Claus Munk. kap. 1-3

Størrelse: px
Starte visningen fra side:

Download "Claus Munk. kap. 1-3"

Transkript

1 Claus Muk kap Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1

2 Obligatioer Grudlæggede Itro Debitor (låtager) Har behov for at låe pege. Lået opslittes i mage midre dele (obligatioer) Debitor udsteder obligatioer Kreditor (lågiver) Har fri kapital, som ha vil have forretet Kreditor køber obligatioere og betaler pegee til debitor Debitor betaler løbede reter og afdrag til kreditor Vi skal bl.a. prisfastsætte obligatioer, så vi ved, hvor meget kreditor skal betale debitor for obligatioere. 3 Obligatioer Grudlæggede Itro Obligatioer Omsættelige stadardiserede låebeviser Låtager opsplitter sit lå i mage midre dele, og udsteder e serie af esartede obligatioer Åbe: der udstedes stadig ye obligatioer Lukket: gæt selv Hovedstole: obligatioes pålydede værdi Tidligere: 1000 kr. Nye markedskovetioer NU: 1 øre på obligatiosmarkedet! (de iteresserede ka læse otatet på hjemmeside) 4 2

3 Obligatioer Grudlæggede Itro Hovedstole: obligatioes pålydede værdi. NU: 1 øre Kurse på obligatioe oteres i procet af de omielle værdi. Eksempel: E perso ejer 3 obligatioer Nomiel værdi for hver obligatio = 1 øre Nomiel værdi af obligatiosbeholdige = 3 øre Kurse på obligatioere er 95,25 (dvs. obligatioeres markedsværdi er 95,25% af de omielle værdi) Obligatiosbeholdiges markedsværdi = 0,9525 x 3 øre = 2,86 øre 5 Obligatioer Grudlæggede Itro Nomiel (pålydede) rete De rete der avedes ved beregig af de ekelte termiers retebetalig Kuporete (R) Det er altid obligatioes årlige omielle rete der agives! Hvis obligatioe er flere ed é termi pr. år Rete pr. termi: R m Årlig omiel rete Atal termier pr. år 6 3

4 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Daske obligatiosmarked Pris og kurs Effektive reter 7 Betaligsrækker Når obligatioer skal værdiasættes, ka det ofte være e god idé at opstille e betaligsrække. Debitors betaligsrække Kreditors betaligsrække Tid Tid I lagt de fleste tilfælde, år vi skal værdifastsætte obligatioer, tager vi udgagspukt i kreditors situatio altså hvor meget skal ma betale for obligatioere. (dee situatio er aturligvis blot de modsatte af debitors) 8 4

5 Låeformer Auitetslå (kostat ydelse) Låeformer Serielå (kostat afdrag) Ståede lå (ku afdrag i sidste periode) Notatio: Er ofte em at berege Y j : Z j : Ydelse på tidspukt j Afdrag på tidspukt j Y j = I j + Z j I j : Retebetalig på tidspukt j Ma keder é af disse É ligig med é ubekedt 9 Auitetsobligatio E auitetsobligatio er kedeteget ved at have kostate ydelser (rete + afdrag) Betaligsrække for e auitetsobligatio ser såda ud: Ydelse kostate! Rete Rete Rete Rete 0 Afdrag Afdrag Afdrag ---- Afdrag

6 Geerelt: Hovedstol Auitetsobligatio Atal termier H = j= 1 Y j (1 + R) j Termislig omiel rete (Kuporete) Ydelse på termi j Alfa-hage Auitetsobligatio Kostat ydelse j Y j = Y H = Y (1 + R) H = Y j= 1 j= 1 α R (1 + R) j H 1 = Yα Hα Y R R = R Y = H 1 (1 + R) α 1 R 11 Auitetsobligatio Eksempel: Hovedstol Nomiel (årlig) rete Ydelse Det giver følgede betaligsstrøm: % 25,05 R Y = H 1 (1 + R) Tid Restgæld Rete Afdrag Ydelse ,00 8,00 17,05 25, ,95 6,64 18,41 25, ,55 5,16 19,88 25, ,66 3,57 21,47 25, ,19 1,86 23,19 25,05 Aftagede reteomk. Stigede afdrag Kostat ydelse 12 6

7 Auitetsobligatio Grafisk fremstillig: Kostat ydelse Auitetslå - Ydelsesrække 30,00 25,00 20,00 15,00 10,00 Rete Afdrag 5,00 0, Serieobligatio E serieobligatio er kedeteget ved at have kostate afdrag (og dermed variable ydelser) Betaligsrække for e serieobligatio ser såda ud: H Z j = Z = Ydelse kostate! Rete Rete Rete 0 Afdrag Afdrag Afdrag Rete ---- Afdrag

8 Serieobligatio Eksempel: Hovedstol Nomiel (årlig) rete Afdrag % 33,33 H Z = Det giver følgede betaligsstrøm: Tid Restgæld Rete Afdrag Ydelse 0 100, ,00 12,00 33,33 45, ,67 8,00 33,33 41, ,33 4,00 33,33 37,33 Aftagede reteomk. Kostat afdrag Aftagede ydelse 15 Serieobligatio Grafisk fremstillig: Kostat afdrag Serielå - Ydelsesrække 50,00 45,00 40,00 35,00 30,00 25,00 20,00 15,00 10,00 5,00 0, Rete Afdrag 16 8

9 Ståede obligatio E ståede obligatio er kedeteget ved, at hovedstole afdrages fuldt ud på udløbstidspuktet, og idtil da betales der ku reter. Betaligsrække for e ståede obligatio ser såda ud: Ydelse Afdrag (Hovedstol) 0 Rete Rete Rete ---- Rete Ståede obligatio Eksempel: Hovedstol Nomiel (årlig) rete % Det giver følgede betaligsstrøm: Tid Restgæld Rete Afdrag Ydelse Kostate reteomk. Hele hovedstole afdrages i sidste termi 18 9

10 Ståede obligatio Grafisk fremstillig: Hele hovedstole afdrages i sidste termi Ståede lå - Ydelsesrække Afdrag Rete Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Daske obligatiosmarked Pris og kurs Effektive reter 20 10

11 Det daske obligatiosmarked De daske stat Største ekeltudsteder af obligatioer på det daske marked Nav: Ståede obligatioer (fx 8% st. 2006) Serieobligatioer (fx 5% s 2007) Uamortisable obligatioer (obligatioer der aldrig udløber) Statsobligatioere udgør e stor del af omsætige på det daske obligatiosmarked. 21 Det daske obligatiosmarked Kilde:

12 Det daske obligatiosmarked Kilde: 23 Realkreditobligatioer Realkreditistitutioere yder lå mod pat i fast ejedom. Meget komplekst teoretisk område Skitserig: Skat Optioselemeter (pga. koverterigsret) Debitor magler pege til fiasierig af sit ye hus Op til 80% af husets værdi ka fiasieres vha. realkreditobligatioer Realkreditistituttet udsteder obligatioer og betaler proveuet til debitor De sidste 20% af husets værdi skal debitor selv fiasiere fx vha. et patebrev (obligatioer eller baklå) 24 12

13 Særlige regler Ide vi ka gå i gag med at prisfastsætte obligatioer, er det ødvedigt at kede til ogle særlige regler på obligatiosmarkedet. Reglere sidder først på rygrade år ma aveder dem, så frygt ikke hvis de æste par slides forekommer lidt sorte Vi vil kigge ærmere på følgede: Valørdage Udtrækig Vedhægede rete 25 Særlige regler Valør Claus Muk skriver følgede: På Fodsbørse hadles med e afvikligsperiode på tre børsdage. Dvs. e hadel, der idgåes e give dag, har først valør tre børsdage seere, hvor betalige for hadle fider sted. Eksempel Køb 1/1-05 Valør 4/1-05 Ma idgår e aftale om køb her Aftale har først valør dee dag (hadle effektueres dee dag) I de opgaver, vi skal geemgå, vil ma altid få oplyst valørdage

14 Særlige regler Udtrækig Ydelse = reter + afdrag Afdraget på e obligatiosbeholdig består i, at et vist atal af obligatioere idfries fuldstædigt. De obligatioer, der ikke idfries, betaler ku reter ved æste termi. Eksempel Obligatiosbeholdig på 1 kr. (100 stk. 1 øres obligatioer) Næste termi Der afdrages 0,33 kr. på obligatiosbeholdige 33 af obligatioere udtrækkes De forsvider fra markedet og bliver fuldt ud idfriet på æste termisdato De tilbageværede obligatioer betaler ku reter 27 Særlige regler Udtrækig 1 3 måeder før termi publiceres det hvilke obligatioer, der idfries fuldt ud, og hvilke der ku betaler reter Dee dato kaldes publicerigsdage/udtrækigstidspuktet Eksempel (fortsat) Publicerigsdag 13/11-98 Termi 15/2-99 Hvis ma køber e obligatiosbeholdig hér, betaler de både reter og afdrag ved termi Her publiceres det hvilke 33 af de 100 obligatioer, der idfries ved termi De 33 obligatioer forsvider herefter fra markedet Hvis ma køber e obligatiosbeholdig hér, betaler de ku reter ved termi 28 14

15 Eksempler Eksempel 2.1 s. 19 Opstil ydelsesrækker for serieobligatio 12% S 2001 på forskellige datoer Publicerigsdag 13/11-98 Y 1 Y 2 Y 3 15/ / / /2-01 Køb obligatioe her! Tid Restgæld Rete Afdrag Ydelse 100,00 15/ ,00 12,00 33,33 45,33 15/ ,67 8,00 33,33 41,33 15/ ,33 4,00 33,33 37,33 Tabel 2.1 både afdrag og reter Køb obligatioe her! Tid Restgæld Rete Afdrag Ydelse 100,00 15/ ,00 12,00 0,00 12,00 15/ ,00 12,00 50,00 62,00 15/ ,00 6,00 50,00 56,00 Tabel 2.2 ku reter (efter publicerigsdage) 29 Særlige regler Udtrækig FØR regelædrige: Udtrækige foregik ved lodtrækig Stor obligatiosbeholdig Ige udtrækigsusikkerhed Lille obligatiosbeholdig Udtrækigsusikkerhed Eksempel - udtrækigsusikkerhed Obligatiosserie består af i alt 1000 obligatioer (omiel værdi 10 kr.) Stor obligatiosbeholdig: 100 obligatioer Lille obligatiosbeholdig: 8 obligatioer Der skal udtrækkes 250 obligatioer (ved lodtrækig) i alt ved æste termi Stor obligatiosbeholdig: 25 obligatioer udtrækkes Lille obligatiosbeholdig: 4 obligatioer udtrækkes 25% 50% UDTRÆKNINGSRISIKO! 30 15

16 NU: Særlige regler Udtrækig MATEMATISK UDTRÆKNING Ikke lægere udtrækigsrisiko Eksempel - fortsat Obligatiosserie består af i alt 1000 obligatioer (omiel værdi 10 kr.) Stor obligatiosbeholdig: 100 obligatioer Lille obligatiosbeholdig: 8 obligatioer Der skal udtrækkes 250 obligatioer (MATEMATISK UDTRÆKNING) i alt ved æste termi Stor obligatiosbeholdig: 25 obligatioer udtrækkes Lille obligatiosbeholdig: 2 obligatioer udtrækkes 25% 25% Ige UDTRÆKNINGSRISIKO! 31 Særlige regler Vedhægede rete Tag udgagspukt i følgede tidsliie: Termi 15/2-98 Valørdato 4/1-99 Termi 15/2-99 Sælger har ejet obligatioe i oget af periode Køber obligatio her Ejere af obligatioe får altid udbetalt retere Kompeseres med vedhægede rete! 32 16

17 Vedhægede rete Vedhægede rete (v) bereges således: v = H x R x Faktisk atal dage side sidste termi Faktisk atal dage pr. temi Eksempel Termislig omiel rete H = 100 R = 12% (årlig) Faktisk atal dage side sidste termi: 323 Faktisk atal dage pr. termi (år): 365 v = ,12 = 10, Termi 15/2-98 Valørdato 4/1-99 Termi 15/ dage 365 dage 33 Vedhægede rete Gamle regler Uder de gamle markedskovetio eksisterede der et begreb, der hed ex-kupo-periode (kupofragag). Hvis ma købte e obligatio 30 dage ide et termistidpukt, modtog sælger retebetalige ved termistidpuktet. Sælger skulle herefter kompesere køber med egativ vedhægede rete (som det fremgår af formel 2.2). Ex-kupo-regle er u ophævet, og det er ALTID køber der modtager retebetalige. Sælger skal herefter kompeseres med vedhægede rete! (Tabel 2.3 er derfor ikke lægere gældede) (med de ye regler er det ret faktisk lettere at berege værdie af obligatioere ) 34 17

18 Datokovetioer Som e tidligere slide viste, er det tit ødvedigt at kede atallet af dage i e give periode. Det ka ogle gage være e ret bøvlet affære, me år ma først keder pricippere er det meget ekelt! (doh!) Såda tæller ma atallet af dage i e give periode: - Første dag i periode er iklusiv - Sidste dag i periode er eksklusiv Gamle regler: Atal dage pr. måed = 30 Atal dage pr. år = 360 Nye regler: Atal dage pr. måed = faktisk Atal dage pr. år = faktisk 35 Datokovetioer Eksempel Hvor mage dage er der fra d. 15. ovember 2002 til 29. maj 2003? (med de ye regler [faktisk/faktisk]) (30 dage i ovember tæl på figree!) 15/11-02 Dec. Ja. Feb. Mar. Apr. Maj. 29/ Startdato iklusiv Slutdato eksklusiv I ALT: 195 dage! Heldigvis ka Excel tælle atallet af dage i e periode for os vha. YEARFRAC fuktioe 36 18

19 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Daske obligatiosmarked Pris og kurs Effektive reter 37 Defiitio - Pris Hvorda fider ma askaffelsesprise for e obligatio? Ma tilbagediskoterer samtlige fremtidige betaliger med e passede diskoterigsrete (r). Defiitio: Tid Askaffelsespris = PV (fremtidige ydelser) = j= 1 Y j (1 + r) j Bemærk: kostat (termislig) diskoterigsrete (r)! 38 19

20 Defiitio - Kurs Defiitio: Kurs = Askaffelsespris - vedhægede rete Det betyder følgede: Fra tidligere: k = - v j= 1 Y j (1 + r) j v = H x R x Faktisk atal dage side sidste termi Faktisk atal dage pr. temi Termislig omiel rete 39 Valør på et termistidspukt Kurs Y 1 Y 2 Y 3 Y Nu Hvad er kurse her? Valør på termistidspukt Ige vedhægede rete! (v = 0) k = j= 1 Y j (1 + r) j 40 20

21 Kurs Valør mellem to termistidspukter - geerelt Hvad er kurse her? Y 1 Y 2 Y 3 Y -t 3-t 2-t Nu 1-t t Tilbagediskoter ydelsere til valørtidspuktet og træk vedhægede reter fra! k = = j 1 Y j r ( j t') ( 1+ ) - v 41 Eksempler Eksempel 3.1 s. 24 Med de ye regler Serieobligatio 12% S 2001 Tid Restgæld Rete Afdrag Ydelse 0 100, ,00 12,00 33,33 45, ,67 8,00 33,33 41, ,33 4,00 33,33 37,33 Fid kurse d. 1/ ved e kostat diskoterigsrete på 4% 42 21

22 Eksempler Eksempel 3.1 s. 24 Med de ye regler Hvad er kurse her? 45,33 41,33 37,33 1/ / / / /2-01 Hvor mage dage er der her? (t ) Beyt de geerelle formel: k = = j 1 Y j r ( j t') ( 1+ ) - v 43 Eksempler Eksempel 3.1 s. 24 Med de ye regler Atal dage fra forrige termi (15/2-1998) til valør (1/6-1998): 15/2-98 Feb. Mar. Apr. Maj. 1/ Slutdato eksklusiv Startdato iklusiv 106 I ALT: 106 dage! Atal termier (t ): = 0,

23 Eksempler Eksempel 3.1 s. 24 Med de ye regler 45,33 41,33 37,33 1/ / / / / dage (t = 0,29 termier) 1 - t = 0,71 termier k = = j 1 Y j r ( j t') ( 1+ ) - v De magler vi! k = 45,33 x 1,04-0, ,33 x 1,04-1, ,33 x 1,04-2,71 - v 45 Eksempel 3.1 s. 24 1/6-98 Eksempler Med de ye regler 45,33 41,33 37,33 15/ / / / dage v = H x R x Faktisk atal dage side sidste termi Faktisk atal dage pr. temi 106 v = % = 3, k = 45,33 x 1,04-0, ,33 x 1,04-1, ,33 x 1,04-2,71 - v k = 116,30-3,484 = 112,

24 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Daske obligatiosmarked Pris og kurs Effektive reter 47 Effektiv rete Effektiv rete på e obligatio De kostate diskoterigsrete der gør, at de tilbagediskoterede værdi af de fremtidige ydelser er lig askaffelsesprise. Dvs. Vedhægede rete Askaffelsespris = k + v = j Y (1 + y) j j markedskurs Effektiv rete (hos Per Madse kaldte I de for de itere rete) 48 24

25 Effektiv rete Effektiv rete Itere retefod i ydelsesrække Ofte blevet fortolket som de faktiske forretig ma opår ved ivesterig i obligatioe Holder ikke da ma Forudsætter geivesterig til samme effektive rete Ikke tager højde for obligatioes løbetid Ikke tager højde for e evetuel koverterig (realkreditobligatioer) 49 Effektiv rete Ka ofte ikke fides aalytisk Solver i Excel Nødvedigt med avedelse af umeriske metoder (fx solver i Excel) 50 25

26 Effektiv rete Solver i Excel 51 Effektiv rete Solver i Excel 52 26

27 Effektiv rete Solver i Excel 53 27

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Claus Munk. kap. 1-3. Afdeling for Virksomhedsledelse, Aarhus Universitet Esben Kolind Laustrup

Claus Munk. kap. 1-3. Afdeling for Virksomhedsledelse, Aarhus Universitet Esben Kolind Laustrup Claus Munk kap. 1-3 1 Dagens forelæsning Grundlæggende introduktion til obligationer Betalingsrækker og låneformer Det danske obligationsmarked Pris og kurs Effektive renter 2 Obligationer Grundlæggende

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Kommunens styringssystemer og offentlige leders krydspres eller

Kommunens styringssystemer og offentlige leders krydspres eller Kommues styrigssystemer og offetlige leders krydspres eller hvorda får du forebyggelse sat på kommues dagsorde 1 Dispositio: Præsetatio og itroduktio til emet Ledergruppes styrigsmæssige dagsorde Begreber

Læs mere

Den servicemindede økonomi- og regnskabsmedarbejder

Den servicemindede økonomi- og regnskabsmedarbejder De servicemidede økoomi- og regskabsmedarbejder 25. og 26. marts 2009 Tekologisk Istitut Taastrup 16. og 17. april 2009 Tekologisk Istitut Århus Få idsigt og redskaber, der styrker service og rådgivig

Læs mere

Undgå tab med effektiv debitorstyring og inkasso

Undgå tab med effektiv debitorstyring og inkasso Udgå tab med effektiv debitorstyrig og ikasso 6. maj 2009 tekologisk istitut TAASTRUP Bliv opdateret på de yeste regler hvad betyder de for di virksomhed? Har du styr på virksomhedes tilgodehaveder? Etablerig

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Grundlæggende Lederuddannelse

Grundlæggende Lederuddannelse Grudlæggede Lederuddaelse Grudlæggede Lederuddaelse God ledelse er vigtig for både dig og di virksomhed. Det er vigtigt for di ege persolige udviklig, for die medarbejderes motivatio og dermed i sidste

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Hvad vi gør for jer og hvordan vi gør det

Hvad vi gør for jer og hvordan vi gør det Hvad vi gør for jer og hvorda vi gør det Vi skaber resultater der er sylige på di budliie... Strategi Orgaisatio Produktio Økoomi [ Ide du læser videre ] [ Om FastResults ] [ Hvorfor os? ] I foråret 2009

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 6. Matematik og økoomi 20% 40% 60% 40% Hvor udbredt er vaskepulveret af type A? 6. Matematik og økoomi Idhold 6.1 Procettal 2 6.2 Vejet geemsit

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia ^ ERHVERVS- OG BYGGESTYRELSEN Huseftersy Tilstadsrapport for ejedomme Sælger: Kirste Hammerum dresse 6.Jullvej93 Postr. By 7000 Fredericia ato Udløbsdato 3-07-200 3-0-20 HE r. Lb. r. Kommuer/Ejedomsr.

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Den Store Sekretærdag

Den Store Sekretærdag De Store Sekretærdag Tilmeld dig ide 1. oktober og få 300 kr. i rabat! De 25. ovember 2008 Tekologisk Istitut Taastrup De 8. december 2008 Mukebjerg Hotel Vejle Nia Siegefeldt, chefsekretær Camilla Miehe-Reard,

Læs mere

Matematisk trafikmodellering

Matematisk trafikmodellering - Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige

Læs mere

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer Program 08:30 Idtjekig med kaffe, te og morgebrød 09:00 Idledig ved dirigete Peter Høygaard, parter Devoteam Cosultig A/S 09.10 It-orgaisatioes udfordriger 2009 få mere for midre og spar de rigtige steder

Læs mere

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit!

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit! Vaebryderdage 2009 Vaes magt eller magt over vae? Valget er dit! Osdag de 4. marts 2009 taastr u p Vaebrydere Torbe Wiese Meditatiosgurue Heig Davere Hjereforskere Milea Pekowa COACHEN Chris MacDoald Ulrik

Læs mere

Vold på arbejdspladsen. Forebyggelse

Vold på arbejdspladsen. Forebyggelse F O A f a g o g a r b e j d e Vold på arbejdspladse Forebyggelse Idhold Et godt forebyggede arbejde Trivsel Faglighed Ledelse Brugeriddragelse Fællesskab Tekiske og fysiske forhold E løbede proces E positiv

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce Projektstyrigsmetode PRINCE2 som grudlag for opfyldelse af modehedskrav PRINCE2 is a Trade Mark of the Office of Govermet Commerce som beskrevet i Modehed i it-baserede forretigsprojekter, Modeller til

Læs mere

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1 Duo HOME Duo OFFICE Programmerigsmaual DK 65.044.50-1 INDHOLD Tekiske data Side 2 Systemiformatio, brugere Side 3-4 Ligge til og slette brugere Side 5-7 Ædrig af sikkerhedsiveau Side 8 Programmere: Nødkode

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Pcounter effektiv styring af omkostningerne. Pcounter-programmer

Pcounter effektiv styring af omkostningerne. Pcounter-programmer Pcouter effektiv styrig af omkostigere Pcouter-programmer Pcouter, Itro De cetrale udskrivigsstrategi Pcouter er software til registrerig og kotostyrig af prit, og som sætter virksomheder i stad til at

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

MAG SYSTEM. Gulvrengøring

MAG SYSTEM. Gulvrengøring DK MAG SYSTEM Gulvregørig Mag system Kocept E fremfører for alt. Det er helt yt: Ved Mag-systemet passer e fremfører til alle moptyper. Således ka de optimale arbejdsbredde, tekstilkvalitet og regørigsmetode

Læs mere

Softwaretest når det er bedst 2009

Softwaretest når det er bedst 2009 Tekologisk Istitut i samarbejde med softwaretest.dk Softwaretest år det er bedst 2009 8. o g 9. J U N I 2 0 0 9 T e k o l o g i s k I s t i t u t T a a s t r u p Succes med itegrerig af test i SCRUM og

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

14. Fagligt samarbejde matematik og samfundsfag

14. Fagligt samarbejde matematik og samfundsfag ISBN 978-87-766-494-3 4. Fagligt samarbejde matematik og samfudsfag Idholdsfortegelse Idledig Samfudsfag sat på formler II... 2 Tema : Multiplikatorvirkige... 3. Hvad er e multiplikatoreffekt?... 3 2.

Læs mere

AUGUST v. Margit Ingtoft, María Muniz Auken,

AUGUST v. Margit Ingtoft, María Muniz Auken, SOMMER-, WEEKEND- & EFTERÅRSKURSER 2007 SOMMERKURSER AUGUST v. Margit Igtoft, María Muiz Auke, JUNI og / eller Sommer 2007 Jui (A) + August (B) Dato: 5/6 28/6 og eller 7/8 30/8: MUY BARATO: Pris pr. hold

Læs mere

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk Små og store varmepumper Bjarke Paaske Tekologisk Istitut Telefo: +45 7220 2037 E-mail: bjarke.paaske@tekologisk.dk Ree stoffers tre tilstadsformer (faser) Fast stof (solid) Eksempel: is ved H 2 0 Væske

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

BRANDBEKÆMPELSE OG KRÆFTRISIKO

BRANDBEKÆMPELSE OG KRÆFTRISIKO BRANDBEKÆMPELSE OG KRÆFTRISIKO Rapport fra Videskoferece på Christiasborg 22. jauar 2013 1 Bradbekæmpelse og kræftrisiko bygger på idlæg og diskussioer på koferece, afholdt på Christiasborg 22. jauar 2013.

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Referat for bestyrelsesmøde d. 22. marts 2015 kl. 11.00 Ellidshøjskole, Ny skolevej 2, 9230 Svenstrup. Dagsorden for bestyrelsesmøde

Referat for bestyrelsesmøde d. 22. marts 2015 kl. 11.00 Ellidshøjskole, Ny skolevej 2, 9230 Svenstrup. Dagsorden for bestyrelsesmøde Referat for bestyrelsesmøde d. 22. marts 2015 kl. 11.00 Ellidshøjskole, Ny skolevej 2, 9230 Svestrup Tilstede: Hae Veggerby, formad( Hveg), Ae sofie Gothe, æstformad (Asgr), Mette Nødskov sekretær ( Met),

Læs mere

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed Nr. 135. Jui 2015. 23. årgag DIÆTISTEN FOKUS Erærigsidsats ka spare milliarder - Vi har spurgt politikere, hvorda de ser på erærigsrelaterede problemer som overvægt og udererærig Besparelser i Regio Midt

Læs mere

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD)

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) Uderøgele af forældre brugerilfredhed med dagilbud i kommue Sep. 2013 SPØRGESKEMA TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) De er valgfri for kommue, om de pørgmål,

Læs mere

Her svigtes de ældre mest. Fokus. Dokumentation: Ældre patienter behandles meget forskelligt alt efter, hvor i landet de bor. De

Her svigtes de ældre mest. Fokus. Dokumentation: Ældre patienter behandles meget forskelligt alt efter, hvor i landet de bor. De 50+ sygdomme Nyhedsmagasi om forebyggelse og behadlig magasiet Overaktiv blære er e tabubelagt sygdom Side 8 Geidlæggelser for dehydrerig Regio Hovedstade 26,2% Nyt middel mod forhøjet blodtryk Omkrig

Læs mere

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag Hvidbog omhadlede de idkome idsigelser, bemærkiger og kommetarer til forslag til Kommuepla 2009 Udgave A: Rækkefølge som forslag 4. jauar 2010 Idhold Idledig. 3 Proces og behadlig m.v 3 Hvidboges opbygig..

Læs mere

Realkreditobligationer

Realkreditobligationer Skitsering af lånemarkedet i DK vs. kontantlån Fastforrentede lån tilpasningslån (FlexLån) udvikling og huspriser Warning: kortfattet simplificeret skitsering af et komplekst område! Den interesserede

Læs mere

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...

Læs mere

Cityringen Udredning af metro til Ny Ellebjerg via Sydhavnen

Cityringen Udredning af metro til Ny Ellebjerg via Sydhavnen Jui 2013 Resumé Cityrige Udredig af metro til via Sydhave Metroselskabet Trasportmiisteriet Købehavs Kommue Frederiksberg Kommue Tekst Metroselskabet I/S Metrovej 5 2300 Købehav S Telefo +45 3311 1700

Læs mere

Nuance ecopy ShareScan. Dokumentbehandling i den digitale verden. Document capture & distribution Nuance ecopy

Nuance ecopy ShareScan. Dokumentbehandling i den digitale verden. Document capture & distribution Nuance ecopy Nuace ecopy ShareSca Dokumetbehadlig i de digitale verde Documet capture & distributio Nuace ecopy Nuace ecopy, documet capture & distributio Itegratio af papirdokumeter i digitale arbejdsgage Med Nuace

Læs mere

Plejebrochure. Gør dit bassin til det bedste

Plejebrochure. Gør dit bassin til det bedste Plejebrochure Gør dit bassi til det bedste Er du god til at vedligeholde dit svømmebassi? Hvis ikke, så lad os hjælpe dig. Med dee brochure vil du hurtigt blive e ekspert. Ethvert svømmebassi ka opå krystalklart

Læs mere

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal

Læs mere

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed Nr. 135. Jui 2015. 23. årgag DIÆTISTEN FOKUS Erærigsidsats ka spare milliarder - Vi har spurgt politikere, hvorda de ser på erærigsrelaterede problemer som overvægt og udererærig Besparelser i Regio Midt

Læs mere

Nye veje til den gode forflytning

Nye veje til den gode forflytning TEMA Ergoomi Nye veje til de gode forflytig Nye veje til de gode forflytig Brachearbejdsmiljørådet Social & Sudhed Nye veje til de gode forflytig Idhold Nye veje til de gode forflytig side 3 Lies første

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

Professionel IT-forundersøgelse og MUST-metoden. Jesper Simonsen

Professionel IT-forundersøgelse og MUST-metoden. Jesper Simonsen Professioel IT-forudersøgelse og MUST-metode Jesper Simose simose@ruc.dk www.ruc.dk/~simose Datalogi, hus 42.1 Roskilde Uiversitetsceter Uiversitetsvej 1 4000 Roskilde Telefo: 4674 2000 www.dat.ruc.dk

Læs mere

Vejledning vedrørende. Markedsinformationer om danske realkreditobligationer

Vejledning vedrørende. Markedsinformationer om danske realkreditobligationer Vejledning vedrørende Markedsinformationer om danske realkreditobligationer December 2011 Markedsinformationer om danske realkreditobligationer Indledning Markedsinformationer om danske realkreditobligationer

Læs mere

ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN

ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG

Læs mere

Er det en naturlov at aminosyrer er venstredrejede?

Er det en naturlov at aminosyrer er venstredrejede? Er det e aturlov at amiosyrer er vestredrejede? Aja C. Aderse, Axel Bradeburg og Tuomas Multamäki (NORDITA) Stort set samtlige amiosyrer fides i to udgaver (eatiomere) e vestre og e højredrejet (se figur

Læs mere

Brændstof. til krop og hjerne

Brændstof. til krop og hjerne Brædstof til krop og hjere Idhold 3 6 8 10 11 12 14 15 17 22 24 26 27 28 29 30 Kaloriebomber og eergibudter Døget rudt skal di krop og hjere bruge eergi Morgemad Med morgemad er du sikker på, det går godt

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

Opbygning og vedligeholdelse a procesanlæg

Opbygning og vedligeholdelse a procesanlæg Opbygig og vedligehold a procesalæg SESAM præsetatio Leif Taagberg Direktør, Taagberg Pro-Cosult Jes Norlig Mathiasse PCS7 Produktmaager, Siemes Siemes A/S 2013 SESAM præsetatio Hi [13]. All rights r gig

Læs mere

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: ektrom@life.ku.dk Fordelig af geemit Statitik ifere for

Læs mere

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse...5.3

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Rente, lån og opsparing

Rente, lån og opsparing Rente, lån og opsparing Simpel rente og sammensat rente... 107 Nogle vigtige begreber omkring lån og opsparing... 109 Serielån... 110 Annuitetslån... 111 Opsparing... 115 Rente, lån og opsparing Side 106

Læs mere

2. Hverdagen på danske arbejdspladser

2. Hverdagen på danske arbejdspladser 2. Hverage på aske arbejsplaser 2.1 Sammefatig 69 2.2 Daske mearbejere veres mest tilfrese 71 2.3 Daske virksomheer ivesterer i mearbejere 77 2.4 De ekeltes valg og rammere for arbejet 8 2.1 Sammefatig

Læs mere

Med serien Super let PS kan børn allerede fra 6 år få succes med deres første

Med serien Super let PS kan børn allerede fra 6 år få succes med deres første Superbør er super lette bøger til legelæsig og læsetræig allerede fra 5 år, det vil sige til det sidste år i børehave og til bh.kl. 1. klasse. Børee får her et tilbud på gode oplevelser, mage samtaleemer

Læs mere

Fra viden til handling. Få flere unge, især med anden etnisk baggrund end dansk, til at begynde på og gennemføre en erhvervsfaglig uddannelse

Fra viden til handling. Få flere unge, især med anden etnisk baggrund end dansk, til at begynde på og gennemføre en erhvervsfaglig uddannelse 2013 Fra vide til hadlig Få flere uge, især med ade etisk baggrud ed dask, til at begyde på og geemføre e erhvervsfaglig uddaelse Tekst/forfatter LG Isight Udgivet af Fastholdelseskaravae/- Miisteriet

Læs mere

VERDEN. handler ETISK OG FAIR? Skolekontakten

VERDEN. handler ETISK OG FAIR? Skolekontakten P e t e r B e j d e r & K a a r e Ø s t e r VERDEN hadler ETISK OG FAIR? Skolekotakte Verde hadler etisk og fair? Peter Bejder & Kaare Øster VERDEN hadler Verde hadler etisk og fair? Peter Bejder & Kaare

Læs mere

YSoft SafeQ. Accounting software og terminaler. Applikationer YSoft SafeQ

YSoft SafeQ. Accounting software og terminaler. Applikationer YSoft SafeQ YSoft SafeQ Accoutig software og termialer Applikatioer YSoft SafeQ YSoft SafeQ, itroduktio YSoft SafeQ Komplet Accoutig og sikkerhed YSoft SafeQ er e serverløsig, som kotrollerer og fordeler udskrivige

Læs mere

Helende miljø en udfordring for patientsikkkerhed? Workshop Patientsikkerhed og syge børn fredag den 15. oktober 2010

Helende miljø en udfordring for patientsikkkerhed? Workshop Patientsikkerhed og syge børn fredag den 15. oktober 2010 Helede miljø e udfordrig for patietsikkkerhed? Workshop Patietsikkerhed og syge bør fredag de 15. oktober 2010 Elisabeth Brøgger Jese mag.art. kultursociolog elisabeth.broegger.jese@regioh.dk. Pricipper

Læs mere

Projekt 8.2 Slaget ved Trafalgar-Nelsons og Villeneuves strategier. Matematisk modellering af et af verdenshistoriens store slag.

Projekt 8.2 Slaget ved Trafalgar-Nelsons og Villeneuves strategier. Matematisk modellering af et af verdenshistoriens store slag. Projekt 8.2 Slaget ved Trafalgar-Nelsos og Villeeuves strategier. Matematisk modellerig af et af verdeshistories store slag. Om de matematiske metode Vi vil illustrere de matematiske metode, ved at vise

Læs mere

Affaldshåndbog. Batteriindsamling. Genbrugsstationer. Storskrald. Konkurrence

Affaldshåndbog. Batteriindsamling. Genbrugsstationer. Storskrald. Konkurrence Affaldshådbog 2008 Batteriidsamlig Gebrugsstatioer Storskrald Kokurrece Idhold Hilse fra direktøre 3 Nyheder i 2008 4 Geerelt 5 Hjælp di skraldemad 5 ORDNINGER Restaffald 6 Papiridsamlig 8 Batterier på

Læs mere

LAMINATGULV KOLLEKTION 2012 2013....det brugervenlige gulv

LAMINATGULV KOLLEKTION 2012 2013....det brugervenlige gulv LAMINATGULV KOLLEKTION 2012 2013...det brugervelige gulv Smart på mage......forskellige måder Lami art Black & Hype Der fides æppe oget gulv, der sætter brugere mere i fokus ed lamiatgulve fra Tarkett.

Læs mere

Vejledning til brug ved ansøgning om patent

Vejledning til brug ved ansøgning om patent Vejledig til brug ved asøgig om patet Idhold: Hvad ka pateteres hvorår og hvorda? 1 Såda søger De patet i Damark 3 Et praktisk eksempel 5 Hvorda behadles asøgige? 12 Patetbeskyttelse i flere lade 14 Biblioteks-liste

Læs mere

AB NAVERPARKEN V/ANNI BROWN Navervej 11 F 8600 Silkeborg. December 2012 Pantnr. 2034.8894

AB NAVERPARKEN V/ANNI BROWN Navervej 11 F 8600 Silkeborg. December 2012 Pantnr. 2034.8894 AB NAVERPARKEN V/ANNI BROWN Navervej 11 F 8600 Silkeborg Realkredit Danmark Finanscenter Trekantområdet Havneparken 3 7100 Vejle Telefon 70 15 15 21 www.rd.dk December 2012 Pantnr. 2034.8894 Ejendom :

Læs mere

AB NAVERPARKEN V/ANNI BROWN Navervej 11 F 8600 Silkeborg. December 2012 Pantnr. 2034.8894

AB NAVERPARKEN V/ANNI BROWN Navervej 11 F 8600 Silkeborg. December 2012 Pantnr. 2034.8894 AB NAVERPARKEN V/ANNI BROWN Navervej 11 F 8600 Silkeborg Realkredit Danmark Finanscenter Trekantområdet Havneparken 3 7100 Vejle Telefon 70 15 15 21 www.rd.dk December 2012 Pantnr. 2034.8894 Ejendom :

Læs mere

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n))

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n)) DM19 1. Iformatio-theoretic lower bouds kap. 8 + oter. Ma ka begræse de teoretiske græse for atallet af sammeligiger der er påkrævet for at sortere e liste af tal. Dette gøres ved at repræsetere sorterig-algoritme

Læs mere

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011)

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011) Formelsamlig til statistik-el af metoekursus, 4. semester, lægevieskab Versio 3 (6/9-011) Kære læser Dee formelsamlig er lavet me ugagspukt i Meical Statistics, seco eitio af Betty R. Kirkwoo og A. C.

Læs mere