Projekt 1.3 Brydningsloven

Størrelse: px
Starte visningen fra side:

Download "Projekt 1.3 Brydningsloven"

Transkript

1 Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme som idfaldsvikle i. Noget adet af bølge fortsætter id i det ye stof, me med e ade udbredelsesretig b (brydig). Eksperimetelt ka ma eftervise at si( i) og si( b) er proportioale. Retigsskiftet skyldes, at bølge bevæger sig med forskellige hastigheder i de to stoffer. Teoretisk ka ma u udlede følgede sammehæg mel lem idfaldsvikle i, brydigsvikle b og hastighedere i de to stoffer v1 og v : si( i) v1 1. si( b) v Kostate kaldes brydigsforholdet mellem de to stoffer. Det er spejlig og brydig af lys i regdråber og iskrystaller, der ligger bag de forskellige himmelfæomeer med lysede farvede buer på himle, såsom zeithbuer, regbuer og haloer. For at kue udersøge disse ved hjælp af et værktøjsprogram, skal vi derfor først have styr på, hvorda ma simulerer spejlig og brydig af lys. Spejlige er simpel ok for det er e ret geometrisk trasformatio. Brydige er derimod lidt mere kompliceret, fordi de kræver e beregig, så de vil vi u kigge lidt ærmere på. De idkommede stråle daer vikle i med idfaldsloddet (der står vikelret på de brydede kat). De brudte stråle daer vikle b med idfaldsloddet. De brudte stråle ka derfor fx frembriges ved at dreje idfaldsloddet vikle b. Først skal idfaldsvikle i måles, og deræst bereges brydigsvikle b ud fra brydigslove, hvor vi isolerer b : si( i) si( b) si( i) si( b) Gag over med si( b ) 1 si( i) si( b) Divider over b si ( si( i)) Isolér b med de omvedte siusfuktio 1 si (eller arcsi ) Du skal altså idskrive formle si ( si( i)). Ved at udrege brydigsvikle b ka de udpeges, år vi skal udføre trasformatioe rotatio. Herefter er veje åbe for at dreje idfaldsloddet vikle b omkrig det pukt, hvor stråle rammer de brydede kat, og derved fremskaffe e lije med samme retig som de brudte stråle.

2 Øvelse 1: Brydig i e halvcirkelformet glasklods Du skal begyde med at simulere lysbrydige i e halvcirkelformet glasklods, hvor lyset træger id i klodse geem cetrum. Så optræder der ku brydig, år lyset træger id i klodse (fordi det brudte lys står vikelret på cirkle). Vi kostruerer u situatioe i et dyamisk geometriprogram: Afsæt et begydelsespukt O ca. midt på skærme, svarede til cetrum for glasklodse. Deræst kostrueres fire halvlijer ud fra O, der står idbyrdes vikelret på hiade. Start fx med e vadret halvlije, der peger til højre, og drej de vadrette halvlije tre gage omkrig O. De lodrette lijestykker repræseterer u græseflade mellem de to medier, her glas til vestre og luft til højre. De vadrette lijer repræseterer idfaldsloddet for lysstråle. Herefter kostrueres et pukt i afstade 5 fra O på hver af de fire halvlijer. Puktere avgives A og B i lodret retig og E og F i vadret retig. Du er u klar til at kostruere omridset af glasklodse. Først skal vi have kostrueret halvbue fra A til B. beyt programmets cirkelbuefacilitet til at trække e bue geem puktere A, F og B i rækkefølge. Giv cirkelbue e tykkere streg og evt. e farve, så de er let at skele fra reste. Tilsvarede teger du lijestykket AB og giver det e stregtype og farve, så de skiller sig ud fra de øvrige lijer i kostruktioe. Til sidst skal vi have kostrueret e hjælpebue, emlig kvartbue EA. Dertil får du brug for cirkle med cetrum i O geem puktet E. Kvartbue kostrueres da som e cirkelbue geem puktet E, et tilfældigt cirkelpukt mellem E og A og edelig puktet A. Skjul hjælpecirkle og hjælpepuktet! Afsæt u et frit pukt P på kvartbue EA og kostruér halvlije OP, der skal spille rolle som de idkommede lysstråle. Ved at trække i puktet P ka du ædre retige af dee. Du skal så have styr på idfaldsvikle i. Udfør derfor e målig på vikle EOP og avgiv de i. Deræst er du klar til at kostruere de brudte stråle ud fra brydigsvikle b : b si ( si( i))

3 Du skal derfor have idskrevet de pågældede formel, så du ka rege med de. Udervejs får du brug for at idføre parametere. Det gøres emmest som e skyder, der løber fra 1 til i sprig af Du ka sætte brydigsforholdet til 1.5 for glas, og berege værdie for b ud fra de målte idfaldsvikle i og værdie for variable bestemt ved skydere. Vi skal så til slut have kostrueret de brudte stråle. Hertil drejer vi idfaldsloddet med vikle b, dvs. vi drejer halvlije OF omkrig cetrum O med vikle svarede til talværdie for brydigsvikle b. Vi ka også tilføje skærigspuktet Q mellem de brudte stråle og halvcirkle. Edelig ka vi måle brydigsvikle FOQ, så vi ka se, at vi har fudet de rigtige brudte stråle! Træk i P, og kotrollér, at modelle virker. Når idfaldsvikle vokser gør brydigsvikle det samme. Me brydigsvikle vokser lagsommere, idet stråles hastighed i glas (ifølge bølgemodelle!) er lagsommere ed des hastighed i luft, og de tilhørede vikel derfor tilsvarede midre. Der er derfor e græse for hvor stor brydigsvikle ka blive. Hvad er egetlig størrelse af de største brydigsvikel? Hvorda ka du rege dig frem til des størrelse? Vi vil også prøve at frembrige grafer for sammehæge mellem idfaldsvikle i og brydigsvikle b.

4 Skift græser på koordiatsystemet, så begge akser løber fra 0 til 90. Udyt programmets muligheder til at overføre talværdiere for i og b til 1. akse heholdsvis. akse, og kostruer to vikelrette på de to aksepukter, så du fastlægger deres skærigspukt, som etop jo får koordiatere( ib., ) Grafpuktet ( ib, ) ka spores eller edu bedre beyttes som udgagspukt for e kostruktio af grafe som et geometrisk sted ud fra det frie uafhægige pukt P og grafpuktet ( ib., ) Prøv evt. at overveje, hvad forskrifte bliver for de fuktio der frembriger grafe, og kotrollér ved at plotte grafe for dit gæt på e forskrift ovei sporet. Gem modelle til seere brug! Bemærkig; Det kue godt se ud som om, grafe har e vadret taget (dvs. et toppukt) helt ude til højre i i 90. Det ka vi kotrollere ved e passede symbolsk regig, hvor vi defierer b som fuktio af i : og så differetierer vi fuktioe, og defierer de afledede fuktio: og udreger værdie i i 90 : Vi ser, at vi får værdie ul svarede til at grafe for b har e vadret taget, år i 90. Bemærkig: Når e stråle går fra luft id i fx glas sækes hastighede. Når de går ud ige fra glas til luft hæves hastighede tilsvarede. De to brydigsforhold er derfor reciprokke: si( i) v si( i') v 1 og. si( b) v b v si( ') 1 1 Idfaldsvikel og brydigsvikel bytter derfor rolle, hvorfor vi ved udgage fra glas til luft fider sammehæge: 1 b' si ( si( i'))

5 Hæger ma et glasprisme op i sollys fås flotte regbuefarvede billeder på lofter og vægge. De forskellige farver i lys har forskellige brydigsforhold, idet brydigsforholdet aftager med bølgelægde. Variatioe er ikke stor, idet fx brydigsforholdet for kroglas varierer fra ca. 1,55 for violet lys (med bølgelægde 400 m) til 1,500 for rødt lys (med bølgelægde 700 m). Me det er ok til at skille e tyd stråle af hvidt lys i alle dets forskellige farver. Vi ka se det i vores model ved at ædre lige så forsigtigt på brydigsidekset i sprig af 0.01 fra 1.5 til 1.6 og samtidigt spore de brudte stråle heholdsvis grafe: Øvelse : Brydig i e rektagulær glasklods Kostruér e model af e aflag rektagulær glasklods Kostruér strålegage for e stråle, der brydes i de øverste side af klodse og forlader de ige efter edu e brydig geem de ederste side af klodse. Kommetér strålegage. Hvilke sammehæg er der mellem de opridelige stråle og slutstråle? Øvelse 3: Totalrefleksio Kostruér e model af et vadkar med et drejeligt spejl ede i vadkarret, hvor e lodret stråle rammer spejlets midtpukt. Stråle sedes tilbage af spejlet og både spejles og brydes i vadoverflade. Kostruér strålegage, idet du sætter brydigsforholdet for vad til Hvad sker der, år du drejer spejlet? Mål de idfaldsvikel ede i vadet, hvor der sker totalrefleksio. Hvorda ka du berege størrelse af dee vikel?

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1 Duo HOME Duo OFFICE Programmerigsmaual DK 65.044.50-1 INDHOLD Tekiske data Side 2 Systemiformatio, brugere Side 3-4 Ligge til og slette brugere Side 5-7 Ædrig af sikkerhedsiveau Side 8 Programmere: Nødkode

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Den Store Sekretærdag

Den Store Sekretærdag De Store Sekretærdag Tilmeld dig ide 1. oktober og få 300 kr. i rabat! De 25. ovember 2008 Tekologisk Istitut Taastrup De 8. december 2008 Mukebjerg Hotel Vejle Nia Siegefeldt, chefsekretær Camilla Miehe-Reard,

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Bølgeegenskaber vha. simuleringsprogram... 2 Forsøg med lys gennem glas... 3 Lysets brydning i et tresidet prisme... 4 Forsøg med lysets farvespredning... 5 Forsøg med lys gennem linser... 6 Langsynet

Læs mere

14. Fagligt samarbejde matematik og samfundsfag

14. Fagligt samarbejde matematik og samfundsfag ISBN 978-87-766-494-3 4. Fagligt samarbejde matematik og samfudsfag Idholdsfortegelse Idledig Samfudsfag sat på formler II... 2 Tema : Multiplikatorvirkige... 3. Hvad er e multiplikatoreffekt?... 3 2.

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia ^ ERHVERVS- OG BYGGESTYRELSEN Huseftersy Tilstadsrapport for ejedomme Sælger: Kirste Hammerum dresse 6.Jullvej93 Postr. By 7000 Fredericia ato Udløbsdato 3-07-200 3-0-20 HE r. Lb. r. Kommuer/Ejedomsr.

Læs mere

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse...5.3

Læs mere

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce Projektstyrigsmetode PRINCE2 som grudlag for opfyldelse af modehedskrav PRINCE2 is a Trade Mark of the Office of Govermet Commerce som beskrevet i Modehed i it-baserede forretigsprojekter, Modeller til

Læs mere

Referat for bestyrelsesmøde d. 22. marts 2015 kl. 11.00 Ellidshøjskole, Ny skolevej 2, 9230 Svenstrup. Dagsorden for bestyrelsesmøde

Referat for bestyrelsesmøde d. 22. marts 2015 kl. 11.00 Ellidshøjskole, Ny skolevej 2, 9230 Svenstrup. Dagsorden for bestyrelsesmøde Referat for bestyrelsesmøde d. 22. marts 2015 kl. 11.00 Ellidshøjskole, Ny skolevej 2, 9230 Svestrup Tilstede: Hae Veggerby, formad( Hveg), Ae sofie Gothe, æstformad (Asgr), Mette Nødskov sekretær ( Met),

Læs mere

Kommunens styringssystemer og offentlige leders krydspres eller

Kommunens styringssystemer og offentlige leders krydspres eller Kommues styrigssystemer og offetlige leders krydspres eller hvorda får du forebyggelse sat på kommues dagsorde 1 Dispositio: Præsetatio og itroduktio til emet Ledergruppes styrigsmæssige dagsorde Begreber

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Administartive oplysninger.

Administartive oplysninger. DGU r. Stamoplysiger LOOP Nr. Lokal betegelse Matrikkel Nr.: X koordiat Y Koordiat Z kote. 98.853 3.21.03.01 G1-1 6a/7c, Tåig by 552020,95 6207170,19 66,58 T Admiistartive oplysiger. koordiat oplysiger

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Matematisk trafikmodellering

Matematisk trafikmodellering - Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige

Læs mere

Geometrisk Optik. Teori og forsøg

Geometrisk Optik. Teori og forsøg Geometrik Optik Teori og orøg Køge Gmaium 004-005 Ole Witt-Hae Idold Kap. Geometrik Optik.... Strålegage i toer.... relekio i et plat pejl... 3. elekio i et kokavt ulpejl... 4. elekio i et kovekt ulpejl...6

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk Små og store varmepumper Bjarke Paaske Tekologisk Istitut Telefo: +45 7220 2037 E-mail: bjarke.paaske@tekologisk.dk Ree stoffers tre tilstadsformer (faser) Fast stof (solid) Eksempel: is ved H 2 0 Væske

Læs mere

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n))

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n)) DM19 1. Iformatio-theoretic lower bouds kap. 8 + oter. Ma ka begræse de teoretiske græse for atallet af sammeligiger der er påkrævet for at sortere e liste af tal. Dette gøres ved at repræsetere sorterig-algoritme

Læs mere

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

Er det en naturlov at aminosyrer er venstredrejede?

Er det en naturlov at aminosyrer er venstredrejede? Er det e aturlov at amiosyrer er vestredrejede? Aja C. Aderse, Axel Bradeburg og Tuomas Multamäki (NORDITA) Stort set samtlige amiosyrer fides i to udgaver (eatiomere) e vestre og e højredrejet (se figur

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 6. Matematik og økoomi 20% 40% 60% 40% Hvor udbredt er vaskepulveret af type A? 6. Matematik og økoomi Idhold 6.1 Procettal 2 6.2 Vejet geemsit

Læs mere

Plejebrochure. Gør dit bassin til det bedste

Plejebrochure. Gør dit bassin til det bedste Plejebrochure Gør dit bassi til det bedste Er du god til at vedligeholde dit svømmebassi? Hvis ikke, så lad os hjælpe dig. Med dee brochure vil du hurtigt blive e ekspert. Ethvert svømmebassi ka opå krystalklart

Læs mere

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag Hvidbog omhadlede de idkome idsigelser, bemærkiger og kommetarer til forslag til Kommuepla 2009 Udgave A: Rækkefølge som forslag 4. jauar 2010 Idhold Idledig. 3 Proces og behadlig m.v 3 Hvidboges opbygig..

Læs mere

Projekt 8.2 Slaget ved Trafalgar-Nelsons og Villeneuves strategier. Matematisk modellering af et af verdenshistoriens store slag.

Projekt 8.2 Slaget ved Trafalgar-Nelsons og Villeneuves strategier. Matematisk modellering af et af verdenshistoriens store slag. Projekt 8.2 Slaget ved Trafalgar-Nelsos og Villeeuves strategier. Matematisk modellerig af et af verdeshistories store slag. Om de matematiske metode Vi vil illustrere de matematiske metode, ved at vise

Læs mere

Vold på arbejdspladsen. Forebyggelse

Vold på arbejdspladsen. Forebyggelse F O A f a g o g a r b e j d e Vold på arbejdspladse Forebyggelse Idhold Et godt forebyggede arbejde Trivsel Faglighed Ledelse Brugeriddragelse Fællesskab Tekiske og fysiske forhold E løbede proces E positiv

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit!

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit! Vaebryderdage 2009 Vaes magt eller magt over vae? Valget er dit! Osdag de 4. marts 2009 taastr u p Vaebrydere Torbe Wiese Meditatiosgurue Heig Davere Hjereforskere Milea Pekowa COACHEN Chris MacDoald Ulrik

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: ektrom@life.ku.dk Fordelig af geemit Statitik ifere for

Læs mere

Nye veje til den gode forflytning

Nye veje til den gode forflytning TEMA Ergoomi Nye veje til de gode forflytig Nye veje til de gode forflytig Brachearbejdsmiljørådet Social & Sudhed Nye veje til de gode forflytig Idhold Nye veje til de gode forflytig side 3 Lies første

Læs mere

Cityringen Udredning af metro til Ny Ellebjerg via Sydhavnen

Cityringen Udredning af metro til Ny Ellebjerg via Sydhavnen Jui 2013 Resumé Cityrige Udredig af metro til via Sydhave Metroselskabet Trasportmiisteriet Købehavs Kommue Frederiksberg Kommue Tekst Metroselskabet I/S Metrovej 5 2300 Købehav S Telefo +45 3311 1700

Læs mere

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer:

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer: Euclidean Eggs Freyja Hreinsdóttir, University of Iceland 1 Introduction Ved hjælp af et computerprogram som GeoGebra er det nemt at lave geometriske konstruktioner. Specielt er der gode værktøjer til

Læs mere

Pcounter effektiv styring af omkostningerne. Pcounter-programmer

Pcounter effektiv styring af omkostningerne. Pcounter-programmer Pcouter effektiv styrig af omkostigere Pcouter-programmer Pcouter, Itro De cetrale udskrivigsstrategi Pcouter er software til registrerig og kotostyrig af prit, og som sætter virksomheder i stad til at

Læs mere

Brændstof. til krop og hjerne

Brændstof. til krop og hjerne Brædstof til krop og hjere Idhold 3 6 8 10 11 12 14 15 17 22 24 26 27 28 29 30 Kaloriebomber og eergibudter Døget rudt skal di krop og hjere bruge eergi Morgemad Med morgemad er du sikker på, det går godt

Læs mere

Optiske eksperimenter med lysboks

Optiske eksperimenter med lysboks Optiske eksperimenter med lysboks Optik er den del af fysikken, der handler om lys- eller synsfænomener Lysboksen er forsynet med en speciel pære, som sender lyset ud gennem lysboksens front. Ved hjælp

Læs mere

Helende miljø en udfordring for patientsikkkerhed? Workshop Patientsikkerhed og syge børn fredag den 15. oktober 2010

Helende miljø en udfordring for patientsikkkerhed? Workshop Patientsikkerhed og syge børn fredag den 15. oktober 2010 Helede miljø e udfordrig for patietsikkkerhed? Workshop Patietsikkerhed og syge bør fredag de 15. oktober 2010 Elisabeth Brøgger Jese mag.art. kultursociolog elisabeth.broegger.jese@regioh.dk. Pricipper

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

Softwaretest når det er bedst 2009

Softwaretest når det er bedst 2009 Tekologisk Istitut i samarbejde med softwaretest.dk Softwaretest år det er bedst 2009 8. o g 9. J U N I 2 0 0 9 T e k o l o g i s k I s t i t u t T a a s t r u p Succes med itegrerig af test i SCRUM og

Læs mere

Introduktion til EXCEL med øvelser

Introduktion til EXCEL med øvelser Side 1 af 10 Introduktion til EXCEL med øvelser Du kender en almindelig regnemaskine, som kan være til stort hjælp, når man skal beregne resultater med store tal. Et regneark er en anden form for regnemaskine,

Læs mere

BRANDBEKÆMPELSE OG KRÆFTRISIKO

BRANDBEKÆMPELSE OG KRÆFTRISIKO BRANDBEKÆMPELSE OG KRÆFTRISIKO Rapport fra Videskoferece på Christiasborg 22. jauar 2013 1 Bradbekæmpelse og kræftrisiko bygger på idlæg og diskussioer på koferece, afholdt på Christiasborg 22. jauar 2013.

Læs mere

Affaldshåndbog. Batteriindsamling. Genbrugsstationer. Storskrald. Konkurrence

Affaldshåndbog. Batteriindsamling. Genbrugsstationer. Storskrald. Konkurrence Affaldshådbog 2008 Batteriidsamlig Gebrugsstatioer Storskrald Kokurrece Idhold Hilse fra direktøre 3 Nyheder i 2008 4 Geerelt 5 Hjælp di skraldemad 5 ORDNINGER Restaffald 6 Papiridsamlig 8 Batterier på

Læs mere

Kvalitetsmål til On-line algoritmer

Kvalitetsmål til On-line algoritmer Istitut for Matematik og Datalogi Bachelorprojekt Kvalitetsmål til O-lie algoritmer Forfatter: Christia Kuahl Vejleer: Joa Boyar Jauary 1, 2011 Cotets 1 Ileig 3 2 Problemet 3 3 Algoritmer og variater 4

Læs mere

Nuance ecopy ShareScan. Dokumentbehandling i den digitale verden. Document capture & distribution Nuance ecopy

Nuance ecopy ShareScan. Dokumentbehandling i den digitale verden. Document capture & distribution Nuance ecopy Nuace ecopy ShareSca Dokumetbehadlig i de digitale verde Documet capture & distributio Nuace ecopy Nuace ecopy, documet capture & distributio Itegratio af papirdokumeter i digitale arbejdsgage Med Nuace

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Animationer med TI-Nspire CAS

Animationer med TI-Nspire CAS Animationer med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 2.0 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Marts 2010 Indholdsfortegnelse: Indledning side 1 Eksempel 1: Pythagoras

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer Program 08:30 Idtjekig med kaffe, te og morgebrød 09:00 Idledig ved dirigete Peter Høygaard, parter Devoteam Cosultig A/S 09.10 It-orgaisatioes udfordriger 2009 få mere for midre og spar de rigtige steder

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN

ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG

Læs mere

MAG SYSTEM. Gulvrengøring

MAG SYSTEM. Gulvrengøring DK MAG SYSTEM Gulvregørig Mag system Kocept E fremfører for alt. Det er helt yt: Ved Mag-systemet passer e fremfører til alle moptyper. Således ka de optimale arbejdsbredde, tekstilkvalitet og regørigsmetode

Læs mere

Hvad vi gør for jer og hvordan vi gør det

Hvad vi gør for jer og hvordan vi gør det Hvad vi gør for jer og hvorda vi gør det Vi skaber resultater der er sylige på di budliie... Strategi Orgaisatio Produktio Økoomi [ Ide du læser videre ] [ Om FastResults ] [ Hvorfor os? ] I foråret 2009

Læs mere

Til dig, der er lærerstuderende Kender du VIA CFU Center for Undervisningsmidler?

Til dig, der er lærerstuderende Kender du VIA CFU Center for Undervisningsmidler? Ti dig, der er ærerstuderede Keder du VIA CFU Ceter for Udervisigsmider? - for dig og di udervisig VIA CFU - tæt på di og skoes praksis Når det kommer ti æremider, er VIA Ceter for Udervisigsmider eer

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Vejledning til brug ved ansøgning om patent

Vejledning til brug ved ansøgning om patent Vejledig til brug ved asøgig om patet Idhold: Hvad ka pateteres hvorår og hvorda? 1 Såda søger De patet i Damark 3 Et praktisk eksempel 5 Hvorda behadles asøgige? 12 Patetbeskyttelse i flere lade 14 Biblioteks-liste

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Adfærdsmodel for persontrafik

Adfærdsmodel for persontrafik Miljø- og Eergimiisteriet Damarks Miljøudersøgelser ALTRANS Adfærdsmodel for persotrafik Faglig rapport fra DMU, r. 348 Marts 2001 [Tom side] Miljø- og Eergimiisteriet Damarks Miljøudersøgelser ALTRANS

Læs mere

Hubble relationen Øvelsesvejledning

Hubble relationen Øvelsesvejledning Hubble relationen Øvelsesvejledning Matematik/fysik samarbejde Henning Fisker Langkjer Til øvelsen benyttes en computer med CLEA-programmet Hubble Redshift Distance Relation. Galakserne i Universet bevæger

Læs mere

Trekantsområdets kystlejrpladser

Trekantsområdets kystlejrpladser Gl.Å bo v Selum Stederup Søderskov De østyske forde,, og forde, byder på uikke atur ser lags kyste. Alle e. Favetræspladse Jorde er god, og skove er derfor frodig og varieret. De markerede rute, der går

Læs mere

Intelligent Drivesystems, Worldwide Services. Aluminiumsgear og -motorer. Fås med Sealed Surface Conversion System

Intelligent Drivesystems, Worldwide Services. Aluminiumsgear og -motorer. Fås med Sealed Surface Conversion System Itelliget Drivesystems, Worldwide Services DK Alumiiumsgear og -motorer Fås med Sealed Surface Coversio System NORD Itelliget Drivesystems, Worldwide Services Fordele ved alumiiumsgear Korrosiosbestadigt

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

Her svigtes de ældre mest. Fokus. Dokumentation: Ældre patienter behandles meget forskelligt alt efter, hvor i landet de bor. De

Her svigtes de ældre mest. Fokus. Dokumentation: Ældre patienter behandles meget forskelligt alt efter, hvor i landet de bor. De 50+ sygdomme Nyhedsmagasi om forebyggelse og behadlig magasiet Overaktiv blære er e tabubelagt sygdom Side 8 Geidlæggelser for dehydrerig Regio Hovedstade 26,2% Nyt middel mod forhøjet blodtryk Omkrig

Læs mere