler, hvorda økoomie var skruet samme, da ma byggede storebæltsforbidelse. Store alægsprojekter er æste altid helt eller delvist låefiasieret.
Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith
Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.
Estimation og test i normalfordelingen
af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:
Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags.
Praktisk ifo Liste med rettelser og meigsforstyrrede trykfejl i DS på Absalo. Statistisk aalyse af e ekelt stikprøve: kedt eller ukedt varias Sadsylighedsregig og Statistik (SaSt) Helle Sørese Projekt
Artikler fra Trafikdage på Aalborg Universitet Abstrakt
Denne artikel er publiceret i det elektroniske tidsskrift Artikler fra Trafikdage på Aalborg Universitet (Proceedings from the Annual Transport Conference at Aalborg University) ISSN 1603-9696 www.trafikdage.dk/artikelarkiv
DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet
DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig
Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende
Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste
Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.
Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,
Vejledende besvarelser til opgaver i kapitel 15
Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry
Teoretisk Statistik, 9. februar Beskrivende statistik
Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-
og Fermats lille sætning
Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage
Undgå tab med effektiv debitorstyring og inkasso
Udgå tab med effektiv debitorstyrig og ikasso 6. maj 2009 tekologisk istitut TAASTRUP Bliv opdateret på de yeste regler hvad betyder de for di virksomhed? Har du styr på virksomhedes tilgodehaveder? Etablerig
Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem
Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2003 Dette er de ade obligatoriske projektopgave på kurset Itroduktio til optimerig og operatiosaalyse.
Grundlæggende Lederuddannelse
Grudlæggede Lederuddaelse Grudlæggede Lederuddaelse God ledelse er vigtig for både dig og di virksomhed. Det er vigtigt for di ege persolige udviklig, for die medarbejderes motivatio og dermed i sidste
DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet
DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.
og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN
Projekt 0.4 Modulo-regig, restklassegruppere sætig ( p 0, ) og Fermats lille Vi aveder moduloregig og restklasser mage gage om dage, emlig år vi taler om tid, om hvad klokke er, om hvor lag tid der er
Blisterpakninger i det daglige arbejde
Bettia Carlse Marts 2013 Blisterpakiger i det daglige arbejde I paeludersøgelse 35 1 har 1.708 beskæftigede sygeplejersker besvaret e række spørgsmål om (hådterige af) blisterpakiger i det daglige arbejde.
Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik
Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt
Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter
Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag
Teoretisk Statistik, 18. november Stikprøveteori: hvor er vi, og hvor skal vi hen? Proportional allokering Optimal allokering
Uge 47 I Teoretisk Statistik, 8. oveber 003 Stikprøveteori: hvor er vi, og hvor skal vi he? Proportioal allokerig Optial allokerig Heruder: Saeligig af variaser og ødvedige stikprøvestørrelser for de forskellige
Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning
Hvad er matematik? Projekter: Kaitel 9 Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Sætig : Regeregler
Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.
Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige
Analyse af elbilers forbrug Ove Andersen Benjamin B. Krogh Kristian Torp Institut for Datalogi, Aalborg Universitet {xcalibur, bkrogh, torp}@cs.aau.
Denne artikel er publiceret i det elektroniske tidsskrift Artikler fra Trafikdage på Aalborg Universitet (Proceedings from the Annual Transport Conference at Aalborg University) ISSN 1603-9696 www.trafikdage.dk/artikelarkiv
Giv eksempler på hvordan forskellige ligningstyper (lineære, eksponentielle eller potens) løses.
Eksamesspørgsmål matematik C, sommer 018. (Foreløbig udgave, små ædriger ka forekomme) Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler
Kvadratisk 0-1 programmering. David Pisinger
Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal
Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!
Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders
Beregning af prisindeks for ejendomssalg
Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige
