Lektion 7 Funktioner og koordinatsystemer

Størrelse: px
Starte visningen fra side:

Download "Lektion 7 Funktioner og koordinatsystemer"

Transkript

1 Lektion 7 Funktioner koordinatsystemer Brug af grafer koordinatsystemer Lineære funktioner Andre funktioner ligninger med ubekendte Lavet af Niels Jørgen Andreasen, VUC Århus. Redigeret af Hans Pihl, KVUC Lektion 7 Side 13

2 Pris i kr Matematik på Åbent VUC Brug af grafer koordinatsystemer 1: En butik sælger gulerødder til 4 kr. pr. kg. a: Hvor meget koster kg gulerødder? b: Udfyld tabellen til herunder: Billige gulerødder Kun 4 kr. pr. kg - vej selv - Antal kg gulerødder Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinat-systemet til højre. d: Hvad koster,5 kg gulerødder? e: Hvor mange gulerødder kan man få for 6 kr? Antal kg gulerødder Lektion 7 Side 14

3 Pris i kr Pris i kr Matematik på Åbent VUC : En butik sælger vindruer til 1 kr. pr. kg. a: Hvor meget koster 3 kg vindruer? b: Udfyld tabellen til herunder: Lækre italienske vindruer Kun 1 kr. pr. kg Antal kg vindruer Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinatsystemet. d: Hvad koster 3,5 kg vindruer? e: Hvor mange vindruer kan man få for 15 kr? Antal kg vindruer 3: En slagter sælger oksekød til 1 kr. pr. kg. a: Hvor meget koster 4 kg oksekød? b: Udfyld tabellen til herunder: Ekstra mørt oksekød Kun 1 kr. pr. kg Antal kg oksekød Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinatsystemet. d: Hvad koster 1,5 kg oksekød? e: Hvor meget oksekød kan man få for 45 kr? Antal kg oksekød Lektion 7 Side 15

4 4: I koordinat-systemet til højre er der markeret punktet (1,) a: Marker selv disse punkter: (,4) (3,1) (4,4) (5,) 5: Tegn selv et koordinat-system, hvor begge tal-akser går til 1. Marker disse punkter: (,) (1,8) (4,) (6,7) (9,1) (1, ) : I koordinat-systemet til højre er tegnet en graf gennem de punkter, hvor x-koordinaten y-koordinaten er ens. Grafen går gennem (,), (1,1), (,) o.s.v. Tegn selv: a: En graf gennem alle de punkter hvor y-koordinaten er. b: En graf gennem alle de punkter hvor x-koordinaten er halvt så stor som y-koordinaten. F.eks. (,4) c: En graf gennem alle de punkter hvor x-koordinaten er dobbelt så stor som y-koordinaten. F.eks. (4,) : I koordinat-systemet til højre skal du markere disse punkter: (,) (3,7) (5,1) (9,7) Lektion 7 Side 16

5 8: I koordinat-systemet til højre skal du markere disse punkter: ( ;,6) (3 ;,3) (8 ; 1,) (9 ;,) 1,,8,6,4,, : I koordinat-systemet herunder er markeret punktet (-3,). Du skal selv markere disse punkter: (,) (,4) (4,) (-,4) (-4,) (-,-4) (-4,-) (,-4) (4,-) (-3, ) Lektion 7 Side 17

6 Pris i kr Pris i kr Matematik på Åbent VUC 1: En tankstation sælger benzin til 8 kr. pr. liter. a: Hvor meget koster 1 liter benzin? b: Udfyld tabellen til herunder: Byens billigste benzin 8 kr. pr. liter Antal liter benzin Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinat-systemet. d: Hvad koster 5 liter benzin? e: Hvor meget benzin kan man få for 1 kr? Antal liter benzin 11: En slagter sælger pølser til 4 kr. pr. kg. a: Hvor meget koster 4 kg pølser? b: Udfyld tabellen til herunder: Pølser - med uden farve 4 kr. pr. kg Antal kg pølser Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinat-systemet. d: Hvad koster 3,5 kg pølser? e: Hvor mange pølser kan man få for 1 kr? Antal kg pølser Lektion 7 Side 18

7 Udgift i kr. pr. dag Udgift i kr. pr. dag Matematik på Åbent VUC 1: To bil-udlejnings-firmaer tager disse priser: Kvik Biler kr. pr. km Fast afgift: 3 kr. pr. dag Auto Service 4 kr. pr. km Ingen fast afgift Begge firmaers priser er vist som grafer i et koordinat-system. 1 a: Hvilken graf passer til Kvik Biler? b: Hvilken graf passer til Auto Service c: Hvor krydser graferne hinanden? d: Hvilket firma er billigst, hvis man skal køre 1 km på en dag? e: Hvilket firma er billigst, hvis man skal køre km på en dag? 13: To bil-udlejnings-firmaer tager disse priser: Antal km pr. dag Ulriks Udlejning 3 kr. pr. km Fast afgift: kr. pr. dag Birgers Biler 4 kr. pr. km Der skal d mindst betales for 1 km pr. dag Begge firmaers priser er vist som grafer i et koordinat-system. a: Hvilken graf passer til Ulrik? b: Hvilken graf passer til Birger? c: Hvorfor knækker den ene graf? d: Hvilket firma er billigst, hvis man skal køre 5 km på en dag? e: Hvilket firma er billigst, hvis man skal køre 1 km på en dag? f: Hvilket firma er billigst, hvis man skal køre 5 km på en dag? Antal km pr. dag Lektion 7 Side 19

8 Lineære funktioner Nu skal du selv lave dine koordinatsystemer på mm-papir eller ternet papir. I nle af opgaverne står der, hvorledes du skal inddele dine akser. 14: To taxa-firmaer tager de viste priser. a: Hvad koster det at køre 3 km med Andeby Taxa? b: Lav udfyld en tabel, som denne: Antal km 1 o.s.v. 1 Pris hos Andeby Taxa 1 1 c: Tegn en graf for Andeby Taxa i et koordinatsystem. På x-aksen er 1 cm = 1 km. På y-aksen er 1 cm = kr. d: Lav så en tabel en graf for Gåserød Taxa e: Angiv forskrifter for begge firmaer. x er antal km y er prisen f: Hvor krydser graferne hinanden? Andeby Taxa kr. pr. km 1 kr. i startgebyr Gåserød Taxa 4 kr. pr. km Intet startgebyr 15: To taxa-firmaer tager de viste priser. a: Hvad koster det at køre 4 km med Henry b: Lav udfyld en tabel, som denne: Antal km o.s.v. 1 Pris hos Henry c: Tegn en graf for Henry i et koordinatsystem. På x-aksen er 1 cm = 1 km. På y-aksen er 1 cm = 1 kr. d: Lav så tabel graf for Toms Taxa (samme koordinatsystem) e: Opstil forskrifter for begge firmaer. x er antal km y er prisen f: Hvor krydser graferne hinanden? g: Hvornår er det billigst at køre med Henry? h: Hvornår er det billigst at køre med Tom? i: Aflæs på grafen (cirka-tal): - hvor mange km kan man køre med Henry for 1 kr? - hvor mange km kan man køre med Tom for 1 kr? Henrys Hyrevne 8 kr. pr. km 35 kr. i startgebyr Toms Taxa 1 kr. pr. km 15 kr. i startgebyr Lektion 7 Side

9 16: Herunder er vist et udsnit af 4 koordinatsystemer tegnet på forstørret mm-papir. Bestem for hvert koordinatsystem for begge tal-akser hvor langt der er mellem de tynde 1 mm-streger. a: b: c: d: : Find de tabeller de funktionsforskrifter, som passer sammen. Udfyld så de tomme pladser i tabellerne tegn evt. graferne. a: x y -1 1 A: y x 4 b: x y 1 B: y,5 x 1 c: x y C: y x Lektion 7 Side 1

10 18: Tre foto-firmaer tager de viste priser. a: Hvad koster det at få lavet en film med 4 billeder hos Finn? b: Lav en graf for Finns Foto i et koordinatsystem. 1 cm = billeder på x-aksen. 1 cm = 5 kr. på y-aksen. Brug et helt A4-ark. Lav akserne tæt på kanterne c: Lav så grafer for Byens Billeder Foto Shoppen. d: Hvor skærer graferne hinanden (cirka-tal)? e: Opstil en funktionsforskrift for hvert firma. x er antal billeder på en film y er prisen. f: Vurder hvor det er billigst at få lavet: - en film med 4 billeder. - en film med 36 billeder. g: Hos hvilket af foto-firmaerne er prisen ligefrem proportional med antallet af billeder? Finns Foto,5 kr. pr. billede 35 kr. for fremkaldelse Byens Billeder 3,5 kr. pr. billede Incl. fremkaldelse Foto Shoppen 1 kr. pr. film Incl. fremkaldelse uanset antal billeder 19: To bil-udlejnings-firmaer tager de viste priser. Du skal bruge en bil i en dag. a: Hvad er prisen hos Vestergård, hvis du kører 1 km? b: Hvad er prisen hos Hansen, hvis du kører 1 km? c: Sammenlign priserne ved de to firmaer, når du kører 3 km på en dag. d: Lav et koordinatsystem tegn grafer for begge firmaer. På x-aksen er 1 cm = km. På y-aksen er 1 cm = 1 kr. e: Hvor krydser graferne hinanden? f: Opstil funktionsforskrifter for begge firmaer. x er antal km y er prisen g: Hos hvilket af firmaerne er prisen ligefrem proportional med antallet af kørte km? Vestergård Biler,5 kr. pr. km Fast afgift: 3 kr. pr. dag Hansen Auto-udlejning 4 kr. pr. km Ingen fast afgift : Gæt hvilke funktionsforskrifter der hører til disse tabeller. Udfyld så de tomme pladser tegn evt. graferne. a: x x b: f(x) g(x) -4-1 Lektion 7 Side

11 1: Tegn i et koordinatsystem graferne for disse funktioner: f(x) 3 x g(x),5 x 7 Aflæs så koordinaterne til grafernes skæringspunkt. : Tegn i et koordinatsystem graferne for disse funktioner: f(x) x 3 g(x) x h(x) 8 Aflæs så koordinaterne til grafernes skæringspunkt. (Der er tre forskellige skæringspunkter). 3: Tegn i et koordinatsystem graferne for disse funktioner: f(x) x 3 g(x) x 1 h(x) x 5 Skærer graferne hinanden? 4: Tegn graferne for disse funktioner - brug beregning (skema/sildeben/gebis) f(x) 3 x g(x) x h(x),5 x Hvorledes skærer graferne hinanden? 5: Tegn graferne for disse funktioner - brug konstruktion (ved hjælp af a b) f(x) 3 x g(x) x h(x) x 8 Alle tre grafer skærer hinanden i samme punkt. Hvad hedder dette skæringspunkt? Lektion 7 Side 3

12 6: Bestem funktionsforskrifterne for de grafer, som er tegnet i koordinatsystemet herunder: : Bestem funktionsforskrifterne for de grafer, som er tegnet i koordinatsystemet herunder: Lektion 7 Side 4

13 8: To mobil-telefon-firmaer tager de viste priser. a: Sammenlign udgiften hos de to firmaer, hvis man ringer 1 time på en måned. b: Sammenlign udgiften hos de to firmaer, hvis man ringer 3 timer på en måned. c: Lav udfyld en tabel, som denne: Antal timer på en måned Pris hos Mobi-Fix Mobi-Fix Ingen faste afgifter. Du betaler kun for den tid du ringer. Pris: 1,5 kr. pr. min. Tele 1 d: Tegn en graf for Mobi-Fix i et koordinatsystem. På x-aksen er 1 cm = minutter. På y-aksen er 1 cm = kr. e: Lav så en tabel en graf for Tele 1. f: Hvor krydser graferne hinanden? g: En kunde hos Tele 1 har på en måned ringet for kr.? Undersøg ved hjælp af grafen hvor mange minutter kunden har ringet. h: Hvor lang tid kan man ringe for kr. hos Mobi-Fix? Kun 75 øre pr. min. Dertil kommer en beskeden fast afgift på 9 kr. pr. måned i: Hos hvilket af firmaerne er prisen ligefrem proportional med den tid, man har ringet? 9: En sælger kan vælge mellem de viste aflønnings former. a: En sælger er på aflønnings-form I. Han sælger for 1. kr. på en måned. Hvad bliver hans månedsløn? b: Lav udfyld en tabel, som denne: Aflønnings-form I 1% af salget Salg pr. måned Løn pr. måned ved aflønnings-form I c: Tegn en graf for i et koordinatsystem. På x-aksen er 1 cm =. kr. På y-aksen er 1 cm =. kr. d: Lav så en tabel en graf for aflønnings-form II e: Hvor krydser graferne hinanden? f: En sælger på aflønnings-form II tjener 18. kr. på en måned. Hvor meget har han solgt for? g: Opstil funktioner for begge aflønnings-former. x er salget pr. måned, y er lønnen pr. måned Aflønnings-form II 5% af salget samt en grund-løn på 1. kr. pr. måned Lektion 7 Side 5

14 I opgave 3 skal du tegne to grafer, som knækker. Graferne er sat sammen af flere lige stykker. Derfor skal du ikke opstille funktioner. 3: To transport-firmaer tager de viste priser. a: Hvad koster 5 km hos Gerts Gods? b: Hvad koster 5 km hos Bents Biler? c: Hvad koster 15 km hos Bents Biler? d: Lav udfyld en tabel som denne: Antal km Pris hos Gert e: Tegn en graf for Gert i et koordinatsystem. På x-aksen er 1 cm = km. På y-aksen er 1 cm = 5 kr. f: Lav så en tabel en graf for Bent. g: Hvor krydser graferne hinanden (cirkatal)? h: Hvornår er det billigst at bruge Gert? i: Og hvornår er det billigst at bruge Bent? Gerts Gods 5 kr. pr. km Der skal d mindst betales for 1 km Eks: 8 km vil koste: 5 1 = 5 kr. Bents Biler 5 kr. i startgebyr 3 kr. pr. km for hver af de første 1 km 1 kr. pr. km for det antal km, som overstiger 1 km Eks: 13 km vil koste: = 386 kr. Lektion 7 Side 6

15 Andre funktioner Med andre funktioner menes her andre funktioner end lineære funktioner. 31: Find de tabeller de funktionsforskrifter, som passer sammen. Udfyld så de tomme pladser i tabellerne. a: x y 1 A: f(x) x b: x y 4 16 B: g(x) 4 x c: x y 1 6 C: h(x) 1,5 x 3 x 3: Tegn graferne for funktionerne fra opgave 31. Du bestemmer selv, hvordan du vil indrette dit koordinatsystem. 33: Tegn graferne for disse funktioner. Bruge et stykke mm-papir, lav akserne tæt på kanten tegn så meget af graferne, som du kan få plads til. f(x) g(x) h(x) 1 x 5 x x Lektion 7 Side 7

16 Ekstraopgaver 34 Lav ved beregning graferne for disse forskrifter i samme koordinatsystem: y = ½x - 4 y = -½x - 4 Lav ved beregning graferne for disse forskrifter i samme koordinatsystem: y = 3x - y = 3x + Lav ved konstruktion graferne for disse forskrifter i samme koordinatsystem: Angiv først værdien af a værdien af b for hver forskrift y = x + 7 y = -x + 7 Lav graferne for disse forskrifter i samme koordinatsystem: y = x y = x y = 3x y = 4x Lav graferne for disse forskrifter i samme koordinatsystem: y = 5 y = 4 y = Og nu er det omvendt: du har graferne skal finde forskrifterne: Lektion 7 Side 8

17 ligninger med ubekendte Find x y i ligningssættene herunder - opgaver skal løses grafisk 35: 5 + 7y = x y 5x + y - = x : 3x - 4 = 4x - y y - 3x + 3 = 37: y ½x = x = 5 + y Lektion 7 Side 9

Funktioner. Funktioner Side 150

Funktioner. Funktioner Side 150 Funktioner Brug af grafer koordinatsystemer... 151 Lineære funktioner ligefrem proportionalitet... 157 Andre funktioner... 163 Kært barn har mange navne... 165 Funktioner Side 15 Brug af grafer koordinatsystemer

Læs mere

Matematik på VUC Modul 3a Opgaver. Matematik på VUC. Modul 3a modeller med mere

Matematik på VUC Modul 3a Opgaver. Matematik på VUC. Modul 3a modeller med mere Matematik på VUC Modul a modeller med mere Indholdsfortegnelse Indledende talgymnastik...1 Formler... Reduktion...7 Ligninger...11 Ligninger som løsningsmetode i regneopgaver...17 Simulation... Blandede

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13 En funktion beskriver, hvordan en afhængig variabel afhænger af en uafhængig variabel. Læringsmål Forstå koordinatsystemet Vide hvad 1. og 2. aksen er Vide at x er 1. akse og y er 2. akse Forståelsen for

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Lektion 7s Funktioner - supplerende opgaver

Lektion 7s Funktioner - supplerende opgaver Lektion 7s Funktioner - supplerende opgaver Omvendt proportionalitet og hperbler.gradsfunktioner og parabler Eksponentialfunktioner Eksponentialfunktioner og lineære funktioner Andre funktioner og blandede

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Potensfunktioner og dobbeltlogaritmisk papir

Potensfunktioner og dobbeltlogaritmisk papir 1 Potensfunktioner og dobbeltlogaritmisk papir OBS: til skriftlig eksamen skal du kun kunne aflæse på en graf, der allerede er indtegnet på dobbeltlogaritmisk papir. Du kan ikke komme ud for at skulle

Læs mere

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner, G ISBN: 978-87-9288-11-4 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Modellering betyder at lave en matematisk model, der beskriver en praktisk situation. I det følgende arbejdes med lineære funktioner.

Modellering betyder at lave en matematisk model, der beskriver en praktisk situation. I det følgende arbejdes med lineære funktioner. Modellering Modellering betyder at lave en matematisk model, der beskriver en praktisk situation. I det følgende arbejdes med lineære funktioner. Der er forskellige trin, når der modelleres. De er beskrevet

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

grafer og funktioner basis+g brikkerne til regning & matematik preben bernitt

grafer og funktioner basis+g brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner G ISBN: 978-87-92488-11 4 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

4. Funktioner lineære & hyperbel

4. Funktioner lineære & hyperbel 4. 4.1 Tegn følgende lineære funktioner: a. y = 2 +1 b. y = 3 c. y = 3 d. y = ½ + 2 e. y = 2 + 350 f. y = -25 + 4200 g. y = 125-375 4.2 Tegn følgende lineære funktioner. Det er en stor fordel at isolere

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Omvendt proportionalitet og hyperbler... 25 Eksponentialfunktioner... 28 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner...

Omvendt proportionalitet og hyperbler... 25 Eksponentialfunktioner... 28 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner... Funktioner Omvendt proportionalitet og hperbler... 5 Eksponentialfunktioner... 8 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner... 33 Funktioner Side 4 Omvendt proportionalitet og

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

Lektion 5 Procentregning

Lektion 5 Procentregning Lektion 5 Procentregning Indholdsfortegnelse Indholdsfortegnelse Find et antal procent af Procent, brøk og decimaltal Hvor mange procent udgør.? Find det hele Promille Moms Ændring i procent Forskel i

Læs mere

grafer og funktioner trin 2 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 2 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 2 ISBN: 978-87-92488-12-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Lekion 4 Brøker og forholdstal

Lekion 4 Brøker og forholdstal Lekion Brøker og forholdstal Indholdsfortegnelse Indholdsfortegnelse... Hvad er brøker... Forlænge og forkorte brøker... Udtage brøkdele... Uægte brøker og blandede tal... Brøker og decimaltal... Regning

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Grupperede observationssæt Deskriptiv statistik: Middelværdi, frekvensfordeling, sumkurve, kvartilsæt, boxplot

Grupperede observationssæt Deskriptiv statistik: Middelværdi, frekvensfordeling, sumkurve, kvartilsæt, boxplot Grupperede datasæt: Middelværdi, intervalfrekvens og kumuleret frekvens. Bilbestandens alder i 2005 fremgår af følgende tabel. Alder i år ]0;4] ]4;8] ]8;12] ]12;16] ]16;20] ]20;24] Antal i tusinde 401

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 1 Introduktion... side 3 2 Grundlæggende færdigheder... side 4 2a Finde konstanterne a og b i en formel... side

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6

Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6 Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6 Indholdsfortegnelse: Enkelt logaritmisk koordinatsystem side 1 Eksempel på brug af enkelt logaritmisk koordinatsystem ud fra tabel side 2 Dobbelt

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve september Matematik Niveau B

Højere Handelseksamen Handelsskolernes enkeltfagsprøve september Matematik Niveau B Højere Handelseksamen Handelsskolernes enkeltfagsprøve september 2006 06-0-4 Matematik Niveau B Dette opgavesæt består af 8 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende

Læs mere

Differentialregning. Et oplæg Karsten Juul L P

Differentialregning. Et oplæg Karsten Juul L P Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene

Læs mere

Lektion 7s Funktioner - supplerende opgaver. Omvendt proportionalitet og hyperbler. Matematik på Åbent VUC

Lektion 7s Funktioner - supplerende opgaver. Omvendt proportionalitet og hyperbler. Matematik på Åbent VUC Lektion 7s Funktioner - supplerende opgaver Omvendt proportionalitet og hperbler 1: 4 m m 1; 8; 6; 4, 8 ; 4;..; 4 4,9 m ( = 4 ) : 1.5 kr. 65 kr..5; 1.5; 8;..; 417 Ja mdr. 15. : 6,6 kr., kr. 1, kr. 9,9

Læs mere

Lommeregnerkursus 2008

Lommeregnerkursus 2008 Mikkel Stouby Petersen Lommeregnerkursus 008 Med gennemregnede eksempler og øvelser Materialet er udarbejdet til et kursus i brug af TI-89 Titanium afholdt på Odder Gymnasium. april 008 1. Ligningsløsning

Læs mere

vækst trin 2 brikkerne til regning & matematik preben bernitt

vækst trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik vækst trin 2 preben bernitt brikkerne til regning & matematik vækst, trin 2 ISBN: 978-87-92488-05-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun tilladt

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

Tabeller og diagrammer

Tabeller og diagrammer Tabeller og diagrammer Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul,7 - tabeller og diagrammer Side 7 : Tabellen og diagrammet herunder viser, hvor mange børn der blev født i

Læs mere

FUNKTIONER OG SAMMENHÆNGE

FUNKTIONER OG SAMMENHÆNGE Opgave 1 A. y = 4 x B. Antal elever 16 64 20 80 24 96 C. Antal stoleben D. Grafen vil skære y aksen i 16 E. Flere svar Opgave 2 A. 25: 500 g 37: 730 g B. 20 g C. 39 salater Opgave 3 A. Flere løsninger

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

Matematik på VUC Modul 2 Opgaver. Længdemål...83 Tegninger...84 Areal og omkreds...85 Målestoksforhold...89 Mønstre med mere...92

Matematik på VUC Modul 2 Opgaver. Længdemål...83 Tegninger...84 Areal og omkreds...85 Målestoksforhold...89 Mønstre med mere...92 Geometri Længdemål...83 Tegninger...84 Areal og omkreds...85 Målestoksforhold...89 Mønstre med mere...92 Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul 2,8 - geometri Side 82 Længdemål

Læs mere

Svarark. 2. Biler på Øresundsbron. Antal biler. Tidspunkt. Navn Kursistnr. VUC

Svarark. 2. Biler på Øresundsbron. Antal biler. Tidspunkt. Navn Kursistnr. VUC Svarark Matematik trin 1 - Øresundsregionen - maj 2002 Navn Kursistnr. VUC 2. Biler på Øresundsbron v v Brug eventuelt nedenstående til løsning af opgave 2.2. Din løsning kan også afleveres på almindeligt

Læs mere

Andengradsfunktionen

Andengradsfunktionen Andengradsfunktionen 1. Find først diskriminanten og efterfølgende også toppunktet for følgende andengradsfunktioner. A y = 2 x 2 + 4 x + 3 B y = 1 x 2 + 6 x + 2 C y = 1 / 2 x 2 + 2 x 2 D y = 1 x 2 + 6

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

koordinatsystemer og skemaer

koordinatsystemer og skemaer brikkerne til regning & matematik koordinatsystemer og skemaer basis preben bernitt brikkerne til regning & matematik Koordinatsystemer og skemaer, basis 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3 eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Matematik A. Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til bedømmelse.

Matematik A. Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til bedømmelse. HTX Matematik A Fredag den 18. maj 2012 Kl. 09.00-14.00 GL121 - MAA - HTX 1 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/a-19122011 Mandag den 19. december 2011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole

Læs mere

Matematik Aflevering - Æggebæger

Matematik Aflevering - Æggebæger Matematik Aflevering - Æggebæger Lavet af Morten Kvist i samarbejde med Benjamin Afleveret d. 17/3-2006 Afleveret til Kristine Htx 3.2 Side 1 af 6 Opgave 1 Delopgave A Først har jeg de to logaritme funktioner,

Læs mere

GUX. Matematik. B-Niveau. August 2015. Kl. 9.00-13.00. Prøveform b GUX152 - MAB

GUX. Matematik. B-Niveau. August 2015. Kl. 9.00-13.00. Prøveform b GUX152 - MAB GUX Matematik B-Niveau August 2015 Kl. 9.00-13.00 Prøveform b GUX152 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

30 = 2 + x. Svar: x = 28. 10 x = 6. 3x 12 = 0. Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar:

30 = 2 + x. Svar: x = 28. 10 x = 6. 3x 12 = 0. Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: . Superliga Forstør kopiarkene til A-format og klip sæt brikker af kopiarket. Alle stiller sig parvis overfor hinanden omkring et langt bord. De udklippede brikker deles ud så hvert par har en lille bunke

Læs mere

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Træningsopgaver 1 Indhold Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Ligninger Opgave L0) Opgave L1) Opgave L2) a) 2x 5 5x 7 b) 3x 7 3x 11 c) 3 (2x 3) 2( x 1) d) En funktion

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Tabeller, diagrammer og tegninger

Tabeller, diagrammer og tegninger Tabeller, diagrammer og tegninger Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul 1,4 - tabeller, diagrammer og tegninger Side 142 1: Buspriser (1) Hvor meget koster et 10-turskort

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013 Matematik A Højere handelseksamen hhx133-mat/a-161013 Mandag den 16. december 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj 2006 06-0-1 Matematik Niveau A Dette opgavesæt består af 7 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2016

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2016 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

Matematikkens tal og grundlæggende begreber

Matematikkens tal og grundlæggende begreber Matematikkens tal og grundlæggende begreber 2. Mængden af positive hele tal fx 1,2,3,... 4. Eksempelvist tallene -2,-1,0,1 Bruges til fx at tælle Gæld, frostvejr, osv. 6. Et tal på formen a b Dele der

Læs mere

Lektion 5 - Procentregning

Lektion 5 - Procentregning Lektion 5 - Procentregning Indholdsfortegnelse Indholdsfortegnelse Find et antal procent af Procent, brøk og decimaltal Hvor mange procent udgør.? Find det hele Promille Moms Ændring i procent Forskel

Læs mere

Eksponentielle funktioner

Eksponentielle funktioner Eksponentielle funktioner http://en.wikipedia.org/wiki/rabbits_in_australia 4. udg. 2011 12-12-2011 Eksponentielle funktioner Vækst Udfyld tabellen ved: at skrive begyndelsesværdien b = f(0) = 30 under

Læs mere

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5 Lineære funktioner Indhold Definition:... Hældningskoefficient... 3 Begndelsesværdi... 3 Formler... 4 Om E-opgaver a... 5 Definition: En lineær funktion er en funktion, hvor grafen er lineær. Dvs. grafen

Læs mere

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden Brug af TI-83 Løsning af andengradsligninger med TI-83 Indtast formlerne for d, og rødderne og gem dem i formellagrene u,v eller w. Gem værdierne for a, b og c i lagrene A, B og C Nedenstående display

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter Arealmomenter af. og. orden side Institut for Matematik, DTU: Gymnasieopgave Arealmomenter Teori: Se lærebøgerne i faget Statiske konstruktionsmodeller og EDB. Se også H&OL bind,., samt bind appendix.3,

Læs mere

4 Funktioner. Faglige mål. Lineære sammenhænge. Forskrifter og grafer. Den rette linjes ligning

4 Funktioner. Faglige mål. Lineære sammenhænge. Forskrifter og grafer. Den rette linjes ligning 4 Funktioner Faglige mål Kapitlet Funktioner tager udgangspunkt i følgende faglige mål: Lineære sammenhænge: vide hvad der kendetegner lineære sammenhænge samt kende de forskellige repræsentationsformer

Læs mere

Matematik på VUC Modul 2 Opgaver. Vægtenheder...2 Rumfangenheder...6 Længdeenheder...8 Blandede opgaver med vægt, rumfang og længde...

Matematik på VUC Modul 2 Opgaver. Vægtenheder...2 Rumfangenheder...6 Længdeenheder...8 Blandede opgaver med vægt, rumfang og længde... Købmandsregning Vægtenheder...2 Rumfangenheder...6 Længdeenheder...8 Blandede opgaver med vægt, rumfang og længde...9 Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul 2,1 - købmandsregning

Læs mere

Statistik. Statistik Side 136

Statistik. Statistik Side 136 Statistik Tabeller og diagrammer...137 Middelværdi med mere...142 Hyppighed og frekvens...143 Fremstilling af diagrammer...144 Aflæsning på cirkeldiagrammer...147 Grupperede fordelinger...148 Statistik

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Omvendt proportionalitet/hyperbelen

Omvendt proportionalitet/hyperbelen Omvendt proportionalitet/hyperbelen 1. Indtegn i samme koordinatsystem følgende hyperbler: 8 1 9 3 15 D 10. Indtegn i samme koordinatsystem følgende hyperbler: 4 6 6 3 16 D 1 4 3. En bil skal gennemkøre

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere