Projekt 3.1 Potensbegrebet og geometriske rækker

Størrelse: px
Starte visningen fra side:

Download "Projekt 3.1 Potensbegrebet og geometriske rækker"

Transkript

1 Hvd er mtemtik? ISBN Projekter: pitel. Projekt. Potesbegrebet og geometriske rækker Projekt. Potesbegrebet og geometriske rækker (Vi tger i det følgede udggspukt i kpitlfremskrivigsformle: ( r ) ) I formle for kpitlfremskrivig er situtioe de, t de kpitl, der står på sldoe, fremskrives med e fst procet r, hver gg tllet f termier vokser med. Vi beviste uder fsittet om procetregig, t det etop svrer til, t vi gger strtværdie på sldoe med de fste fremskrivigsfktor, hver gg -værdie vokser med. E såd vækst-type k derfor også krkteriseres som værede e ggevækst. I kpitel vil vi betege de som ekspoetiel vækst. Temet for dette projekt er: Hvord udvides potesbegrebet, så formle giver meig ikke blot for et helt tl termier, me for ehver brøkdel f e termi. r Vækstmodeller, der k krkteriseres som ggevækst, hr e historie, der rækker meget lægere tilbge ed retesregige. Tidligere vr de kedt uder vet geometriske rækker, der etop er krkteriseret ved e strtværdi og e fst vækstfktor. Hvis f strtværdie er og vækstfktore er, fører det til de geometriske række (som vi skriver med modere tbelottio): y (=strtværdi) (= ) (= 6 ) (= ) (= ) (= 8 ) Øvelse Udfyld de følgede tbeller for geometriske rækker, idet du først prøver t fkode, strtværdi og vækstfktor. ) y b) c) d) y 8 6 y 8 7 y Hvis vi geerelt klder strtværdie for b og vækstfktore for, fås de følgede tbel: y b (= ) (= b ) (= b ) (= b ) (= b ) 7 L&R Uddelse A/S Vogmgergde D-8 øbehv Tlf: Emil: ifo@lru.dk

2 Hvd er mtemtik? ISBN Projekter: pitel. Projekt. Potesbegrebet og geometriske rækker Vi ser derfor, t de geerelle formel for e geometrisk række også k skrives på forme med strtværdie b og vækstfktore. y b Læg mærke til hvord de liger formle for kpitlfremskrivig: med strtværdie r ( ) svrede til b, og fremskrivigsfktore ( r) svrede til vækstfktore. Udvidelse f potesbegrebet med egtive poteser Vi veder for e kort stud tilbge til tbelle for ekspoetiel vækst. Her ser vi u for simpelhedes skyld på et eksempel med strtværdi og vækstfktor : 8 6 y / Hver gg vi går et skridt til højre, gger vi med. Me herf følger jo også, t hver gg vi går et skridt til vestre, dividerer vi med. Vi k derfor fortsætte tbelle til vestre og tilbgeskrive tbelle forbi strtpuktet: y Me dee tbel k jo også læses som e udvidelse f to-tlspotesere, der åbelyst sker efter regle eller mere geerelt. Regle psser også id i de mere geerelle struktur for geometriske rækker. Hvis vi går et skridt frem i tbelle, gger vi med, går vi to skridt frem i tbelle, gger vi med, går vi skridt frem i tbelle, gger vi med. Me u ser vi, t regle både gælder for positive og egtive værdier f, idet et egtivt blot betyder t vi går bglæs, dvs. tilbge i tbelle. Dee forståelse f de egtive ekspoeter kster også lys over kpitltilbgeskrivig, dvs. hvord vi fider tilbge til strtkpitle, år vi keder slutkpitle : ( r) ( r) Prøver vi t fide strtkpitle ved hjælp f et CAS-værktøj fider vi typisk solve( ( r), ) ( r) dvs. CAS-værktøjet udfører tilbgeskrivige f slutkpitle ved t gge med ( r ), hvilket er i fuld overesstemmelse med potesregeregel r. 7 i grudboges fsit. 7 L&R Uddelse A/S Vogmgergde D-8 øbehv Tlf: Emil: ifo@lru.dk

3 Hvd er mtemtik? ISBN Projekter: pitel. Projekt. Potesbegrebet og geometriske rækker Udvidelse f potesbegrebet med hlve Vi k også bruge de smme ide til t fide ud f, hvd der skl stå i tbelle, hvis vi idskyder mellemværdier. Dette problem hr e lg historie bg sig og løsige hr været kedt side de græske mtemtik. Vi bemærker først, t der gælder følgede regel for e geometrisk række: Hvis et tl m står midt mellem tllee v (til vestre for m) og h (til højre for m) så gælder der om de tilsvrede tl i de geometriske række, t y( m) y( v) y( h ). y(m) kldes derfor det geometriske middeltl f y(v) og y(h). Se på følgede eksempel. I de geometriske række svrer tllet 6 til ummer, der er midt mellem og. og svrer til tllee og : y Og tllet 6 er etop kvdrtrode f tllet =6. Dette er jo ikke et bevis, me e illustrtio. Prøv selv t kotrollere med e række dre eksempler fr de potesrækker du hr udreget. Selv om du fider, t det gælder også i de tilfælde, kræver påstde turligvis et bevis. Øvelse Se på de geerelle tbels ggestruktur: y b Tllet står midt mellem og. Dvs. v svrer til, og svrer til h. ) Vis u, t y-værdie svrede til, dvs. er lig med y( v) y( h ). b) Vi t regle også gælder for tl med større fstd, f for tllee, og. Ld os se hvord dette k begrude edu e udvidelse f potesbegrebet. Vi veder tilbge til tbelle over to-tlspotesere. Når vi øsker t idskyde mellemværdier i tbelle, svrer det til, t vi idfører hlve skridt i tbelle og dermed hlvtllige ekspoeter: 7 9 y 8 6 k ½ D der er tle om e ggevækst, må vi forvete t vi gger med e bestemt vækstfktor k for hver gg vi går et hlvt skridt frem i tbelle, me vi ved jo, t hver gg vi tger et helt skridt, skl vi gge med, og d to hlve skridt etop svrer til et helt skridt, betyder det, t der må gælde k½k ½ dvs. k ½ og dermed k ½. Vi k derfor udfylde de oveståede tbel ved successivt t gge med : 7 9 y L&R Uddelse A/S Vogmgergde D-8 øbehv Tlf: Emil: ifo@lru.dk

4 Hvd er mtemtik? ISBN Projekter: pitel. Projekt. Potesbegrebet og geometriske rækker Grfisk præsettio f potesudvidelse - som perler på e sor. Gå id i dit regerk og opret e lodret liste over tllee,,, og. Udreg de tilhørede - tlspoteser ved t tildele strtværdie og deræst lde hvert f de følgede tl være produktet f tllet i de foregåede celle med vækstfktore. Afbild de fremkome tbel grfisk: Dette er strte på grfe for fuktioe y =. Idskyd u rækker i tbelle svrede til ekspoetere, /,, /,, /,, 7/ og. De ye - tlspoteser er udefierede i tbelle, fordi vi jo ku hr fortlt, hvd der sker, år vi går et helt skridt frem i tbelle. Vi fylder derfor hele tbelle ved t tildele celle efter strtværdie værdie f tllet i de foregåede celle gget med kvdrtrode f. derefter trækkes dee tildelig ed geem hele celle. Læg mærke til grfe! Idskyd u rækker i tbelle svrede til ekspoetere, /, /, /,, /,, / og og gå frem på smme måde idet du dee gg gger med kvdrtrode f kvdrtrode f svrede til et fjerdelsskridt osv. osv. På dee måde k du u systemtisk udfylde flere og flere pukter på grfe for fuktioe y =. Udvidelse f potesbegrebet med stmbrøkere te dele vdrtrodsregle psser også id i de mere geerelle struktur for geometriske rækker. Hvis vi går ét skridt frem i tbelle, gger vi med, går vi to skridt frem i tbelle, gger vi med, går vi skridt frem i tbelle, gger vi med. Me u ser vi, t hvis vi går et hlvt skridt frem i tbelle, gger vi med, fordi to hlve skridt etop svrer til et helt skridt. Der gælder ltså også e potesregeregel, der siger t. Tilsvrede vil tre tredjedele skridt i tbelle etop svrer til ét helt skridt, hvorfor de tilhørede fremskrivigsfktor k / må opfylde k k k k, hvorfor der må gælde k og dermed / / / / ; og mere geerelt og edu mere geerelt. / I hvde Cristoph Rudolf idført kvdrtrodsteget som et forvsket r for rod. u c. hudrede år efter lykkedes det på dee måde t få styr på potesere og deres regeregler. 7 L&R Uddelse A/S Vogmgergde D-8 øbehv Tlf: Emil: ifo@lru.dk

5 Hvd er mtemtik? ISBN Projekter: pitel. Projekt. Potesbegrebet og geometriske rækker Potesbegrebet og geemsitlig rete Dee forståelse f rødder kster også lys over reteformle, dvs. hvord vi fider tilbge til rete i é termi, år vi keder de smlede retetilskrivig i termier: ( r) r Prøver vi t fide rete ved hjælp f et CAS-værktøj fider vi typisk solve( ( r), r) r dvs. CAS-værktøjet fider rete ved t opløfte til potese / i stedet for t udføre roddudrgige f de 'te rod, ige i fuld overesstemmelse med de fude potesregeregel. 7 L&R Uddelse A/S Vogmgergde D-8 øbehv Tlf: Emil: ifo@lru.dk

Projekt 4.1 Potensbegrebet og geometriske rækker

Projekt 4.1 Potensbegrebet og geometriske rækker Hvd er mtemtik? C, i-bog ISBN 978 87 766 499 8 Projekter: pitel 4 Projekt 4. Potesbegrebet og geometriske rækker Vi hr defieret e ekspoetiel vækst, som e vækstmodel, hvor de fhægige vribel, - værdie, fremskrives

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet Hvd er tetik? ISBN 978877879 Projekter: Kitel. Projekt.7.E lgebrisk tilgg til udvidelse f otesbegrebet Projekt.7. E lgebrisk tilgg til udvidelse f otesbegrebet Ld i det følgede tllet være et ositivt tl.

Læs mere

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet Hvd er tetik? C ISBN 97 887 7 79 Projekter: Kitel. Projekt.7.E lgebrisk tilgg til udvidelse f otesbegrebet Projekt.7. E lgebrisk tilgg til udvidelse f otesbegrebet Ld i det følgede tllet være et ositivt

Læs mere

Sammensætning af regnearterne - supplerende eksempler

Sammensætning af regnearterne - supplerende eksempler Mtetik på AVU Ekseplet til iveu F, E og D Sesætig f regertere - supplerede eksepler Poteser... Rødder... d 0-tls-poteser... e Sesætig f regertere Side Mtetik på AVU Ekseplet til iveu F, E og D Sesætig

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

Projekt 9.10 Differentiation af potensfunktioner ved hjælp af binomialformlen

Projekt 9.10 Differentiation af potensfunktioner ved hjælp af binomialformlen Projet 9.1 Differetitio f potesfutioer ved jælp f iomilformle 1. Pscls tret og iomilformle Vi strter med t mide om t poteser f toleddede størrelser, de såldte iomer, udreges ved jælp f Pscls tret, idet

Læs mere

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

Lidt Om Fibonacci tal

Lidt Om Fibonacci tal Lidt om Fioi tl Lidt Om Fioi tl Idhold. Defiitio f Fioi tllee.... Kivl... 3. Telefokæder....3 4. E formel for Fioi tllee...4 Ole Witt-Hse 008 Lidt om Fioi tl. Defiitio f Fioi tllee Fioi tllee er opkldt

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig

Læs mere

Kommentarer til VARIABLE

Kommentarer til VARIABLE Kommetrer til Fglige mål Kpitlet lægger op til, t elevere lærer vribelbegrebet t kede som et effektivt værktøj til t skbe sig overblik over komplekse problemstilliger. k udpege kostter og vrible med tilhørede

Læs mere

Projekt 2.1 Det gyldne snit og Fibonaccitallene

Projekt 2.1 Det gyldne snit og Fibonaccitallene ISN 978-87-7066-498- Projekter: Kpitel. Projekt. Det glde sit og Fiboccitllee Projekt. Det glde sit og Fiboccitllee Fordsætiger: Kedskb til ligedethed. Grdlæggede geometrisk vide. Kedskb til degrdsligige.

Læs mere

Finitisme og Konstruktivisme. 22. November 2010

Finitisme og Konstruktivisme. 22. November 2010 Fiitisme og Kostruktivisme 22. November 2010 Frktler Hilbert Mdelbrot Feigebum Lorez Lorez-Ligigere σ = 10 β = 8/3 ρ =28 Logistisk vækst x -> rx(1-x) Mdelbrots frktl z -> P c (z) = z 2 +c 0-> P c (0) ->P

Læs mere

Grundlæggende matematiske begreber del 1

Grundlæggende matematiske begreber del 1 Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium December 2018 ; Michel Szymski ; mz@ghg.dk 1 Idholdsfortegelse

Læs mere

Kap. 1: Integralregning byggende på stamfunktioner.

Kap. 1: Integralregning byggende på stamfunktioner. - - Kp. : Itegrlregig yggede på stmfuktioer... Specielle egesker ved fuktioer. Defiitio... E fuktio f siges t være egræset i et itervl I, hvis f er defieret i itervllet, og hvis der fides to tl k og K,

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Grudlæggede mtemtiske begreber del Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi x-klssere Gmmel Hellerup Gymsium Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige tl... 9 De hele

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Projekt 2.1 Det gyldne snit og Fibonaccitallene

Projekt 2.1 Det gyldne snit og Fibonaccitallene Hvd er mtemtik? Projekter: Kpitel. Projekt. Det glde sit og Fiboccitllee Projekt. Det glde sit og Fiboccitllee Fordsætiger: Kedskb til ligedethed. Grdlæggede geometrisk vide. Kedskb til degrdsligige. Grdlæggede

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige tl...

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Matematikkens mysterier - på et højt niveau. 1. Integralregning

Matematikkens mysterier - på et højt niveau. 1. Integralregning Mtemtikkes mysterier - på et højt iveu f Keeth Hse. Itegrlregig Hvd er relet f de skrverede puktmægde? . Itegrlregig Idhold. Stmfuktioer og det uestemte itegrl. Regeregler for det uestemte itegrl 7 Prtiel

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Statistik Lektion 4. Kovarians og korrelation Mere om normalfordelingen Den centrale grænseværdi sætning Stikprøvefordelingen

Statistik Lektion 4. Kovarians og korrelation Mere om normalfordelingen Den centrale grænseværdi sætning Stikprøvefordelingen Sttistik Lektio 4 Kovris og korreltio Mere om ormlfordelige De cetrle græseværdi sætig Stikprøvefordelige Repetitio: Kotiuerte stokstiske vrible f (x) er e sdsylighedstæthedsfuktio, hvis f ( x) 0 for lle

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0} Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Notater til Analyse 1

Notater til Analyse 1 Alyse 1 Jørge Vesterstrøm Forår 2004 Notter til Alyse 1 Idhold Forord 1 1. Om dobbeltsummer 1 2. Eksistes f e ikke målelig mægde 2 3. Bevis for e del f Prop. 3.15 3 4. Riem-itegrlet og trppefuktioer 4

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Projekt 7.8 To ligninger med to ubekendte

Projekt 7.8 To ligninger med to ubekendte Projekt 78 To ligninger med to uekendte Den opgve t skulle løse to ligninger med to uekendte er vi stødt på i en række speciltilfælde under ehndlingen f vækstmodellerne: Funktionstype Ligningssystem Lineær

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning Hvad er matematik? Projekter: Kaitel 9 Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Sætig : Regeregler

Læs mere

Projekt 8.4 Logaritmefunktionerne

Projekt 8.4 Logaritmefunktionerne Hvd er mtemtik? Projekter: Kpitel 8. Projekt 8.4 Logritmefunktionerne Projekt 8.4 Logritmefunktionerne Indhold. log( ) og 0 som omvendte funktioner... 2 2. Den nturlige logritmefunktion, ln( ) og den nturlige

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Projekt 9.10 St. Petersborg paradokset

Projekt 9.10 St. Petersborg paradokset Hvad er matematik? ISBN 978877066879 Projekt 9.0 St. Petersborg paradokset. De store tals lov & viderchacer I grudboges kapitel 9 omtales de store tals lov, som ka formuleres således: Hvis e spiller i

Læs mere

a b cos. n=1 er positiv på N. Vi kan nu benytte sammenligningskriteriet (sætning ) og sammenligne 2a sin ( )

a b cos. n=1 er positiv på N. Vi kan nu benytte sammenligningskriteriet (sætning ) og sammenligne 2a sin ( ) Opgve Vi skl bestemme de tlpr (, for hvilke række b cos = er koverget. Først beytter vi divergeskriteriet (sætig 2..4) til t kræve t leddee må gå mod ul for gåede mod uedelig. Dette giver os t = b cos()

Læs mere

KULTURARVEN det skal der ske. vegne

KULTURARVEN det skal der ske. vegne KULTURARVEN det skl der ske R E M G DO være et kulturrve e. f g i r v skl be g kommu Kommue borgere o e d å b r fo I Roskilde de g ligt æri idetitet o fælles, sy ber lokl k s e d e rdifuld eskytte d rrv

Læs mere

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN Projekt 3.2 Alægsøkoomie i Storebæltsforbidelse Dette projekt hadler, hvorda økoomie var skruet samme, da ma byggede storebæltsforbidelse. Store alægsprojekter er æste altid helt eller delvist låefiasieret.

Læs mere

Matematik A. Højere handelseksamen. Formelsamling

Matematik A. Højere handelseksamen. Formelsamling Mtemtik A Højere hdelseksme Formelsmlig Mtemtik A Højere hdelseksme Formelsmlig Forfttere: Jytte Meli og Ole Dlsgrd April 09 ISBN: 978-87-603-339-5 (web udgve) Dee udgve f Mtemtisk formelsmlig htx A-iveu

Læs mere

Sandsynlighedsregning og statistisk

Sandsynlighedsregning og statistisk Figur : J. C. F. Guss 777 855 Sdsylighedsregig og sttistisk Peter Hremoës Niels Brock 6. pril Idledig Dette hæfte er lvet som supplemet til. udgve f boge Mt B. Der er lgt vægt på t give e bedre forståelse

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

3.-årsopgave, matematik Tønder Gymnasium & HF 21.12.01

3.-årsopgave, matematik Tønder Gymnasium & HF 21.12.01 .-årsopgve, teti Tøder Gysiu HF.. Idholdsfortegelse: Idledig / forord s.. Mtricer, geerelt s. -. Nogle egeser for tricer s. -6. Deteriter s. 6-. Deterit-sætiger s. -. Miorer, oftorer og opleeter s. - 6.

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

BEVISER TIL SÆTNINGER I BOGEN

BEVISER TIL SÆTNINGER I BOGEN MTEMK Mtemtik o hh C-iveu BEVISER TIL SÆTNINGER I BOGEN Dette e e smlig ove lle e sætige og evise e e i oge. Det e met som suppleee mteile isæ til e eleve, e skl hve mtemtik på B- elle -iveu. ee i ku metget

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

Grundlæggende funktioner

Grundlæggende funktioner Grundlæggende funktioner for A-niveu i st Udgve 5 018 Krsten Juul Grundlæggende funktioner for A-niveu i st Procent 1. Procenter på en ny måde... 1. Vækstrte... 3. Gennemsnitlig procent... Lineær vækst

Læs mere

Hvordan Leibniz opfandt integralregningen

Hvordan Leibniz opfandt integralregningen Hvord Leiiz opdt itegrlregige 0 Krste Juul EglÄdere Isc Newto (6-) opdt i 66 itegrlregige. Tskere Gottried Wilhelm Leiiz (66-6) opdt i 6 itegrlregige. Ige dem oetliggjorde deres opidelse med det smme.

Læs mere

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb Hvd er mtemtik?, e-og Projekter: Kpitel 5 Projekt 57 Hovedsætninger om differentile funktioner Projekt 57 Hovedsætninger om differentile funktioner et opgveforlø Projektet er en udvidelse f fsnittet i

Læs mere

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN Projekt 0.4 Modulo-regig, restklassegruppere sætig ( p 0, ) og Fermats lille Vi aveder moduloregig og restklasser mage gage om dage, emlig år vi taler om tid, om hvad klokke er, om hvor lag tid der er

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Eksamensspørgsmål NmaC144s sommer Spørgsmål 1: Ligninger

Eksamensspørgsmål NmaC144s sommer Spørgsmål 1: Ligninger Eksamesspørgsmål NmaC144s sommer 014. Gør rede for omformigsreglere for ligiger. Spørgsmål 1: Ligiger Giv eksempler på hvorda forskellige ligiger løses. Du bør her komme id på flere forskellige ligigstper,

Læs mere

Ledighedsstatistik, maj 2013

Ledighedsstatistik, maj 2013 Ledighedssttistik, mj 3 Fld i kdemikerledighede i mj me reelt tle m e lille stigig Stigede tl lgtidsledige dimitteder Akdemikerledighede er fldet med fr ril til mj g er u å.53 svrede til e ledighedsrcet

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Projekt 7.3 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter

Projekt 7.3 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Hv er mtemtik? Projekt 7.3 Firkntstrigonometri og Ptolemios sætning i ykliske firknter Trigonometrien til eregning f ukente vinkler, sier og reler for treknter er stort set utømt me ulening f sinusreltionerne,

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Integration ved substitution og delvis (partiel) integration

Integration ved substitution og delvis (partiel) integration DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK INTEGRATION EFTERÅRET Integrtion ved sustitution og delvis (prtiel) integrtion Differentil- og integrlregningens hovedsætning lyder: Hvis ƒ er

Læs mere

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden. Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål

Læs mere

Sandsynlighedsregning og statistisk. J. C. F. Gauss ( ) Peter Haremoës Niels Brock. 9. april 2013

Sandsynlighedsregning og statistisk. J. C. F. Gauss ( ) Peter Haremoës Niels Brock. 9. april 2013 Sdsylighedsregig og sttistisk J. C. F. Guss 777 855 Peter Hremoës Niels Brock 9. pril 3 Idledig Dette hæfte er lvet som supplemet til. udgve f boge Mt B. Der er lgt vægt på t give e bedre forståelse for

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

2 Erik Vestergaard

2 Erik Vestergaard Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd www.mtemtikfysik.dk 3 Definition 1 En funktion på formen f ( x) = b x, x R +, hvor b R + og R er konstnter, kldes for en potensudvikling eller en potensiel

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

Projekt 10.3 Terningens fordobling

Projekt 10.3 Terningens fordobling Hvd er mtemtik? Projekter: Kpitel 0 Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deducere sig til og konstruere sig til ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige,

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 Ligninger 1 3 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 2 c d e f 6 æg + 5 høns. 1 æle + 13 pærer. 5 myg + 1 flue. 6x + 5y + 13 3x + 5y 3 4 Gælder i nogle tilfælde. Gælder ltid. c Gælder

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k 0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 4. Exp, pot & log

Matematikkens mysterier - på et obligatorisk niveau. 4. Exp, pot & log Mtemtikkes msterier - på et oligtorisk iveu f Keeth Hse. Ep, pot & log Verdes efolkig 0 8 6 0 0 0 0 0 0 50 År 98-0 I 98 vr verdesefolkige,7 mi. og voksede med,8% om året Hvorår vil der være 0 mi. på jorde?

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Note til Spilteori Mikro 2. år 2. semester Erik Bennike. Note til Spilteori

Note til Spilteori Mikro 2. år 2. semester Erik Bennike. Note til Spilteori Note tl Splteor Mkro. år. semester Erk Beke Note tl Splteor Gos s. - Splteor eskæftger sg med sttoer hvor der er strtegsk fhægghed geter mellem. Nytte for de ekelte get fhæger således kke lee f ege hdlger

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Ledighedsstatistik, juli 2013

Ledighedsstatistik, juli 2013 Ledighedssttistik, li Stigig i kdemikerledighede i li str stigig i dimittedledighede Akdemikerledighede er steget med fr i til li g er u å.9 svrede til e ledighedsrcet å 4, ct. Stærk stigede dimittedledighed

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal FUNKTIONER del Fuktiosbegrebet Lieære fuktioer Ekspoetialfuktioer Logaritmefuktioer Retesregig Idekstal -klassere Gammel Hellerup Gymasium November 08 ; Michael Szymaski ; mz@ghg.dk Idholdsfortegelse FUNKTIONSBEGREBET...

Læs mere

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2 Idhold 1 Pukt- og itervalestimatio 2 1.1 Puktestimatorer: Cetralitet(bias) og efficies.................... 2 2 Kofidesiterval 3 2.1 Kofidesiterval for adel................................ 4 2.2 Kofidesiterval

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Februar 09 ; Michael Symaski ; m@ghg.dk Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Eksamensspørgsmål: Potens-funktioner

Eksamensspørgsmål: Potens-funktioner Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for

Læs mere

Simple udtryk og ligninger

Simple udtryk og ligninger Simple udtryk og ligninger for gymnsiet og hf 0 Krsten Juul Indhold Rækkefølge f + og... Smle led f smme type... Gnge ind i prentes. del... Rækkefølge f og smt f + og... Gnge ind i prentes. del... Hæve

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere