Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem"

Transkript

1 Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2003 Dette er de ade obligatoriske projektopgave på kurset Itroduktio til optimerig og operatiosaalyse. Opgave skal afleveres seest 5. december 2003 kl i DIKU s 1. delsadmiistratio. Besvarelse skal udarbejdes i grupper på e til tre deltagere. Læs veligst hele opgaveformulerige igeem ide du går igag. Opgavere vil blive rettet seest 8/12 således at e evetuel geafleverig ka ske 12/12. Dermed burde alle besvarelser være rettet ide eksame. Idledig Et IP-problem ka ofte formuleres på mage måder. Selv om de matematisk set er ækvivalete, ka e stærk formulerig være at foretrække, idet de er tættere på det kovekse hylster ideholdede alle IP-løsiger til problemet [7]. Travelig Salesma Problemet (TSP) er et klassisk, svært optimerigsproblem som vi ku ka løse takket være stærke formuleriger af problemet [1, 2, 3, 4]. Opgaves formål er at eksperimetere med forskellige formuleriger af TSP samt at kombiere to formuleriger i et cuttig plae system. Travelig Salesma Problemet Lad der være givet e komplet graf G V E hvor hver kat i j E har e tilhørede omkostig c i j. Vi atager at problemet ikke ødvedigvis er symmetrisk, dvs. der ka være situatioer hvor c i j c ji. Travelig Salesma Problemet har til opgave at fide de korteste Hamilto kreds i grafe, dvs. e kreds som besøger alle kuder etop ee gag, og som miimerer de tilhørede omkostig af katere. Lad betege atallet af kuder i V. For at formulere problemet som et IP problem, ka ma idføre beslutigsvariablee x i j 1 hvis kat i j idgår i kredse 0 ellers for i j 1. For at gøre skrivemåde emmere vil vi i det følgede atage at x ii 0 for i 1. 1

2 Idet ma skal akomme til hver kude etop ee gag, og skal forlade hver kude ee gag, vil e aiv formulerig af TSP være miimize subject to i 1 i 1 c i j x i j j 1 x i j 1 j 1 (1) x i j 1 i 1 j 1 x i j 0 1 i j 1 Oveståede begræsiger kaldes assigmet begræsiger. Opgave 1 Vis at selv om ma løser LP-relaxerige af oveståede problem, vil ma altid fide e heltallig løsig. Desværre er formulerige (1) ikke tilstrækkelig til at løse TSP, idet e optimal løsig ka ideholde delture. For at forhidre disse ka ma tilføje følgede deltur begræsiger for alle S V hvor 2 S 1. Opgave 2 Agiv hvor mage uligheder af forme (2) der vil være. x i j S 1 (2) i j S Miller, Tucker og Zemli [5] foreslog e formulerig som forhidrer delture, me som ku er polyomielt stor. Idee er at idføre ogle ye variable u i for hver kude, som agiver rækkefølge af kude i ture. Kude 1 har altid u 1 1 og hvis u i k betyder det at kude i er de k te besøgte kude på ture. I sages atur er u i for alle kuder i V. Edvider skal vi kræve at hvis kat i j beyttes i ture, så skal u j u i 1 (3) for alle i 1 og j 2 hvor i j. Disse begræsiger kaldes MTZ begræsiger. Opgave 3 Formuler MTZ begræsigere som IP-model. Agiv hvor mage uligheder der vil være. Opgave 4 Løs problemet med begge formuleriger, ved brug af rammeprogrammet beskrevet sidst i opgave. Agiv modelles størrelse (i bytes), samt løsigstid for CPLEX. Trods MTZ formuleriges polyomielle størrelse, er der i litterature ikke rapporteret avedelser af dee model som kue løse TSP problemer med mere ed 50 kuder. 2

3 Opgave 5 Lad C være e kreds i grafe. Summer begræsigere (3) formuleret som LP-model over alle kater i j C. Ved summatioe vil u j leddee gå ud mod hiade. Sammelig de resulterede ulighed med ulighede x i j C 1 (4) i j C fra deltur formulerige. Hvilke af ulighedere er stærkest, og hvilke af formulerigere ville ma derfor foretrække? Vi vil u udvikle e simpel cuttig plae algoritme til at løse TSP. 1 Start med e simpel formulerig, der ku ideholder assigmet begræsigere 2 for i 1 to M 3 Løs modelle til IP-optimalitet med CPLEX 4 Såfremt de returerede løsig ikke ideholder delture, stadser algoritme 5 Geerer et atal uligheder som bryder de uværede delture 6 Tilføj de geererede uligheder til modelle 7 ed for 8 Tilføj MTZ begræsigere til modelle 9 Løs modelle til IP-optimalitet med CPLEX Opgave 6 Beskriv og implemeter e algoritme som ka geerere et atal deltur uligheder på forme (2) der bryder de uværede delture i liie 5. Opgave 7 Eksperimeter med hvor mage uligheder der skal tilføjes i hver iteratio af liie 5, samt med atallet af iteratioer M. Giv e begrudet beskrivelse af dit edelige valg. Opgave 8 Beskriv og implemeter e heuristik som givet e løsig i skridt 3, der ideholder delture, kostruerer e sammehægede Hamilto kreds. Aved dee efter skridt 4 i cuttig plae algoritme. Såfremt de heuristiske løsig svarer til de fude græseværdi i skridt 3, ka algoritme stadse. Opgave 9 Løs så store problemer af type som muligt med de udviklede algoritme. Rapporter køretid, atal iteratioer i cuttig plae algoritme, samt atal geererede cuts. Opgave 10 (ekstraopgave) Tilføj flere typer af lovlige uligheder til modelle. E god beskrivelse af de mest kedte lovlige uligheder for TSP fides i [9]. Overvej specielt hvorda ulighedere ka separeres effektivt. Rapporter køretid, atal iteratioer i cuttig plae algoritme, samt atal geererede cuts. 3

4 Istaser Følgede istaser er (med få udtagelser) hetet fra TSPLIB hjemmeside [8] og koverteret til et format der er emt at idlæse. Alle istaser fides på kursets hjemmeside. istas beskrivelse 5 rad5 tilfældigt geererede katvægte 10 rad10 tilfældigt geererede katvægte 8 borholm afstade mellem otte byer på Borholm 14 burma14 14 byer i Burma, geografisk afstad 17 gr17 17 byer i Tysklad 21 gr21 21 byer i Tysklad 24 gr24 24 byer i Tysklad 48 gr48 48 byer i Tysklad 120 gr byer i Tysklad 29 bays29 29 byer i Bayer (street distace) 29 bayg29 29 byer i Bayer (geographic distace) 42 swiss42 42 byer i Schweiz (Fricker) 17 br17 asymmetrisk TSP (Repetto) 34 ftv33 asymmetrisk TSP (Fischetti) 36 ftv35 asymmetrisk TSP (Fischetti) 39 ftv38 asymmetrisk TSP (Fischetti) 45 ftv44 asymmetrisk TSP (Fischetti) 47 ftv48 asymmetrisk TSP (Fischetti) 56 ftv55 asymmetrisk TSP (Fischetti) 71 ftv70 asymmetrisk TSP (Fischetti) 171 ftv170 asymmetrisk TSP (Fischetti) 48 ry48p asymmetrisk TSP (Fischetti) 323 rbg323 Stacker crae applicatio (Ascheuer) 358 rbg358 Stacker crae applicatio (Ascheuer) 403 rbg403 Stacker crae applicatio (Ascheuer) 443 rbg443 Stacker crae applicatio (Ascheuer) 535 si535 TSP (M. Hofmeister) 1032 si1032 TSP (M. Hofmeister) De optimale løsigsværdi er agivet i hovedet af de fleste istaser. De ederste istaser kræver at programmets tabeller udvides. Noter Til opgave beyttes et rammeprogram som er skrevet i C og som varetager kommuikatioe med CPLEX. Da der ku er ogle få CPLEX-liceser til rådighed på DIKU, vil ram- 4

5 meprogrammet højst bruge CPLEX i 60 sekuder, hvorpå licese frigives. CPLEX liceser er tilgægelige på Liux pc er samt SUN maskier. For at beytte CPLEX er det ødvedigt at tilføje følgede liie i si fil.! " #!$% %" "&% ')(+*, Rammeprogrammet oversættes med kommadoe - ""/. 01.!2 % &3 % &4(5"6.! " #!$%%*7 " 8% %*"&% '9.! " #!$% %*7:%9. "&% ';.7,<.& = # 8 Der beyttes et meget simpelt iterface til CPLEX: IP-modelle skrives til e fil D, hvorpå rammeprogrammet kalder CPLEX med file som iddata. Det simple iterface gør det emt at fide fejl i IP-modelle, idet ma ka avede CPLEX iteraktivt med de geererede iput fil: Skriv?DGFEH i kommadoliie, og idlæs datafile med D. Såfremt der er sytaxfejl i IP-modelle vil CPLEX rapportere disse. Ellers kaldes K og CPLEX vil rapportere om modelle er ubegræset ( ubouded ), har et tomt løsigsrum ( ifeasible ), eller ligede. Litteratur [1] bico/, home page of Bill Cook at Rice Uiversity. [2] [3] E. Lawler, J. K. Lestra, A. H. G. Riooy Ka, ad D. B. Shmoys, eds., The Travelig Salesma Problem: A Guided Tour of Combiatorial Optimizatio, Wiley, Chichester, UK, 1985 [4] A. Lagevi, F. Soumis, ad J. Desrosiers, Classificatio of travellig salesma formulatios, Oper. Res. Lett., 9 (1990), pp [5] C. E. Miller, A. W. Tucker, ad R. A. Zemli, Iteger programmig formulatios ad travelig salesma problems, J. ACM, 7 (1960), pp [6] M. Padberg, ad T.-Y. Sug, A aalytical compariso of differet formulatios of the travellig salesma problem, Math. Programmig, 52 (1991), pp [7] L. A. Wolsey, Iteger Programmig, Wiley, Chichester, UK, [8] [9] kevi/dissert/ode11.html 5

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem DATV: Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2004 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Branch-and-bound. Indhold. David Pisinger. Videregående algoritmik, DIKU ( )

Branch-and-bound. Indhold. David Pisinger. Videregående algoritmik, DIKU ( ) Brach-ad-boud David Pisiger Videregåede algoritmik, DIK (005-06) 6 Kvalitet af græseværdifuktioe 3 6. Eksempler på domias....................... 3 7 Kritiske og Semikritiske delproblemer 34 8 Kuste at

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968)

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968) Algoritmedesig med iteretavedelser ved Keld Helsgau Aalyse af algoritmer Iput Algoritme Output E algoritme er e trivis metode til løsig af et problem i edelig tid 1 2 Algoritmebegrebet D. E. Kuth (1968)

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og TIMEGLASSETS FASER: INTRO Itroe er et foto og ogle spørgsmål til hele kapitlet. Meige med itroe er, at du og di klasse skal få e ide om, hvad kapitlet hadler om, og hvad I skal lære. Prøv at svare på spørgsmålee

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

HASTIGHEDSKORT FOR DANMARK VHA. GPS

HASTIGHEDSKORT FOR DANMARK VHA. GPS HASTIGHEDSKORT FOR DANMARK VHA. GPS Ove Aderse xcalibur@cs.aau.dk Istitut for Datalogi Aalborg Uiversitet Harry Lahrma lahrma@pla.aau.dk Trafikforskigsgruppe Aalborg Uiversitet Kristia Torp torp@cs.aau.dk

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Hvordan hjælper trøster vi hinanden, når livet er svært?

Hvordan hjælper trøster vi hinanden, når livet er svært? Hvorda hjælper trøster vi hiade, år livet er svært? - at være magtesløs med de magtesløse Dask Myelomatoseforeig Temadag, Hotel Scadic, Aalborg Lørdag de 2. april 2016 kl. 14.00-15.30 Ole Raakjær, præst

Læs mere

Nanomaterialer Anvendelser og arbejdsmiljøforhold

Nanomaterialer Anvendelser og arbejdsmiljøforhold F O A F A G O G A R B E J D E Naomaterialer Avedelser og arbejdsmiljøforhold Dee Kort & Godt pjece heveder sig til dig, som er medlem af FOA. Pjece giver iformatio om: Hvad er et aomateriale? Eksempler

Læs mere

Psyken på overarbejde hva ka du gøre?

Psyken på overarbejde hva ka du gøre? Psyke på overarbejde hva ka du gøre? Idhold Hvorår kommer ma uder psykisk pres? 3 Hvad ka øge det psykiske pres på dit arbejde? 4 Typiske reaktioer 6 Hvorda forløber e krise? 7 Hvad ka du selv gøre? 9

Læs mere

DK / -- MAG SYSTEM. Gulvrengøring

DK / -- MAG SYSTEM. Gulvrengøring DK / -- MAG SYSTEM Gulvregørig Mag System Kocept 2 www.vermop.com Di fordel Mag System Iovativt og ekeltståede Mag System fra VERMOP står for e helt y måde at fiskere vaskbetræk på fremførere (eller skaftet)

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Symmetrisk Traveling Salesman Problemet

Symmetrisk Traveling Salesman Problemet Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Den grådige metode 2

Den grådige metode 2 Algoritmedesig 1 De grådige metode De grådige metode Et problem løses ved at foretage e række beslutiger Beslutigere træffes e ad gage i e eller ade rækkefølge Hver beslutig er baseret på et grådighedskriterium

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation. De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

info FRA SÆBY ANTENNEFORENING Lynhurtigt bredbånd til lavpris på vej til hele Sæby! Priser kan ses på bagsiden.

info FRA SÆBY ANTENNEFORENING Lynhurtigt bredbånd til lavpris på vej til hele Sæby! Priser kan ses på bagsiden. ifo FRA SÆBY ANTENNEFORENING Lyhurtigt bredbåd til lavpris på vej til hele Sæby! Priser ka ses på bagside. Velkomme til SAFet - avet på vores eget lokale Bredbåd! Sæby Ateeforeig har med virkig fra 15.

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Nanomaterialer i virkeligheden F O A F A G O G A R B E J D E

Nanomaterialer i virkeligheden F O A F A G O G A R B E J D E F O A F A G O G A R B E J D E Naomaterialer i virkelighede Arbejdsmiljøkoferece i Kost- og Servicesektore 9. september 2013 Naomaterialer i virkelighede Idhold Gå ikke i paik eller baglås. I ka sagtes

Læs mere

Rumgeometri Side 1 af 20

Rumgeometri Side 1 af 20 Rumgeometi Side af Idhold. Puktmægde i ummet..... Lije i ummet..... Pla... Paametefemstillige fo e pla i ummet e givet ved... Fa ligig til paametefemstillig... Fa paametefemstillig til ligig..... Kugle

Læs mere

Facilitering ITU 15. maj 2012

Facilitering ITU 15. maj 2012 Faciliterig ITU 15. maj 2012 Facilitatio is like movig with the elemets ad sailig the sea Vejvisere Velkomst de gode idflyvig Hvad er faciliterig? Kedeteg ved rolle som facilitator Facilitatores drejebog

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen Bilag 5: DEA-odelle Bilaget ideholder e teis besrivelse af DEA-odelle FRSYNINGSSERETARIATET FEBRUAR 2013 INDLEDNING... 3 INPUTSTYRET DEA-MDEL... 3 UTPUTSTYRET DEA-MDEL... 7 SALAAFAST... 12 2 Idledig Data

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Begreber og definitioner

Begreber og definitioner Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

TILSKUDSREGLER FOR AFTENSKOLER FAABORG-MIDTFYN-ORDNINGEN

TILSKUDSREGLER FOR AFTENSKOLER FAABORG-MIDTFYN-ORDNINGEN TILSKUDSREGLER FOR AFTENSKOLER FAABORG-MIDTFYN-ORDNINGEN VELKOMMEN Tilskudsreglere beskriver hvorda Faaborg-Midtfy Kommue støtter det frivillige folkeoplysede foreigsarbejde med økoomisk tilskud og avisig

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Introduktion. Ide, mål og formål

Introduktion. Ide, mål og formål Itroduktio Dette er e itroduktio til forskigs- og udvikligsprojektet Udviklig af e eksemplarisk participatorisk model for implemeterig af redskaber til opsporig og tidlig idsats i relatio til potetielt

Læs mere

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005 Vderegåede Algortmk Davd Psger, DIKU Reeksame, Aprl 5 Bsecto problemet Gvet e uvægtet graf G = (V, E) samt et heltal k. E bsecto af grafe G er e opdelg af kudere V to lge store mægder S og T. MAX-BISECTION

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

NOTAT Det daglige arbejde med blisterpakninger

NOTAT Det daglige arbejde med blisterpakninger Sige Friis Christiase 7. maj 2015 NOTAT Det daglige arbejde med blisterpakiger I paeludersøgelse 55 i DSRs medlemspael blev deltagere stillet e række spørgsmål om deres arbejde med blisterpakiger. Afrapporterige

Læs mere

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com ESBILAC - modermælkserstatig til hvalpe VEJLEDNING De bedste start på livet, e yfødt hvalp ka få, er aturligvis at stille si sult med si mors mælk. Modermælk ideholder alt, hvad de små har brug for af

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

A14 4 Optiske egenskaber

A14 4 Optiske egenskaber A4 4 Optiske egeskaber Brydigsideks Når lys træffer e græseflade mellem to materialer, kastes oget af lyset tilbage (refleksio), mes oget går igeem græseflade med foradret retig (brydig eller refraktio).

Læs mere

ORDEN OG UDVALG: KUNSTEN AT TÆLLE KOMBINATORIK N H

ORDEN OG UDVALG: KUNSTEN AT TÆLLE KOMBINATORIK N H ORDEN OG UDVALG: UNSTEN AT TÆLLE OMBINATORI Edeligt symmetrisk sadsylighedsfelt I et edeligt symmetrisk sadsylighedsfelt ( P ) U, ka sadsylighede for e give hædelse H, hvor altså H U, som bekedt bereges

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne.

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne. 3y MA, Stee Toft Jørgese side /5 Helsigør Gymasium Vektorregig i 3D Formålet er at skabe overblik over emet. Boge Mat3A af Jes Carstese, kapitel 3 og 4, side 83-5. Defiitioer, formler, sætiger og idee

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden.

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden. Vadtrasportmodel Formål For beregig af vadtrasporte i sadkasse er der lavet e boksmodel. Formålet med boksmodelle er at beskrive vadtrasporte i sadkasse. Herover er formålet at bestemme de hydrauliske

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Resultatoversigt for Retten på Bornholm

Resultatoversigt for Retten på Bornholm Resultatoversigt for Rette på Borholm BEMÆRK: Spørgsmål markeret med *) er ku stillet til professioelle brugere. Spørgsmål markeret med **) er ku stillet til almidelige brugere. Baggrudsoplysiger Besvarelser

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Undgå tab med effektiv debitorstyring og inkasso

Undgå tab med effektiv debitorstyring og inkasso Udgå tab med effektiv debitorstyrig og ikasso 6. maj 2009 tekologisk istitut TAASTRUP Bliv opdateret på de yeste regler hvad betyder de for di virksomhed? Har du styr på virksomhedes tilgodehaveder? Etablerig

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Bølgefunktioner Alle partikler, som har en hvilemasse, er kendetegnet ved en kompleks bølgefunktion

Bølgefunktioner Alle partikler, som har en hvilemasse, er kendetegnet ved en kompleks bølgefunktion Modere Fysik 4 Side af 7 Schrödigerligige Forrige to gage: Idførelse af kvatiserigsbegrebet (for lyseergi og for elektroers eergi) samt partikel-bølge-dualitete, hvilket førte til e helt y teori, kvatemekaikke

Læs mere

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt

Læs mere

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit!

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit! Vaebryderdage 2009 Vaes magt eller magt over vae? Valget er dit! Osdag de 4. marts 2009 taastr u p Vaebrydere Torbe Wiese Meditatiosgurue Heig Davere Hjereforskere Milea Pekowa COACHEN Chris MacDoald Ulrik

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet)

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet) Oversigt (idholdsfortegelse) Bilag 1 Bilag 2 Bilag 3 De fulde tekst Bekedtgørelse om takstædriger i offetlig servicetrafik i trafikselskaber og hos jerbaevirksomheder m.v. (takststigigsloftet) I medfør

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sadsylighedsregig E ote om sadsylighedsregig. Via basal sadsylighedsregig gøres læsere klar til forstå biomialfordelige. Herik S. Hase, Sct. Kud Versio 5.0 Opgaver til hæftet ka hetes her. PDF Facit til

Læs mere

De Platoniske legemer De fem regulære polyeder

De Platoniske legemer De fem regulære polyeder De Platoiske legemer De fem regulære polyeder Ole Witt-Hase jauar 7 Idhold. Polygoer.... Nogle topologiske betragtiger.... Eulers polyedersætig.... Typer af et på e kugleflade.... Toplasvikle i e regulær

Læs mere

n n ' 8 DK. 2012 Ansøgning om byggetilladelse/ Anmeldelse af byggearbejde D D D D 3 3 3 3 3 3 E 3

n n ' 8 DK. 2012 Ansøgning om byggetilladelse/ Anmeldelse af byggearbejde D D D D 3 3 3 3 3 3 E 3 WS101651W omska 18 12 2012 10 17 SEPBARCOE 0U121 Syddjurs Kommue Hovedgade 77 8410 Røde Telefo 87 5 50 00 Kommues av og adresse Syddjurs Kommue Borgerservice Hovedgade 77 8410 Røde ' 8 K. 2012 Udfyldes

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Den Store Sekretærdag

Den Store Sekretærdag De Store Sekretærdag Tilmeld dig ide 1. oktober og få 300 kr. i rabat! De 25. ovember 2008 Tekologisk Istitut Taastrup De 8. december 2008 Mukebjerg Hotel Vejle Nia Siegefeldt, chefsekretær Camilla Miehe-Reard,

Læs mere