Introduktion til uligheder

Størrelse: px
Starte visningen fra side:

Download "Introduktion til uligheder"

Transkript

1 Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles hjælp bevise ulighedere, og derefter er der e del opgaver som ka løses ved brug af ulighedere. Defiitio Det aritmetiske geemsit af reelle tal x, x,..., x er A = x + x + + x. Det geometriske geemsit af ikke-egative reelle tal x, x,..., x er G = x x x. Det harmoiske geemsit af positive reelle tal x, x,..., x er H = x + x + +. x Det kvadratiske geemsit af reelle tal x, x,..., x er Sætig For positive reelle tal x, x,..., x gælder at x Q = + x + + x. Q A G H med lighedsteg etop år x = x =... = x. (Bemærk at Q A ikke kræver at x, x,... x er positive.) Ide vi viser sætigere geerelt, ser vi på tilfældet =. I dette tilfælde ser AG ulighede således ud a + b ab hvor a og b er positive reelle tal. Da begge sider er positive, ka vi kvadrere og derefter omskrive til e ulighed som åbelyst er sad a + b ab (a + b) 4ab (a b) 0, og hvor der gælder lighedsteg etop år a = b. At omskrive e ulighed til et udtryk hvor et kvadrat eller summe af ogle kvadrater er større ed ul, er e ofte avedt metode til at løse uligheder. Opgave Bevis at Q A og G H for =.

2 Itroduktio til uligheder, marts 0, Kirste Rosekilde Bevis for QA ulighede. Omskriv først ulighede ved at kvadrere Nu udreges højreside dvs. (x + x + + x ) (x + x + x ). (x + x + + x ) x + x + + x + ( )(x + x + + x ) i<j i<j x i x j. x i x j, På vestreside står u e masse kvadrater og på højreside e masse dobbelte produkter, og derfor ser vi om det er muligt at omskrive ulighede til e sum af kvadrater som er større ed eller lig med 0. (x i + x j) x i x j 0, og dermed i<j i<j i<j (x i x j ) 0, med lighedsteg etop år x = x = = x. Da der gælder biimplikatio mellem samtlige omskriviger af ulighede, har vi hermed bevist at Q A. Bevis for AG ulighede. AG ulighede ka bevises ved iduktio, me hvor iduktioskridtet udføres på utraditioel vis. Vi har allerede vist de i tilfældet =. Hvis ma forsøger at vise at hvis AG ulighede er sad for da er de også sad for +, bliver det meget kompliceret. Det er imidlertid væsetlig lettere at vise at hvis AG ulighede er sad for da er de også sad for og for, og med disse to iduktiosskridt ka vi få alle domiobrikkere til at vælte. Grude til at det ikke er så kompliceret at vise at hvis AG ulighede er sad for da er de sad for, er at ma her har mulighed for selv at vælge x hesigtsmæssigt i forhold til x, x,..., x. Det overlades til læsere vise iduktiosskridtee: Opgave Vis AG ulighede ved at udytte oveståede idé. Hit: Når du skal vise at hvis ulighede er sad for, da er de også sad for, så sæt x lig det aritmetiske geemsit af x, x,..., x. Opgave Vis GH ulighede ved at udytte at du allerede har bevist AG ulighede. Nu har vi bevist Sætig og er klar til at beytte de til at løse flere uligheder: Opgave 4 Vis at a 4 + b 4 + c 4 a + b + c a + b + c

3 Itroduktio til uligheder, marts 0, Kirste Rosekilde for reelle tal a, b og c, hvor abc 0. Opgave 5 Lad være et helt positivt tal. Vis at for positive reelle tal a og b. a + b + + ab Opgave 6 Vis at for positive reelle tal a, b og c. ab + bc + ac abc Opgave 7 Lad a, b og c være positive reelle tal. Vis at a + b + c a + b + b + c + c + a 9 a + b + c. Opgave 8 Lad a, b og c være positive reelle tal. Vis at abc + (a + )(b + )(c + ). Opgave 9 Lad a og b være to positive reelle tal med sum. Bevis at Hvorår gælder der lighedsteg? ( a + ) ( + b + ) 5 a b. Opgave 0 Lad a, b og c være reelle tal således at c > 0, a > c og b > c. Vis at ab c(a c) + c(b c). Opgave Lad x, y, z være positive reelle tal som opfylder at xyz =. Bestem de midst mulige værdi af x + 4xy + 4y + z.

4 Itroduktio til uligheder, marts 0, Kirste Rosekilde 4 Opgave QA ulighede for = : x + x x + x med lighedsteg etop år x = x. GH ulighede for = : Løsigsskitser til uligheder (x + x ) x + x + x x (x x ) 0, x x x + x x + x x x, hvilket er AG ulighede for a = x x = x, dvs. etop år x = x. og a = x, og der gælder lighedsteg etop år Opgave Vi har allerede vist AG ulighede for =. Atag at x + x + + x x x x. for ikke-egative reelle tal x, x,..., x. Først viser vi at dee atagelse medfører at ulighede er sad for. Lad x, x,..., x være ikke-egative reelle tal. Ifølge atagelse er x + x + + x + x + + x x Ved at beytte AG ulighede for = på oveståede får vi hvilket etop er x +x + +x + x ++x + + +x x + x + + x x x x + x + x + x. x x x x + x + x, x x x. Nu viser vi at vores atagelse også medfører at ulighede er sad for. Lad x, x,..., x være ikke-egative reelle tal, lad A være det aritmetriske geemsit af disse tal, og sæt x = A. Ifølge atagelse er x + x + + x + A x x x A A x x x A A x x x A A x x x x + x + + x x x x. Bemærk at der i begge tilfælde gælder lighedsteg etop år alle eller alle ikkeegative reelle tal er lig hiade. Hermed er iduktioe fuldført.

5 Itroduktio til uligheder, marts 0, Kirste Rosekilde 5 Opgave Poite er at AG ulighede ka omskrives til GH ulighede. Lad x, x,..., x være positive reelle tal. Dermed er x, x,..., x også positive reelle tal. Ifølge AG ulighede gælder at x + x + + x, x x x og dermed følger GH ulighede x x x x + x + +. x Bemærk at der gælder lighedsteg etop år x = x = = x. Opgave 4 Ifølge QA ulighede er a 4 + b 4 + c 4 a + b + c. Da begge sider af lighedsteget er positive, ka vi kvadrere hvoraf det øskede følger. a 4 + b 4 + c 4 ( a + b + c ) Opgave 5 Ulighede er AG ulighede med de + tal a, b, b,..., b. Opgave 6 Ifølge AG ulighede er Opgav 7 Ifølge AH ulighede er ab + bc + ca abbcca = ( abc). Desude er a + b + c = a + b hvilket giver det øskede. + a+b + b+c + c+a Opgave 8 Ved at opløfte i tredje potes får ma AG ulighede giver b + c + c + a a+b + b+c + c+a = a + b + b + c + c + a. a + b + c abc + abc + abc + abc + ab + ac + bc + a + b + c +. ab + ac + bc (ab)(ac)(bc) = abc og a + b + c abc.

6 Itroduktio til uligheder, marts 0, Kirste Rosekilde 6 Opgave 9 Ifølge AH ulighede og da a + b =, er a + b a + b = med lighedsteg etop år a = b. Dermed giver QA ulighede ( a + ) ( + b + ) ( a + b + a b a + ) b ( + 4) = 5 med lighedsteg etop år a = b =. Opgave 0 Ved at kvadrere får ma Ved omrokkerig får ma yderligere ab cb + ca c + c (a c)(b c). (a c)(b c) + c hvilket er sadt ifølge AG ulighede. c (a c)(b c) Opgave Hvis vi skal udytte at xyz =, er det e god idé at prøve at vurdere udtrykket ved et udtryk af forme (xyz). Derfor beytter vi AG ulighede to gage på følgede måde x + 4xy + 4y + z x 4y + 4xy + z = 4xy + 4xy + z x y z = = 96. Der er lighedsteg etop år x = 4y og 4xy = z, dvs. år x = z = 4 og y =.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

Kommunikation over støjfyldte kanaler

Kommunikation over støjfyldte kanaler Istitut for Matematise Fag wwwmathaaud Kommuiatio over støjfyldte aaler MAT2-projetrapport af G3-7 forårssemestret 2008 Istitut for Matematise Fag Fredri Bajers Vej 7G 9220 Aalborg Øst Telefo 99 40 88

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

Find de billeder som vises i begge kasser. Papiret kan eventuelt foldes på midten først - kig først på den øverste kasse. Vend papiret og se om du

Find de billeder som vises i begge kasser. Papiret kan eventuelt foldes på midten først - kig først på den øverste kasse. Vend papiret og se om du Navn: Klasse: Materiale ID: PIC.8.1.1.da Lærer: Dato: Klasse: Materiale ID: PIC.8.1.1.da Navn: Klasse: Materiale ID: PIC.8.2.1.da Lærer: Dato: Klasse: Materiale ID: PIC.8.2.1.da Navn: Klasse: 254 Materiale

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia ^ ERHVERVS- OG BYGGESTYRELSEN Huseftersy Tilstadsrapport for ejedomme Sælger: Kirste Hammerum dresse 6.Jullvej93 Postr. By 7000 Fredericia ato Udløbsdato 3-07-200 3-0-20 HE r. Lb. r. Kommuer/Ejedomsr.

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Kommunens styringssystemer og offentlige leders krydspres eller

Kommunens styringssystemer og offentlige leders krydspres eller Kommues styrigssystemer og offetlige leders krydspres eller hvorda får du forebyggelse sat på kommues dagsorde 1 Dispositio: Præsetatio og itroduktio til emet Ledergruppes styrigsmæssige dagsorde Begreber

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

Matematisk trafikmodellering

Matematisk trafikmodellering - Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 6. Matematik og økoomi 20% 40% 60% 40% Hvor udbredt er vaskepulveret af type A? 6. Matematik og økoomi Idhold 6.1 Procettal 2 6.2 Vejet geemsit

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Vold på arbejdspladsen. Forebyggelse

Vold på arbejdspladsen. Forebyggelse F O A f a g o g a r b e j d e Vold på arbejdspladse Forebyggelse Idhold Et godt forebyggede arbejde Trivsel Faglighed Ledelse Brugeriddragelse Fællesskab Tekiske og fysiske forhold E løbede proces E positiv

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

Plejebrochure. Gør dit bassin til det bedste

Plejebrochure. Gør dit bassin til det bedste Plejebrochure Gør dit bassi til det bedste Er du god til at vedligeholde dit svømmebassi? Hvis ikke, så lad os hjælpe dig. Med dee brochure vil du hurtigt blive e ekspert. Ethvert svømmebassi ka opå krystalklart

Læs mere

OM BEVISER. Poul Printz

OM BEVISER. Poul Printz OM BEVISER Poul Printz Enhver, der har stiftet bekendtskab med matematik selv å et relativt beskedent niveau, er klar over, at matematiske beviser udgør et meget væsentligt element af matematikken. De

Læs mere

14. Fagligt samarbejde matematik og samfundsfag

14. Fagligt samarbejde matematik og samfundsfag ISBN 978-87-766-494-3 4. Fagligt samarbejde matematik og samfudsfag Idholdsfortegelse Idledig Samfudsfag sat på formler II... 2 Tema : Multiplikatorvirkige... 3. Hvad er e multiplikatoreffekt?... 3 2.

Læs mere

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n))

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n)) DM19 1. Iformatio-theoretic lower bouds kap. 8 + oter. Ma ka begræse de teoretiske græse for atallet af sammeligiger der er påkrævet for at sortere e liste af tal. Dette gøres ved at repræsetere sorterig-algoritme

Læs mere

Grundlæggende Lederuddannelse

Grundlæggende Lederuddannelse Grudlæggede Lederuddaelse Grudlæggede Lederuddaelse God ledelse er vigtig for både dig og di virksomhed. Det er vigtigt for di ege persolige udviklig, for die medarbejderes motivatio og dermed i sidste

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

H. TORNEHA VE FOREL$SNINGSNOTER MATEMATISK ANALYSE

H. TORNEHA VE FOREL$SNINGSNOTER MATEMATISK ANALYSE H. TORNEHA VE FOREL$SNINGSNOTER I MATEMATISK ANALYSE Kursus ma1;.ematik 1 f'or f rste ars studerede uder..k behavs Ui versi teta..jll8. tema ti skatucvideskabelige f'akultet~ samt ~or aktuarog stat~t~studerede.

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1 Duo HOME Duo OFFICE Programmerigsmaual DK 65.044.50-1 INDHOLD Tekiske data Side 2 Systemiformatio, brugere Side 3-4 Ligge til og slette brugere Side 5-7 Ædrig af sikkerhedsiveau Side 8 Programmere: Nødkode

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

matematikhistorie og dynamisk geometri

matematikhistorie og dynamisk geometri Pythagoras matematikhistorie og dynamisk geometri med TI-Nspire Indholdsfortegnelse Øvelse 1: Hvem var Pythagoras?... 2 Pythagoras læresætning... 2 Geometrisk konstruktion af Pythagoræisk tripel... 3 Øvelse

Læs mere

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse...5.3

Læs mere

Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse

Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse 1 Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien

Læs mere

Invarianter. 1 Paritet. Indhold

Invarianter. 1 Paritet. Indhold Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

Kvalitetsmål til On-line algoritmer

Kvalitetsmål til On-line algoritmer Istitut for Matematik og Datalogi Bachelorprojekt Kvalitetsmål til O-lie algoritmer Forfatter: Christia Kuahl Vejleer: Joa Boyar Jauary 1, 2011 Cotets 1 Ileig 3 2 Problemet 3 3 Algoritmer og variater 4

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal

Læs mere

BOSK F2012, 1. del: Prædikatslogik

BOSK F2012, 1. del: Prædikatslogik ε > 0. δ > 0. x. x a < δ f (x) L < ε February 8, 2012 Prædikater Vi skal lære om prædikatslogik lad os starte med prædikater. Et prædikat er et orakel der svarer ja eller nej. Eller mere præcist: Prædikater

Læs mere

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk Små og store varmepumper Bjarke Paaske Tekologisk Istitut Telefo: +45 7220 2037 E-mail: bjarke.paaske@tekologisk.dk Ree stoffers tre tilstadsformer (faser) Fast stof (solid) Eksempel: is ved H 2 0 Væske

Læs mere

Løsningsforslag til Geometri 1.-6. klasse

Løsningsforslag til Geometri 1.-6. klasse 1 Løsningsforslag til Geometri 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

AUGUST v. Margit Ingtoft, María Muniz Auken,

AUGUST v. Margit Ingtoft, María Muniz Auken, SOMMER-, WEEKEND- & EFTERÅRSKURSER 2007 SOMMERKURSER AUGUST v. Margit Igtoft, María Muiz Auke, JUNI og / eller Sommer 2007 Jui (A) + August (B) Dato: 5/6 28/6 og eller 7/8 30/8: MUY BARATO: Pris pr. hold

Læs mere

Undgå tab med effektiv debitorstyring og inkasso

Undgå tab med effektiv debitorstyring og inkasso Udgå tab med effektiv debitorstyrig og ikasso 6. maj 2009 tekologisk istitut TAASTRUP Bliv opdateret på de yeste regler hvad betyder de for di virksomhed? Har du styr på virksomhedes tilgodehaveder? Etablerig

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Brændstof. til krop og hjerne

Brændstof. til krop og hjerne Brædstof til krop og hjere Idhold 3 6 8 10 11 12 14 15 17 22 24 26 27 28 29 30 Kaloriebomber og eergibudter Døget rudt skal di krop og hjere bruge eergi Morgemad Med morgemad er du sikker på, det går godt

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag Hvidbog omhadlede de idkome idsigelser, bemærkiger og kommetarer til forslag til Kommuepla 2009 Udgave A: Rækkefølge som forslag 4. jauar 2010 Idhold Idledig. 3 Proces og behadlig m.v 3 Hvidboges opbygig..

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Introduktion: Vi vil nu se på et konkret eksempel på hvordan man i praksis fordeler mandaterne i et repræsentativt demokrati,

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

REgning og MAtematik for 10.g

REgning og MAtematik for 10.g Bestil venligst direkte på: www.forlagetdelta.dk Enhver mangfoldiggørelse af dette hæfte er forbudt. REgning og MAtematik for 0.g Dette materiale indeholder en (måske lidt kortfattet) repetition af næsten

Læs mere

Administartive oplysninger.

Administartive oplysninger. DGU r. Stamoplysiger LOOP Nr. Lokal betegelse Matrikkel Nr.: X koordiat Y Koordiat Z kote. 98.853 3.21.03.01 G1-1 6a/7c, Tåig by 552020,95 6207170,19 66,58 T Admiistartive oplysiger. koordiat oplysiger

Læs mere

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce Projektstyrigsmetode PRINCE2 som grudlag for opfyldelse af modehedskrav PRINCE2 is a Trade Mark of the Office of Govermet Commerce som beskrevet i Modehed i it-baserede forretigsprojekter, Modeller til

Læs mere