Sidefagssupplering. Kapitel 1

Størrelse: px
Starte visningen fra side:

Download "Sidefagssupplering. Kapitel 1"

Transkript

1 Sidefagssupplering Geometrisk Design, Læseplan Kapitel Her læses afsnit til 4, der drejer sig om polynomielle kurver, specielt Bézier kurver. Der skal især lægges vægt på afsnit 4, som giver en fuldstændig gennemgang af teorien, de foregående afsnit kan betragtes som en indledning. Opgaver:....., vink: vis først at... n k D n k C n k. Øvelser: I Maple lader vi et punkt i planen være givet som en liste med to tal, f.eks. p:=[, ] og vi lader et punkt i rummet være givet som en liste med tre tal, f.eks. p:=[,, -]. En Bézier kurve er givet ved sin kontrolpolygon, og i Maple lader vi en kontrolpolygon og dermed en Bézier kurve være givet ved en liste af punkter, f.eks. a := [[,], [,], [,], [,]]. Man skal være opmærksom på at Maple tæller fra, så vi har f.eks. a[] := [,]. I bogen er det første punkt typisk benævnt a. Man kan altså ikke uden videre bruge algoritmerne i bogen men skal omhyggeligt tænke over hvilke index der skal bruges. Følgende Maple kommandoer er bekvemme ved arbejde med lister: > a := [[,], [,], [,], [,]] a VD TT U T U T U T UU > b := [[,], [,], [,], [,4], [,]] antal punkter i listen: b VD TT U T U T U T 4U T UU > nops(a), nops(b) Udpakning af en liste: > op(a) 4 5 T U T U T U T U

2 Del af en liste ( refererer til sidste element): > b[..-] To lister slås sammen: TT U T U T 4U T UU > [op(a),op(b[..-])] TT U T U T U T U T U T U T 4U T UU Nedenfor bruges en del kommandoer på formen plots[kommando], man kan nøjes med kommando, hvis man har brugt kommandoen with(plots) først. Skriv et Maple -program, der ved hjælp af rekursionsligningen (.) udregner Bernstein polynomierne af en given grad. Der ønskes følgende skelet for proceduren Bernstein: > Bernstein := proc(n) > B:=Bernstein() B VD Tt!. t/ t!. t/ t t!. t/t t! t U Vi kan nu definerer en Bézier kurve ved > a := [[,], [,], [,], [,]]: > r := expand( sum(b[k](t)*a[k], k=..4) ) r VD T4t C t 6t t C tu expand er nødvendig for at få Maple til at gange ind i de kantede parenteser. Vi bruger Maple s plot-kommando til at bestemme kurvens graf og Maple s pointplot-kommando til kontrolpolygonen > curve := plot([r[], r[], t=..], thickness=, color=black): > ctr := plots[pointplot](a, connect=true, thickness=, linestyle=dash): > plots[display]([ctr, curve], scaling=constrained)

3 Skriv et Maple -program, der ved hjælp af de Casteljau s algoritme bestemmer et punkt på en Bézier kurve: > decasteljau := proc(c, t) > a := [[,], [,], [,], [,]]: > b := [[,,], [,,], [,,], [,,], [,,]]: > decasteljau(a, ) T:5 :75U > decasteljau(b, ) T:875 :6875 :5U Vi kan plotte rum-kurven ved at udregne en række punkter på den og bruge Maple -kommandoen pointplotd til både kurven og kontrolpolygonen > rr := [seq(decasteljau(b, i*.5), i=..)]: > curve := plots[pointplotd](rr, connect=true, color=black, thickness=): > ctr := plots[pointplotd](b, connect=true, color=black, thickness=, > linestyle=dash): > plots[display]([ctr, curve], axes=boxed, scaling=constrained)

4 Skriv et Maple -program der differentierer en Bézier kurve: > BezierDiff := proc(c) > a := [[,], [,], [,], [,]]: > da := BezierDiff(a) da VD TT U T U T UU Skriv et Maple -program der øger graden af en Bézier kurve: > DegRaise := proc(c) > a := [[,], [,4], [4,4], [4,]]: > DegRaise(a) TT U T U T 4U T4 U T4 UU. Afleveringsopgave Lav et Maple -worksheet med en implementering af subdivision ved en given parameterværdi. Input er en kontrolpolygon c for en Bézier kurve r og en parameterværdi t. Output er et par af kontrolpolygoner Tc c U for henholdvis r jttu og r jtt U. > subdiv := proc(c, t) > a := [[,], [,4], [4,4], [4,]]: > subdiv(a, /) TT U T U T U T UU TT U T U T4 U T4 UU > subdiv(a, /4) 7 T U T U T4 U T4 U 4 Brug derefter subdivision ved (eller :5) et givet antal gange til at approksimerer en Bézier kurve med den subdividerede kontrolpolygon. 4

5 > subdiv := proc(c, m) > subdiv(a, ) > a := subdiv(a, ) TT U T 4U T4 4U T4 UU a VD TT U T U T U T U T U T4 U T4 UU > a := subdiv(a, ) a VD T U T U T4 U T4 U T U > a := subdiv(a, ): > a4 := subdiv(a, 4): > p := plots[pointplot](a, connect=true, thickness=, color=black): > p := plots[pointplot](a, connect=true, thickness=, color=red): > p := plots[pointplot](a, connect=true, thickness=, color=green): > p := plots[pointplot](a, connect=true, thickness=, color=blue): > p4 := plots[pointplot](a4, connect=true, thickness=, color=red): > plots[display]([p, p, p, p, p4], scaling=constrained, axes=none) 5

6 Kapitel Her læses afsnit til 4, der drejer sig om kurver i planen og rummet. Opgaver:.... Lad r.t/ være en regulær kurve med buelængde s, tangentvektor t og krumningsvektor D dt. Vis, at Gram-Schmidt ortonormalisrings proceduren ds anvendt på vektorerne r og r giver det ortonormale sæt hvor t w jwj w D jr j r.r r /r jr j og jwj D jr j jr j.r r / jr j : Vis dernæst, ved at benytte d ds D dt d ds dt, at D dt ds D d t ds r C r jr j så w D jr j jr j.r r / jr j 4 Vis, at? t, så D w jwj w D Vis at djj dt w, og dermed, at jr j D jwj jr j : D jr j r.r r /r jr j 4 og jj D jr j jr j.r r / jr j 6 () D jr j 4.r r / jr j.r r /.r r / 6jr j jr j.r r / C 6.r r / jr j 8 og at d dt D Tr r r.4/ujr r j Tr r r U.r r /.r r / jr r j 4 6

7 Øvelser: Bemærk at Maple både har en sum-kommando og en add-kommando, og at sum kan give uventede resultater: > p := [,, ]: > r := t -> sum(binomial(,k)*(-t)^(-k)*t^k*p[k+], k=..): > r := t -> add(binomial(,k)*(-t)^(-k)*t^k*p[k+], k=..): > r(),r(.5),r(),r(),r(.5),r() : : I kommandoen r der bruger sum bliver k sat lig, før k bliver sat til. Skriv et Maple program der ved hjælp af numerisk integration (brug evalf) bestemmer længden af en Bézier kurve. > Bernstein := proc(n) > BezierDiff := proc(c) > BezierLength := proc(c) > a := [[,], [,], [,], [,]]: > BezierLength(a) Skriv et Maple program der for en Bézier kurve af grad n finder :. Længden ` p af kontrolpolygonen.. Afstanden `c mellem endepunkterne. Det vægtede gennemsnit.`c C.n /` p/=.n C /. 7

8 Sammenlign med resultatet af foregående øvelse og undersøg hvad der sker under gentagen subdivision. > BezierLength := proc(c) > BezierLength(a) T: : :U > subdiv := proc(c, t) > BezierLength := proc(c, n) > local cc > if n= then > return(bezierlength(c)) > else > cc:=subdiv(c,.5) > return(bezierlength(cc[], n-)+bezierlength(cc[], n-)) > fi > BezierLength(a, ) > BezierLength(a, ) > BezierLength(a, ) > BezierLength(a, ) > BezierLength(a, 4) T: : :U T:7678 : :494U T:49794 :9579 :5658U T:6 : :5976U T:77 : :998U 8

9 Skriv et Maple program der finder krumningen i et vilkårligt punkt af en plan Bézier kurve. > BezierCurvatured := proc(c, t) > BezierCurvatured(a, ), BezierCurvatured(a,.5) : : Skriv et Maple program der ved hjælp af () finder krumningsvektoren i et vilkårligt punkt af en Bézier kurve. > BezierCurvatureVector := proc(c, t) > b := [[,,], [,,], [,,], [,,], [,,]]: > BezierCurvatureVector(b,.5) 4 Skriv et Maple program der ved hjælp af () finder længden af krumningsvektoren i et vilkårligt punkt af en Bézier kurve. > BezierCurvature := proc(c, t) > BezierCurvature(b,.5) :6996 Skriv et Maple program der finder torsionen i et vilkårligt punkt af en Bézier kurve i rummet. > BezierTorsion := proc(c, t) > BezierTorsion(b, ),BezierTorsion(b, /),BezierTorsion(b, ) 9

10 Skriv et Maple program der bestemmer parameterfremstillingen med tangentdrejning for en kurve med den naturlige ligning ds D %.'/ i det tilfælde hvor %.'/ er et polynomium. > PlaneCurve := proc(p, r, ii) > # p en funktion (et polynomium) > # r startpunktet > # ii parameter intervallet > p := t->(t/pi)^ - (t/pi)^ + : > r := PlaneCurve(p, [,],..*Pi) r VD t!.t 6 t / cos.t / d' C.t 6t t C C / sin.t / C 6 t!.6t t C t / cos.t / C.t 6 t / sin.t / C > plot([op(r),..*pi], scaling=constrained]) C.5.5

11 Lav et Maple -worksheet der kan. Afleveringsopgave. Plotte krumningen som funktion af buelængden for en vilkårlig Bézier kurve.. Plotte torsionen som funktion af buelængden for en vilkårlig Bézier kurve i rummet. Vi skal altså plotte jj og som funktion af s, dvs. kurverne givet ved.s j.s/j/ og.s.s//. Disse kan også parametriseres som.s.t/ j.t/j/ og.s.t/.t// og det er denne parametrisering vi vil bruge. Hvis vi har en Bézier kurve r.t/ af grad n, så kan vi tilnærme buelængden s.t/ med en kubisk Bézier kurve es der har kontrol punkter s s s s hvor s s D `c C.n /` p n C s s D s./ D jr./j s s D s./ D jr./j bemærk, at s er vilkårlig. Krumningen af r kan vi tilnærme med en kubisk Bézier kurve e der har kontrol punkter hvor D j./j D dj./j D dt dj./j D j./j dt bemærk, at djj D djj. Fuldstændigt tilsvarende kan der findes en kubisk dt jj dt tilnærmelse til torsionen. Først implementeres dette. Vi definerer allerførst et par hjælpe kommandoer (prik- og kryds-produkt) > dot := proc(x,y) > local k > return(add(x[k]*y[k], k=..nops(x))) > cross := proc(x,y) > return(convert(linalg[crossprod](x,y), list)) > a := [[,], [,], [,], [,]]: > b := [[,,], [,,], [,,], [,,], [,,]]: > BezierLength := proc(c, s)

12 > local s, s, s,... > return([s,s,s,s]) > BezierLength(a, ) BezierLength(b, ) T : : :U T : :659 : U > BezierCurvature := proc(c) > local k, k, k, k,... > return([k,k,k,k]) > BezierCurvature(a) BezierCurvature(b) T: : : : U T:75 : : :75U > BezierTorsion := proc(c) > local t, t, t, t,... > return([t,t,t,t]) > BezierTorsion(b) 4 4 Disse kommandoer kan nu, i lighed med subdiv-kommandoen fra. afleveringsopgave, kombineres med subdivision til at give en god tilnærmelse til kurverne.s.t/ j.t/j/ og.s.t/.t//. > subdiv := proc(c, t) > BezierCurvaturePlot(c, s, n) > p := BezierCurvaturePlot(a,, ): > p := BezierCurvaturePlot(a,, ): > p := BezierCurvaturePlot(a,, ):

13 > p := BezierCurvaturePlot(a,, ): > p4 := BezierCurvaturePlot(a,, 4): > pp := plots[pointplot](p, connect=true, thickness=, color=black): > pp := plots[pointplot](p, connect=true, thickness=, color=red): > pp := plots[pointplot](p, connect=true, thickness=, color=green): > pp := plots[pointplot](p, connect=true, thickness=, color=blue): > pp4 := plots[pointplot](p4, connect=true, thickness=, color=red): > plots[display]([pp,pp,pp,pp,pp4]) > p := BezierCurvaturePlot(b,, ): > p := BezierCurvaturePlot(b,, ): > p := BezierCurvaturePlot(b,, ): > p := BezierCurvaturePlot(b,, ): > p4 := BezierCurvaturePlot(b,, 4): > pp := plots[pointplot](p, connect=true, thickness=, color=black): > pp := plots[pointplot](p, connect=true, thickness=, color=red): > pp := plots[pointplot](p, connect=true, thickness=, color=green): > pp := plots[pointplot](p, connect=true, thickness=, color=blue): > pp4 := plots[pointplot](p4, connect=true, thickness=, color=red): > plots[display]([pp,pp,pp,pp,pp4])

14 > BezierTorsionPlot(c, s, n) > p := BezierTorsionPlot(b,, ): > p := BezierTorsionPlot(b,, ): > p := BezierTorsionPlot(b,, ): > p := BezierTorsionPlot(b,, ): > p4 := BezierTorsionPlot(b,, 4): > pp := plots[pointplot](p, connect=true, thickness=, color=black): > pp := plots[pointplot](p, connect=true, thickness=, color=red): > pp := plots[pointplot](p, connect=true, thickness=, color=green): > pp := plots[pointplot](p, connect=true, thickness=, color=blue): > pp4 := plots[pointplot](p4, connect=true, thickness=, color=red): > plots[display]([pp,pp,pp,pp,pp4]).5.5 4

15 Kapitel Her læses afsnit til, der drejer sig om tensorprodukt Bézier flader. Opgaver: Øvelser: Ligesom vi i kapitel og repræsenterede en Bézier kurve ved en liste af punkter, vil vi her repræsenterer en tensorprodukt Bézier flade ved liste af lister af punkter, f.eks. en bi-kubisk flade: > a := [[[,,/], [,,], [,,], [,,-/]], > [[,,], [,,], [,,], [,,]], > [[,,], [,,], [,,], [,,]], > [[,,-/], [,,], [,,], [,,/]]]: > plots[surfdata](a, style=wireframe, color=black, thickness=, > scaling=constrained, axes=boxed) Skriv et Maple program der subdividerer en tensor produkt Bézier flade ved en given værdi af den første parameter, og et der subdividerer ved en given værdi af den anden parameter. > subdiv := proc(c, t) > # Fra kapitel > subdivtensor := proc(c, u) > a := subdivtensor(a, /) 5

16 a D 4 8 T U T U [ ] [ ] > pa := plots[surfdata](a, style=wireframe, color=black, thickness=, > linestyle=dash): > p := plots[surfdata](a[], style=wireframe, color=red, thickness=): > p := plots[surfdata](a[], style=wireframe, color=green, thickness=): > plots[display]([pa,p,p], scaling=constrained, axes=boxed) > subdivtensor := proc(c, v) > a := subdivtensor(a, /) 6

17 a D [ ] [ ] [ ] [ ] > p := plots[surfdata](a[], style=wireframe, color=red, thickness=): > p := plots[surfdata](a[], style=wireframe, color=green, thickness=): > plots[display]([pa,p,p], scaling=constrained, axes=boxed) Skriv et Maple program som subdividerer en tensor produkt flade n gange i den ene retning og m gange i den anden retning. I begge tilfælde subdivideres ved parameterværdien =. > subdiv := proc(c, n) > # Fra kapitel 7

18 > subdivtensor := proc(c, n, m) > aa := subdivtensor(a,, ): > p := plots[surfdata](aa, style=wireframe, color=green, thickness=): > plots[display]([pa,p], scaling=constrained, axes=boxed) > aa := subdivtensor(a,, ): > p := plots[surfdata](aa, style=wireframe, color=green, thickness=): > plots[display]([pa,p], scaling=constrained, axes=boxed) > aa := subdivtensor(a,, ): > p := plots[surfdata](aa, style=wireframe, color=green, thickness=): > plots[display]([pa,p], scaling=constrained, axes=boxed) 8

19 > aa := subdivtensor(a,, ): > p := plots[surfdata](aa, style=wireframe, color=green, thickness=): > plots[display]([pa,p], scaling=constrained, axes=boxed) > p := plots[surfdata](aa, style=patchnogrid): > plots[display]([p,pa], scaling=constrained, axes=boxed)

20 Skriv to Maple programmer der bestemmer de to partielle afledede af en tensorprodukt Bézier flade. > BezierDiff := proc(c) > # Fra kapitel > TensorBezierDiff := proc(c) > TensorBezierDiff(a) T U T U TT U T U T U T U T U T UU > TensorBezierDiff := proc(c) > TensorBezierDiff(a) T U TT U T U T UU TT U T U T UU T U

21 Skriv to Maple programmer der hæver graden af en tensorprodukt Bézier flade i hver af de to parametre. > DegRaise := proc(c) > # Fra kapitel > TensorDegRaise := proc(c) > da := TensorBezierDiff(a): > TensorDegRaise(da) T U T U T U T U > TensorDegRaise := proc(c) > da := TensorBezierDiff(a): > TensorDegRaise(da) T U T U T U T U TT U T U T U T UU TT U T U T U T UU

22 Kapitel 4 Her læses alle afsnit. Opgaver: 4..8, 4..9 og , 4..4 og , 4.4. og Øvelser: > a := [[[,,/], [,,], [,,], [,,-/]], > [[,,], [,,], [,,], [,,]], > [[,,], [,,], [,,], [,,]], > [[,,-/], [,,], [,,], [,,/]]]: > dot := proc(x,y) > local k > return(add(x[k]*y[k], k=..nops(x))) > cross := proc(x,y) > return(convert(linalg[crossprod](x,y), list)) Skriv et Maple -program der udregner en approximation til normalvektorfeltet på en tensorprodukt Bézier flade. Opfat, efter subdivision, kontrolnettet for de partielle afledede som en approximation til de partielle afledede og benyt disse værdier til at udregne en approximation til normalvekterfeltet. > subdivtensor := proc(c, n, m) > # Fra kapitel > TensorBezierDiff := proc(c) > # Fra kapitel > TensorBezierDiff := proc(c) > # Fra kapitel > TensorDegRaise := proc(c) > # Fra kapitel

23 > TensorDegRaise := proc(c) > # Fra kapitel > > TensorNormal := proc(c, n, m) > TensorNormal(a,, ) TTT : : : U T :7447 :74688 :74688U T :7447 :74688 :74688U T : : : UU TT:74688 :7447 :74688U T:5445 :5445 :94545U T :5445 :5445 :94545U T :74688 :7447 :74688UU TT:74688 :7447 :74688U T:5445 :5445 :94545U T :5445 :5445 :94545U T :74688 :7447 :74688UU TT: : : U T:7447 :74688 :74688U T:7447 :74688 :74688U T: : : UUU > aa := subdivtensor(a,, ): > p := plots[surfdata](aa, style=wireframe, color=green): > N := TensorNormal(a,, ): > eps:=-.5: # skalering af normalvektor > Np := > plots[display](seq(seq(plottools[arrow]( > aa[i,j],aa[i,j]+eps*n[i,j],.,.,., cylindrical_arrow), > i=..nops(aa)), j=..nops(aa[])), color=black): > plots[display](p, Np, axes=boxed, scaling=constrained)

24 Skriv et Maple -program der udregner en approximation til første fundamentalform (E, F og G) på en tensorprodukt Bézier flade. Opfat, efter subdivision, kontrolnettet for de partielle afledede som en approximation til de partielle afledede og benyt disse værdier til at udregne en approximation til første fundamentalform. > TensorEFG := proc(c, n, m) > TensorEFG(a,, ) T U T U T U T U Skriv et Maple -program der udregner en approximation til anden fundamentalform (L, M og N) på en tensorprodukt Bézier flade. Opfat, efter subdivision, kontrolnettet for de partielle afledede som en approximation til de partielle afledede og benyt disse værdier til at udregne en approximation til anden fundamentalform. > TensorLMN := proc(c, n, m) > TensorLMN(a,, ) 4

25 TTT : :785 : U T4:4899 :6974 :74688U T4:4899 :575 :74688U T: : : UU TT :74688 :6974 4:4899U T5:474 :5685 5:474U T5:474 : :474U T:74688 :575 4:4899UU TT:74688 :575 4:4899U T5:474 : :474U T5:474 :5685 5:474U T :74688 :6974 4:4899UU TT: : : U T4:4899 :575 :74688U T4:4899 :6974 :74688U T : :785 : UUU Skriv et Maple -program der udregner en approximation til Gauss krumningen (K ) på en tensorprodukt Bézier flade. Opfat, efter subdivision, kontrolnettet for de partielle afledede som en approximation til de partielle afledede og benyt disse værdier til at udregne en approximation til Gauss krumningen. > TensorGaussKrumning := proc(c, n, m) > TensorGaussKrumning(a,, ) TT : : :59485 :678959U T : : : :59485U T:59485 : : :788464U T : :59485 : : UU Skriv et Maple -program der udregner en approximation til Middel krumningen (H) på en tensorprodukt Bézier flade. Opfat, efter subdivision, kon- 5

26 trolnettet for de partielle afledede som en approximation til de partielle afledede og benyt disse værdier til at udregne en approximation til Middel krumningen. > TensorMiddelKrumning := proc(c, n, m) > TensorMiddelKrumning(a,, ) TT :68468 : :5684 : U T: :59674 Hvis vi har givet to n m matricer, p bestående af punkter og c bestående af tal, så plotter følgende Maple -funktion, MyPlot(a, c) punkt-matricen som en flade farvelagt efter tal-matricen, hvor det mindste tal svarer til rød og det største tal svarer til violet. Hvis man angiver to extra tal c og c MyPlot(a, c, c, c) hvor alle tal i c ligger i intervallet Tc c U så kommer c til at svare til rød og c til at scare til violet. > MyPlot := proc(xyz, cc, minc, maxc) > local c, c, c > > c := map(op,cc) > if nargs> then c:=minc else c:=min(op(c)) fi > if nargs> then c:=maxc else c:=max(op(c)) fi > c := map(x->(x-c)*.9/(c-c),c) > PLOTD( MESH(xyz, COLOR(HUE,op(c))), > AXESSTYLE(FRAME), SCALING(CONSTRAINED)) > aa := subdivtensor(a,, ): > K := TensorGaussKrumning(a,, ) > H := TensorMiddelKrumning(a,, ) > HK := op(map(op,k)),op(map(op,h)) > c := min(hk) > c := max(hk) > MyPlot(aa, K, c, c) c VD :88455 c VD :475 6

27 > MyPlot(aa, H, c, c) Afleveringsopgave.5 Betragt en kurve i xz-planen givet ved en parameterfremstilling I! R V u 7! r.u/ z.u/ med r.u/ > for alle u I. Hvis kurven roteres om z-aksen, får vi en omdrejningsflade. Den kan parametrisers som r.u v/ D r.u/ cos v r.u/ sin v z.u/ Antag nu at kurven r.u/ z.u/ er reulær og injektiv.. Vis at ( ) er et kort hvis v Uv vt med v v <.. Vis at M D r.u v/ u I v R er en regulær flade.. Find enheds normalvektorfeltet til fladen. 4. Bestem første fundamentalform for fladen. 5. Bestem anden fundamentalform for fladen. 6. Bestem Gauss og middel krumningen for fladen. 7. Bestem de principale krumninger og de principale retninger for fladen. ( ) 7

Geometriske grundbegreber 8. lektion

Geometriske grundbegreber 8. lektion 1 / 14 Geometriske grundbegreber 8. lektion Martin Raussen Institut for matematiske fag Aalborg Universitet 1.4.2008 2 / 14 (Regulære) parameterfremstillinger for en flade Eksempler Kurver på flader og

Læs mere

Kurver og flader i geometri, arkitektur og design 23. lektion

Kurver og flader i geometri, arkitektur og design 23. lektion Kurver og flader i geometri, arkitektur og design 23. lektion Department of Mathematical Sciences Aalborg University Denmark 9.5.2011 Normal- og hovedkrumninger i et fladepunkt Normalkrumningen k = k n

Læs mere

Om første og anden fundamentalform

Om første og anden fundamentalform Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt

Læs mere

Obligatorisk Projekt MM512 Kurver og Flader 4. kvartal 2007

Obligatorisk Projekt MM512 Kurver og Flader 4. kvartal 2007 Institut for Matematik og Datalogi Syddansk Universitet Indhold Obligatorisk Projekt MM512 Kurver og Flader 4. kvartal 2007 1 Vejledning 1 2 Indledning 2 3 Plankurver og deres evolut 2 4 Gaußforskydningen

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

STEEN MARKVORSEN DTU COMPUTE 2016

STEEN MARKVORSEN DTU COMPUTE 2016 STEEN MARKVORSEN DTU COMPUTE 2016 2 Indhold 1 Regulære flader i rummet 5 1.1 Det sædvanlige koordinatsystem i rummet..................... 5 1.2 Graf-flader for funktioner af to variable......................

Læs mere

Matematik og Form Splines. NURBS

Matematik og Form Splines. NURBS Matematik og Form Splines. NURBS Institut for Matematiske Fag Aalborg Universitet 2012 Opgave: Find 3.grads polynomium p(t) = a 0 + a 1 t + a 2 t 2 + a 3 t 3 sål. at y b = p(0) = a 0 y s = p(1) = a 0 +

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Eksamen maj 2019, Matematik 1, DTU

Eksamen maj 2019, Matematik 1, DTU Eksamen maj 2019, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots.

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En

Læs mere

Eksamen maj 2018, Matematik 1, DTU

Eksamen maj 2018, Matematik 1, DTU Eksamen maj 2018, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots!

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Matematik, Struktur og Form Splines. NURBS

Matematik, Struktur og Form Splines. NURBS Matematik, Struktur og Form Splines. NURBS Martin Raussen Department of Mathematical Sciences Aalborg University 2016 1 / 17 Opgave: Find 3.grads polynomium p (t ) = a0 + a1 t + a2 t 2 + a3 t 3 sål. at

Læs mere

Maj 2015 (alle opgaver og alle spørgsmål)

Maj 2015 (alle opgaver og alle spørgsmål) Maj 2015 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Ved eksamen er der ikke tid til f.eks. at lave illustrationer,

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Reeksamen i Calculus Tirsdag den 20. august 2013

Reeksamen i Calculus Tirsdag den 20. august 2013 Reeksamen i Calculus Tirsdag den 20. august 2013 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

STEEN MARKVORSEN DTU COMPUTE 2017

STEEN MARKVORSEN DTU COMPUTE 2017 STEEN MARKVORSEN DTU COMPUTE 2017 2 Indhold 1 Regulære flader i rummet 5 1.1 Det sædvanlige koordinatsystem i rummet..................... 5 1.2 Graf-flader for funktioner af to variable......................

Læs mere

Geometrien af en scroll-kompressor Fra et konkret problem til abstrakt matematik

Geometrien af en scroll-kompressor Fra et konkret problem til abstrakt matematik Geometrien af en scroll-kompressor Fra et konkret problem til abstrakt matematik Jens Gravesen and Christian Henriksen 10. februar 1999 Abstract Med udgangspunkt i scroll-kompressoren, en opfindelse fra

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

Vektorfelter. enote Vektorfelter

Vektorfelter. enote Vektorfelter enote 24 1 enote 24 Vektorfelter I enote 6 indføres og studeres vektorer i plan og rum. I enote 16 ser vi på gradienterne for funktioner f (x, y) af to variable. Et gradientvektorfelt for en funktion af

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

OPGAVER 1. Approksimerende polynomier. Håndregning

OPGAVER 1. Approksimerende polynomier. Håndregning OPGAVER 1 Opgaver til Uge 4 Store Dag Opgave 1 Approksimerende polynomier. Håndregning a) Find for hver af de følgende funktioner deres approksimerende polynomiumer af første og anden grad med udviklingspunkt

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 5.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 5. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 5. januar 08 Dette eksamenssæt består af 8 nummererede sider med afkrydsningsopgaver.

Læs mere

Kurve- og plan-integraler

Kurve- og plan-integraler enote 22 1 enote 22 Kurve- og plan-integraler Vi vil her med udgangspunkt i de metoder og resultater der er opstillet i enote 21 vise, hvordan Riemann-integralerne derfra kan benyttes til blandt andet

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Lidt om plane kurver og geometrisk kontinuitet

Lidt om plane kurver og geometrisk kontinuitet Lidt om plane kurver og geometrisk kontinuitet Jesper Møller og Rasmus P. Waagepetersen, Institut for Matematiske Fag, Aalborg Universitet September 3, 2003 1 Indledning Dette notesæt giver en oversigt

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Matematik A STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler

Matematik A STX 18. maj 2017 Vejledende løsning   De første 6 opgaver løses uden hjælpemidler ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik A, STX 18 maj Matematik A, STX 23 maj Matematik A, STX 15 august

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2018

Besvarelser til Calculus Ordinær Eksamen Juni 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r))

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r)) GEOMETRI-TØ, UGE 12 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1, [P] 632 Vis at Ennepers flade σ(u, v) = ( u u 3 /3

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 0. februar 019 Dette eksamenssæt

Læs mere

Funktioner af to variable

Funktioner af to variable enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2016til juni 2019 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid i

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 9. august 6 Dette eksamenssæt består af nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Parametrisering af en firkant i

Parametrisering af en firkant i Parametrisering af en firkant i Givet de 4 punkter, som udspænder en firkant LABCD: Parametriseringen af den rette linje mellem A og B: hvor. Parametriseringen af den rette linje mellem D og C: hvor. Nu

Læs mere

OPGAVE 1 Det nedenstående klip er fra et Maple-ark hvor en reel funktion f (x, y) med definitionsmængden (x,y) x 2 + y 2 < 1 } bliver undersøgt:

OPGAVE 1 Det nedenstående klip er fra et Maple-ark hvor en reel funktion f (x, y) med definitionsmængden (x,y) x 2 + y 2 < 1 } bliver undersøgt: DANMARKS TEKNISKE UNIVERSITET Skriftlig prøve den 7. maj 00. Kursus Navn: Matematik (-timers prøve for forårssemesteret). Kursus nr. 0005 Tilladte hjælpemidler: Alle af DTU tilladte hjælpemidler må medbringes

Læs mere

Arealer som summer Numerisk integration

Arealer som summer Numerisk integration Arealer som summer Numerisk integration http://www.zweigmedia2.com/realworld/integral/numint.html Her kan ses formlerne, som er implementeret nedenfor med en effektiv kode. Antag, at funktionen er positiv,

Læs mere

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016 Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har

Læs mere

Eksamen i Calculus Tirsdag den 3. juni 2014

Eksamen i Calculus Tirsdag den 3. juni 2014 Eksamen i Calculus Tirsdag den 3. juni 2014 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Noter til Computerstøttet Beregning Taylors formel

Noter til Computerstøttet Beregning Taylors formel Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Selvstudium 1, Diskret matematik

Selvstudium 1, Diskret matematik Selvstudium 1, Diskret matematik Matematik på første studieår for de tekniske og naturvidenskabelige uddannelser Aalborg Universitet I dette selfstudium interesserer vi os alene for tidskompleksitet. Kompleksitet

Læs mere

Reeksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 17.

Reeksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 17. Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 17. februar 2017 Dette eksamenssæt består af 11 nummererede sider med

Læs mere

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til.

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. DESIGNMAT FORÅR 2012: UGESEDDEL 13 INSTITUT FOR MATEMATIK 1. Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. 2. Aktiviteter mandag 13 17 2.1.

Læs mere

VEKTORGEOMETRI del 2 Skæringer Projektioner Vinkler Afstande

VEKTORGEOMETRI del 2 Skæringer Projektioner Vinkler Afstande VEKTORGEOMETRI del Skæringer Projektioner Vinkler Afstande x-klasserne Gammel Hellerup Gymnasium Februar 019 ; Michael Szymanski ; mz@ghg.dk 1 Indhold OVERSIGT... 3 SKÆRINGSPUNKTER OG RØRINGSPUNKTER...

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Løsninger til øvelser i kapitel 1

Løsninger til øvelser i kapitel 1 Øvelse 1.1 Øvelse 1. Øvelse 1.3 Afspil animationerne og forklar med dine egne ord, hvad du ser. a) Afspil lydfilerne og forklar med dine egne ord, hvad du hører. Frekvenserne fordobles for hver oktav.

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

GAUSS-BONNET HANS PLESNER JAKOBSEN

GAUSS-BONNET HANS PLESNER JAKOBSEN GAUSS-BONNET HANS PLESNER JAKOBSEN.. Indledning. En af de mest fundamentale sætninger i geometri er Thales Sætning, der siger, at vinkelsummen i en trekant er lig med π. Generalisationen af denne sætning

Læs mere

Prøveeksamen i Calculus

Prøveeksamen i Calculus Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Mat 1. 2-timersprøve den 13. maj 2017.

Mat 1. 2-timersprøve den 13. maj 2017. Mat. -timersprøve den. maj 7. JE.5.7 Opgave restart:with(plots): En funktion f af to reelle variable er for x, y s, givet ved f:=(x,y)-y/(x^+y^); f d x, y / y x Cy f(x,y); y x Cy Spørgsmål I x, y Kplanen

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Projekt 3.4 Fjerdegradspolynomiets symmetri

Projekt 3.4 Fjerdegradspolynomiets symmetri Hvad er matematik? Projekt 3. Fjerdegradspolynomiets symmetri Indledning: Symmetri for polynomier I kapitel har vi set at grafen for et andengradspolynomium p ( x) = a x + x + c altid er symmetrisk omkring

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2017

Besvarelser til Calculus Ordinær Eksamen Juni 2017 Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Kurver i planen og rummet

Kurver i planen og rummet Kurver i planen og rummet John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Kurver i planen og rummet. Noterne er beregnet til at blive brugt sammen med foredraget. Afsnit 2 er

Læs mere

[PJ] QuickGuide.dfw QuickGuide

[PJ] QuickGuide.dfw QuickGuide [PJ] QuickGuide.dfw 07-04-003 QuickGuide Derives resultater Husk at Derive angiver decimalbrøker uden at forhøje sidste ciffer. Så når du udregner fx /3 får du 0.66666 og ikke 0.66667. Du kan altså ikke

Læs mere

Løsninger til eksamensopgaver på A-niveau 2017

Løsninger til eksamensopgaver på A-niveau 2017 Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Andengradsligninger i to og tre variable

Andengradsligninger i to og tre variable enote 0 enote 0 Andengradsligninger i to og tre variable I denne enote vil vi igen beskæftige os med andengradspolynomierne i to og tre variable som også er behandlet og undersøgt med forskellige teknikker

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 til juni 2018 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid

Læs mere

Vektorfunktioner Parameterfremstillinger Parameterkurver x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner Parameterfremstillinger Parameterkurver x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner Parameterfremstillinger Parameterkurver x-klasserne Gammel Hellerup Gymnasium April 019 ; Michael Szymanski ; mz@ghg.dk Indholdsfortegnelse VEKTORFUNKTIONER... 1. Skæringer med koordinatakserne...

Læs mere

Eksempel på 2-timersprøve 2 Løsninger

Eksempel på 2-timersprøve 2 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Februar 4 Opgave Maplekommandoerne expand( (z-*exp(i*pi/))*(z-*exp(-i*pi/))*(z-exp(i*pi/))*(z-exp(-i*pi/))): sort(%); resulterer i polynomiet z 4 z + z

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Matematisk modellering og numeriske metoder. Lektion 13

Matematisk modellering og numeriske metoder. Lektion 13 Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 9. november 25 Divergens af et vektorfelt [Sektion 9.8 og.7 i bogen, s. 43]. Definition af og og egenskaber for divergens Lad

Læs mere

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader GEOMETRI-TØ, UGE Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave, [P] 5... Find parametriseringer af de kvadratiske flader

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Tilsvarende har vbi i kapitel 3 set, at grafen for tredjegradspolynomiet

Tilsvarende har vbi i kapitel 3 set, at grafen for tredjegradspolynomiet Projekt 3 Fjerdegradspolynomiets symmetri Indledning: Symmetri for polynomier I kapitel har vi set at grafen for et andengradspolynomiet altid er symmetrisk omkring den lodrette akse x a p x a x x c ()

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 08 Dette eksamenssæt består af 8 nummererede sider med afkrydsningsopgaver.

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

12.1 Cayley-Hamilton-Sætningen

12.1 Cayley-Hamilton-Sætningen SEKTION 12.1 CAYLEY-HAMILTON-SÆTNINGEN 12.1 Cayley-Hamilton-Sætningen Sætning 12.1.1 (Cayley-Hamilton) Lad A Mat n,n (C). Så gælder p A (A) =. Sætningen gælder faktisk over et vilkårligt legeme, men vi

Læs mere

dpersp Uge 40 - Øvelser Internetalgoritmer

dpersp Uge 40 - Øvelser Internetalgoritmer Øvelse 1 dpersp Uge 40 - Øvelser Internetalgoritmer (Øvelserne 4 og 6 er afleveringsopgaver) a) Hver gruppe får en terning af instruktoren. Udfør 100 skridt af nedenstående RandomWalk på grafen, som også

Læs mere

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene. MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)

Læs mere

Minimalflader og flader med konstant middelkrumning

Minimalflader og flader med konstant middelkrumning PROJEKTMATERIALE TIL FILMEN steen markvorsen Minimalflader og flader med konstant middelkrumning MATEMATISK FORSKNING 10 10 DANSKE MATEMATIKERE MATEMATISKE FORTÆLLINGER Film og tilhørende projektmateriale

Læs mere

Projekt 3.1 Fjerdegradspolynomiets symmetri

Projekt 3.1 Fjerdegradspolynomiets symmetri Projekt 3.1 Fjerdegradspolynomiets symmetri I kapitel 3 har vi set at grafen for et andengradspolynomiet p x a x x c () altid er symmetrisk omkring den lodrette akse x. a Tilsvarende er grafen for tredjegradspolynomiet

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Approximations-algoritmer Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Negativt resultat om generel TSP Approximations-algoritme

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 4 1 enote 4 Taylor s approksimationsformler for funktioner af én variabel I enote 19 og enote 21 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier i

Læs mere

løsnings forslag til læreren, Funktioner af to variable, et undervisningsforløb med CAS.

løsnings forslag til læreren, Funktioner af to variable, et undervisningsforløb med CAS. I det følgende angives løsningsforslag til hovedparten af øvelserne fra undervisningsforløbet Funktioner af To variable. Der er anvendt såvel Maple som Derive. Det skal understreges, at der ikke er tale

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Grafværktøjer til GeoMeter Grafværktøjer Hjælp Grafværktøjer.gsp Grafværktøjer

Grafværktøjer til GeoMeter Grafværktøjer Hjælp Grafværktøjer.gsp Grafværktøjer Grafværktøjer til GeoMeter Bjørn Felsager, Haslev Gymnasium & HF, 2003 Når man installerer GeoMeter på sin maskine følger der en lang række specialværktøjer med. Men det er også muligt at skræddersy sine

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. januar 7 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Villa 15. maj 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere