Funktioner. Funktioner Side 150

Størrelse: px
Starte visningen fra side:

Download "Funktioner. Funktioner Side 150"

Transkript

1 Funktioner Brug af grafer koordinatsystemer Lineære funktioner ligefrem proportionalitet Andre funktioner Kært barn har mange navne Funktioner Side 15

2 Brug af grafer koordinatsystemer 1: En butik sælger gulerødder til kr. pr. kg. Billige gulerødder Kun kr. pr. kg - vej selv - a: Hvor meget koster kg gulerødder? b: Udfyld tabellen herunder: Pris i kr Antal kg gulerødder 1 3 Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinat-systemet til højre. d: Hvad koster,5 kg gulerødder? e: Hvor mange gulerødder kan man få for 6 kr.?, k g Antal kg gulerødder : Butikken sælger så kartofler til,5 kr. pr. kg. Billige kartofler Kun,5 kr. pr. kg - vej selv - a: Hvor meget koster kg kartofler? b: Udfyld tabellen herunder: Antal kg kartofler 1 3 Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinat-systemet til højre. Pris i kr Antal kg kartofler Funktioner Side 151

3 3: En butik sælger vindruer til 1 kr. pr. kg. a: Hvor meget koster 3 kg vindruer? b: Udfyld tabellen til herunder: Lækre italienske vindruer Kun 1 kr. pr. kg Antal kg vindruer Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinatsystemet. d: Hvad koster 3,5 kg vindruer? e: Hvor mange vindruer kan man få for 15 kr.? Pris i kr Du kan så lave tabellen grafen i et regneark eller et andet IT-prram. : En slagter sælger oksekød til 8 kr. pr. kg. a: Hvor meget koster kg oksekød? b: Udfyld tabellen til herunder: Antal kg vindruer Billigt oksekød Kun 8 kr. pr. kg Antal kg oksekød Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinatsystemet. d: Hvad koster 1,5 kg oksekød? e: Hvor meget oksekød kan man få for 3 kr.? Pris i kr 3 1 Du kan så lave tabellen grafen i et regneark eller et andet IT-prram Antal kg oksekød Funktioner Side 15

4 5: I koordinat-systemet til højre er der markeret punktet (1,) a: Marker selv disse punkter: (,) (3,1) (,) (5,) 6: Tegn selv et koordinat-system, hvor begge tal-akser går til 1. Marker disse punkter: (,) (1,8) (,) (6,7) (9,1) (1, ) : I koordinat-systemet til højre er tegnet en graf gennem de punkter, hvor x-koordinaten y-koordinaten er ens. Grafen går gennem (,), (1,1), (,) o.s.v. Tegn selv: a: En graf gennem alle de punkter hvor y-koordinaten er. b: En graf gennem alle de punkter hvor x-koordinaten er halvt så stor som y-koordinaten. F.eks. (,) c: En graf gennem alle de punkter hvor x-koordinaten er dobbelt så stor som y-koordinaten. F.eks. (,) : I koordinat-systemet til højre skal du markere disse punkter: (,) (3,7) (5,1) (9,7) Funktioner Side 153

5 9: I koordinat-systemet til højre skal du markere disse punkter: ( ;,6) (3 ;,3) (8 ; 1,) (9 ;,) 1,,8,6,,, : I koordinat-systemet herunder er markeret punktet (-3,). Du skal selv markere disse punkter: (,) (,) (,) (-,) (-,) (-,-) (-,-) (,-) (,-) 5 (-3, ) Funktioner Side 15

6 11: En tankstation sælger benzin til 8 kr. pr. liter. a: Hvor meget koster 1 liter benzin? b: Udfyld tabellen til herunder: Byens billigste benzin 8 kr. pr. liter Antal liter benzin Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinat-systemet. d: Hvad koster 5 liter benzin? e: Hvor meget benzin kan man få for 1 kr.? Pris i kr Du kan så lave tabellen grafen i et regneark eller et andet IT-prram Antal liter benzin 1: En slagter sælger pølser til kr. pr. kg. a: Hvor meget koster kg pølser? b: Udfyld tabellen til herunder: Pølser - med uden farve kr. pr. kg Antal kg pølser Pris i kr. c: Tegn ud fra tallene i tabellen en graf i koordinat-systemet. d: Hvad koster 3,5 kg pølser? e: Hvor mange pølser kan man få for 1 kr.? Pris i kr Du kan så lave tabellen grafen i et regneark eller et andet IT-prram Antal kg pølser Funktioner Side 155

7 13: To bil-udlejnings-firmaer tager disse priser: Kvik Biler kr. pr. km Fast afgift: 3 kr. pr. dag Auto Service kr. pr. km Ingen fast afgift Begge firmaers priser er vist som grafer i et koordinat-system. a: Hvilken graf passer til Kvik Biler? b: Hvilken graf passer til Auto Service c: Hvor krydser graferne hinanden? d: Hvilket firma er billigst, hvis man skal køre 1 km på en dag? e: Hvilket firma er billigst, hvis man skal køre km på en dag? 1: To telefon-selskaber tager disse priser: Udgift i kr. pr. dag Antal km pr. dag Tele 6 øre pr. minut Abonnement: 8 kr. pr. måned Tele 1 1 kr. pr. minut Ingen betaling for abonnement Begge selskabers priser er vist som grafer i et koordinat-system. a: Hvilken graf passer til Tele? b: Hvilken graf passer til Tele 1? c: Hvor krydser graferne hinanden? d: Hvilket selskab er billigst, hvis man typisk ringer fem min. om dagen? e: Hvilket selskab er billigst, hvis man typisk ringer ti min. om dagen? Udgift i kr. pr. måned Antal min. pr. måned Funktioner Side 156

8 Lineære funktioner ligefrem proportionalitet Nu skal du enten selv tegne dine koordinatsystemer på papir eller lave dine diagrammer i regneark eller et andet IT-prram. 15: To taxa-firmaer tager de viste priser. a: Hvad koster det at køre 3 km med Andeby Taxa? b: Lav udfyld en tabel, som denne: Antal km 1 o.s.v. 1 Pris hos Andeby Taxa 1 1 Pris hos Gåserød Taxa c: Tegn en graf for begge taxa-selskaber i et koordinatsystem. d: Opstil funktioner for begge firmaer. x er antal km y er prisen. e: Hvor krydser graferne hinanden? Andeby Taxa kr. pr. km 1. i startgebyr Gåserød Taxa kr. pr. km Intet startgebyr Forslag til akser: x-akse: 1 cm = 1 km y-akse: 1 cm = kr. 16: To taxa-firmaer tager de viste priser. a: Hvad koster det at køre km med Henry b: Lav udfyld en tabel, som denne: Antal km o.s.v. 1 Pris hos Henry Pris hos Tom c: Tegn en graf for begge taxa-selskaber i et koordinatsystem. d: Opstil funktioner for begge firmaer. x er antal km y er prisen. e: Hvor krydser graferne hinanden? f: Hvornår er det billigst at køre med Henry? g: Hvornår er det billigst at køre med Tom? h: Aflæs på grafen: - hvor mange km kan man køre med Henry for 1 kr.? - hvor mange km kan man køre med Tom for 1 kr.? Henrys Hyrevne 1 kr. pr. km 5 kr. i startgebyr Toms Taxa 15 kr. pr. km kr. i startgebyr Forslag til akser: x-akse: 1 cm = 1 km y-akse: 1 cm = 1 kr. Funktioner Side 157

9 17: Herunder er vist et udsnit af koordinatsystemer tegnet på forstørret mm-papir. Bestem for hvert koordinatsystem for begge tal-akser hvor langt der er mellem de tynde streger. a: b: c: d: : Find de tabeller de funktionsforskrifter, som passer sammen. Udfyld så de tomme pladser i tabellerne tegn evt. graferne. a: x 1 3 y -1 1 A: f(x) = x + b: x 1 3 y 1 B: g(x) =,5 x + 1 c: x 1 3 y 8 1 C: h(x) = x Funktioner Side 158

10 19: Leje af bil Du skal bruge en bil i en dag. a: Hvad er prisen hos Vestergård, hvis du kører 1 km? b: Hvad er prisen hos Hansen, hvis du kører 1 km? c: Sammenlign priserne ved de to firmaer, når du kører 3 km på en dag. d: Lav grafer for begge firmaer i et koordinatsystem. e: Hvor krydser graferne hinanden? f: Opstil funktioner for begge firmaer. x er antal km y er prisen. g: Hos hvilket af firmaerne er prisen ligefrem proportional med antallet af kørte km? Vestergård Biler,5 kr. pr. km Fast afgift: 3 kr. pr. dag Hansen Auto-udlejning kr. pr. km Ingen fast afgift Forslag til akser: x-akse: 1 cm = km y-akse: 1 cm = 1 kr. : Sammenligning af mobiltelefon-selskaber. Du skal kun sammenligne udgiften til SMS fast afgift (selv om det måske ikke er så realistisk). a: Hvad koster det at sende SMS er på en måned hos Smart Mobil? Medregn den faste afgift. b: Hvad koster det at sende SMS er hos de to andre selskaber? c: Lav grafer for alle tre selskaber i et koordinatsystem. d: Hvor krydser graferne hinanden (cirka-tal)? e: Opstil en funktion for hvert firma. x er antal SMS er på en måned y er prisen. f: Vurder hvor det er billigst at sende: - SMS er på en måned. - SMS er på en måned. g: Hos hvilket af selskaberne er prisen ligefrem proportional med antallet af SMS er? Smart Mobil 1 øre pr. SMS 5 kr. pr. måned i fast afgift (abonnement) Nem Mobil øre pr. SMS Ingen fast afgift Min Mobil Fri SMS: 6 kr. pr måned Ingen fast afgift Forslag til akser: x-akse: 1 cm = SMS er y-akse: 1 cm = 5 kr. 1: Gæt hvilke funktionsforskrifter der hører til disse tabeller. Udfyld så de tomme pladser tegn evt. graferne. a: x 1 3 x 1 3 b: f(x) g(x) - -1 Funktioner Side 159

11 : Tegn i et koordinatsystem graferne for disse funktioner: f(x) = 3 x + g(x) =,5 x + 7 Aflæs så koordinaterne til grafernes skæringspunkt. 3: Tegn i et koordinatsystem graferne for disse funktioner: f(x) = x + 3 g(x) = x h(x) = 8 Aflæs så koordinaterne til grafernes skæringspunkt. (Der er tre forskellige skæringspunkter). : Tegn i et koordinatsystem graferne for disse funktioner: f(x) = x 3 g(x) = x + 1 h(x) = x + 5 Skærer graferne hinanden? 5: Tegn i et koordinatsystem graferne for disse funktioner: f(x) = 3 x + g(x) = x + h(x) =,5 x + Hvorledes skærer graferne hinanden? 6: Tegn i et koordinatsystem graferne for disse funktioner: f(x) = 3 x g(x) = x + h(x) = x + 8 Alle tre grafer skærer hinanden i samme punkt. Hvad hedder dette skæringspunkt? Funktioner Side 16

12 7: Bestem funktionsforskrifterne for de grafer, som er tegnet i koordinatsystemet herunder: : Bestem funktionsforskrifterne for de grafer, som er tegnet i koordinatsystemet herunder: Funktioner Side 161

13 9: Du skal sammenligne priserne hos de to foto-firmaer. a: Hvilket firma er billigst, hvis man skal have lavet 5 billeder. b: Hvilket firma er billigst, hvis man skal have lave 1 billeder. c: Lav udfyld en tabel, som denne: Foto-Fix Professionelt arbejde Du betaler kun for dine billeder. Pris: 1,5 kr. pr. billede. Antal billeder osv. Pris hos Foto-Fix Pris hos Billed-børsen Billed-børsen Kun 85 øre pr. billede. d: Lav grafer for begge selskaber i et koordinatsystem. e: Hvor krydser graferne hinanden? f: Opstil funktioner for begge firmaer. x er antal billeder. y er prisen i kr. g: En kunde hos Foto-Fix skal betale 115 kr. Hvor mange billeder har kunden fået lavet? h: En kunde hos Billed-børsen skal betale 1,8 kr. Hvor mange billeder har kunden fået lavet? Ekspedition porto: Uanset antal 9 kr. i: Hos hvilket af firmaerne er prisen ligefrem proportional med antal billeder? Forslag til akser: x-akse: 1 cm = 1 billeder. y-akse: 1 cm = 1 kr. 3: En sælger kan vælge mellem de viste aflønnings former. a: En sælger er på aflønnings-form I. Han sælger for. kr. på en måned. Hvad bliver hans månedsløn? Aflønnings-form I 1% af salget b: Lav udfyld en tabel, som denne: Salg pr. måned Løn pr. måned ved aflønnings-form I Løn pr. måned ved aflønnings-form II c: Lav grafer for begge aflønningsformer i et koordinatsystem. d: Hvor krydser graferne hinanden? e: En sælger på aflønnings-form II tjener 8. kr. på en måned. Hvor meget har han solgt for? f: Opstil funktioner for begge aflønnings-former. Aflønnings-form II 5% af salget samt et grund-beløb på. kr. pr. måned Forslag til akser: x-akse: 1 cm = 5. kr. y-akse: 1 cm = 5. kr. Funktioner Side 16

14 Andre funktioner Opgaverne i dette afsnit handler mest om funktioner, som ikke er lineære funktioner. Så er graferne ikke rette linjer men bløde buer. 31: Tegn udfyld tabellerne for disse funktioner afrund funktionsværdierne til en decimal.: 1 f(x) = + x x f(x) g(x) = 5 x x g(x) h(x) 1 x = x h(x) Tegn så på et stykke mm-papir graferne for de tre funktioner. Graferne skal være bløde buer! Det er muligt at grafen for h ryger ovenud af papiret. NB: Hvorfor er feltet til f() krydset over? 3: Find de tabeller de funktionsforskrifter, som passer sammen. Udfyld så de tomme pladser i tabellerne. a: x 1 3 y 8 A: y = x b: x 1 3 y 16 B: y = x c: x 1 3 y 1 6 C: y = x x + Tegn så graferne for funktionerne ovenover. Du bestemmer selv, hvorledes du vil indrette dit koordinatsystem. Graferne skal være bløde buer! Funktioner Side 163

15 33: Brian betaler tilbage a: Hvor meget skal Brian betale om måneden, hvis lånet skal betales tilbage på et år? b: Hvor meget skal Brian betale om måneden, hvis lånet skal betales tilbage på to år? c: Lav udfyld en tabel som denne: Brian har lånt 1. kr. af sin mor. Lånet skal betales tilbage med et fast afdrag hver måned. Antal måneder (x) osv. Afdrag pr. måned (y) d: Tegn en graf ud fra tallene i tabellen. Grafen skal være en blød bue! e: Hvilken af disse funktioner passer til tabellen grafen? x y = y = 1. x y = x f: Kan man sætte alle tal ind som x i den rigtige funktion? Kan x fx være? Forslag til akser: x-akse: 1 cm = mdr. y-akse: 1 cm = kr. g: Hvor lang tid tager det at betale lånet tilbage, hvis Brian betaler 8 kr. pr. måned? Prøv om du både kan beregne svaret aflæse det på grafen. 3: Areal af kvadrater Tegningen viser tre kvadrater med sidelængderne 1 cm, cm 3 cm. a: Tegn selv to kvadrater med sidelængderne cm 5 cm. b: Udfyld tabellen herunder. Det er naturligvis net pjat med en sidelængde på cm, men tallet er med for systemets skyld Sidelængde i cm (x) Areal i cm (y) c: Tegn en graf ud fra tallene i tabellen. Grafen skal være en blød bue! Måske er det svært at få hele grafen med, fordi y vokser meget hurtigt. d: Hvilken af disse funktioner passer til tabellen grafen? y = x y = x h: Hvad er sidelængden på et kvadrat med arealet cm? Prøv om du både kan beregne svaret aflæse det på grafen. Funktioner Side 16

16 Kært barn har mange navne 35: Hvilke af funktionsforskrifterne teksterne herunder betyder det samme som udtrykket i rammen? y = x : 1 x y = x y = x y = y =,5 x y = x y er det halve af x x er det halve af y y er det dobbelte af x 36: Hvilke af funktionsforskrifterne teksterne herunder betyder det samme som udtrykket i rammen? y = x + 5 y = 5 + x y = x + x + 5 y = + x 5 y = (x + 5) y = x + 5 Man finder y ved først at lægge 5 til x derefter gange resultatet med. Man finder y ved først at gange x med derefter lægge 5 til resultatet. 37: Hvilke af funktionsforskrifterne teksterne herunder betyder det samme som udtrykket i rammen? ( x ) y = 3 + y = (x + ) 3 y = 3 x + y = 6 + x 3 y = (x + 3) y = x + x + x + 6 Man finder y ved først at lægge til x derefter gange resultatet med 3. Man finder y ved først at gange x med 3 derefter lægge til resultatet. 38: Hvilke af funktionsforskrifterne teksterne herunder betyder det samme som udtrykket i rammen? x + 3 y = y = x + 3 : y =,5 x +,75 y = x : + 3 ( x 3) : y = + 3 y = 1 x + Man finder y ved først at lægge 3 til x derefter dividere resultatet med. Man finder y ved først at dividere x med derefter lægge 3 til resultatet. 39: Kan du selv skrive nle af funktionsforskrifterne i opgaverne ovenover på endnu flere måder? Tegn så grafer for (nle af) funktionerne. : Lav selv nle opgaver, der ligner opgaverne ovenover. Byt opgaver med en klassekammerat regn hinandens opgaver. Funktioner Side 165

Matematik på VUC Modul 3a Opgaver. Matematik på VUC. Modul 3a modeller med mere

Matematik på VUC Modul 3a Opgaver. Matematik på VUC. Modul 3a modeller med mere Matematik på VUC Modul a modeller med mere Indholdsfortegnelse Indledende talgymnastik...1 Formler... Reduktion...7 Ligninger...11 Ligninger som løsningsmetode i regneopgaver...17 Simulation... Blandede

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Lektion 7s Funktioner - supplerende opgaver

Lektion 7s Funktioner - supplerende opgaver Lektion 7s Funktioner - supplerende opgaver Omvendt proportionalitet og hperbler.gradsfunktioner og parabler Eksponentialfunktioner Eksponentialfunktioner og lineære funktioner Andre funktioner og blandede

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner, G ISBN: 978-87-9288-11-4 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

fsa 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem Matematisk problemløsning Folkeskolens Afgangsprøve December 2011

fsa 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem Matematisk problemløsning Folkeskolens Afgangsprøve December 2011 fsa Folkeskolens Afgangsprøve Matematisk problemløsning December 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem 1 På tryk tryk

Læs mere

Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6

Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6 Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6 Indholdsfortegnelse: Enkelt logaritmisk koordinatsystem side 1 Eksempel på brug af enkelt logaritmisk koordinatsystem ud fra tabel side 2 Dobbelt

Læs mere

Andengradsfunktionen

Andengradsfunktionen Andengradsfunktionen 1. Find først diskriminanten og efterfølgende også toppunktet for følgende andengradsfunktioner. A y = 2 x 2 + 4 x + 3 B y = 1 x 2 + 6 x + 2 C y = 1 / 2 x 2 + 2 x 2 D y = 1 x 2 + 6

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

Sådan gør du i GeoGebra.

Sådan gør du i GeoGebra. Sådan gør du i GeoGebra. Det første vi skal prøve er at tegne matematiske figurer. Tegne: Lad os tegne en trekant. Klik på trekant knappen Klik på punktet ved (1,1), (4,1) (4,5) og til sidst igen på (1,1)

Læs mere

Tabeller, diagrammer og tegninger

Tabeller, diagrammer og tegninger Tabeller, diagrammer og tegninger Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul 1,4 - tabeller, diagrammer og tegninger Side 142 1: Buspriser (1) Hvor meget koster et 10-turskort

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

grafer og funktioner trin 2 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 2 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 2 ISBN: 978-87-92488-12-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

30 = 2 + x. Svar: x = 28. 10 x = 6. 3x 12 = 0. Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar:

30 = 2 + x. Svar: x = 28. 10 x = 6. 3x 12 = 0. Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: Svar: . Superliga Forstør kopiarkene til A-format og klip sæt brikker af kopiarket. Alle stiller sig parvis overfor hinanden omkring et langt bord. De udklippede brikker deles ud så hvert par har en lille bunke

Læs mere

TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 169 + 231 = 14. 78,9 2. 684 134 = 15. 34,2 3. 7 130 =

TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 169 + 231 = 14. 78,9 2. 684 134 = 15. 34,2 3. 7 130 = AEU Modul 1 maj 2010 (syge) Navn: CPR: TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 169 + 231 = 14. 78,9 2. 684 134 = 15. 34,2 3. 7 130 = 4. 265 : 5 = Løs ligningen 5. 8x = 160 x = 6. 9 + x

Læs mere

Mobiltelefoner og matematik

Mobiltelefoner og matematik Mobiltelefoner og matematik Forord og lærervejledning Mobiltelefonen er blevet et meget vigtigt kommunikationsredskab i de sidste år. Mange af skolens elever har i dag en mobiltelefon, som de ofte bruger.

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Funktioner. Ib Michelsen

Funktioner. Ib Michelsen Funktioner Ib Michelsen Ikast 2008 Version 2008, 1.004 07-12-08, 22:25:25, G:\f15.odt Inkl eksp.kap rettet Inkl. rentesregning Side 91-176 inkl (86 sider) Potensregning mangler Indholdsfortegnelse Sammenhænge

Læs mere

Træningsopgaver til Matematik F. Procentregning

Træningsopgaver til Matematik F. Procentregning Procentregning Find et antal procent af...... 2 Procent, brøk og decimaltal... 3 Hvor mange procent udgør... 4 Find det hele... 5 Promille... 6 Moms... 7 Ændringer og forskelle i procent... 8 Procent og

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/a-19122011 Mandag den 19. december 2011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

brikkerne til regning & matematik funktioner F+E+D Demo preben bernitt funktioner 2+ - 2010 bernitt-matematik.dk 1

brikkerne til regning & matematik funktioner F+E+D Demo preben bernitt funktioner 2+ - 2010 bernitt-matematik.dk 1 brikkerne til regning & matematik funktioner F+E+D preben bernitt funktioner 2+ - 2010 bernitt-matematik.dk 1 brikkerne til regning & matematik funktioner F+E+D beta udgave som E-bog ISBN: 978-87-92488-37-4

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

Tabeller og diagrammer

Tabeller og diagrammer Tabeller og diagrammer Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul,7 - tabeller og diagrammer Side 7 : Tabellen og diagrammet herunder viser, hvor mange børn der blev født i

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI AEU 1 december 2010 Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 46 + 3546 = 2. 354 214 = 3. 32 18 = Afrund til 1 decimal 14. 2,38 15. 1 6 4 4. 215 : 5 = Løs ligningen 5. x + 9 = 18 x = 6. 7 x = 35 x = 16. 17.

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere

10 Skitur til Østrig. Faglige mål. Side til side-vejledning. Budget og opsparing. Klubfest. Opsparing til skituren. Penge. Budget og opsparing

10 Skitur til Østrig. Faglige mål. Side til side-vejledning. Budget og opsparing. Klubfest. Opsparing til skituren. Penge. Budget og opsparing 10 Skitur til Østrig Faglige mål Kapitlet Skitur til Østrig tager udgangspunkt i følgende faglige mål: Budget og opsparing: kunne udarbejde budget og regnskab, kende forskel på de to begreber samt vide

Læs mere

Brugervejledning til Graph (1g, del 1)

Brugervejledning til Graph (1g, del 1) Graph (brugervejledning 1g, del 1) side 1/8 Steen Toft Jørgensen Brugervejledning til Graph (1g, del 1) Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Microsoft Excel - en kort introduktion. Grundlag

Microsoft Excel - en kort introduktion. Grundlag Microsoft Excel - en kort introduktion Grundlag Udover menuer og knapper - i princippet som du kender det fra Words eller andre tekstbehandlingsprogrammer - er der to grundlæggende vigtige størrelser i

Læs mere

Introduktion til GeoGebra

Introduktion til GeoGebra Introduktion til GeoGebra Om navne Ib Michelsen Herover ses GeoGebra's brugerflade. 1 I øverste linje finder du navnet GeoGebra og ikoner til at minimere vinduet, ændre til fuldskærm og lukke I næste linje

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

vækst trin 2 brikkerne til regning & matematik preben bernitt

vækst trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik vækst trin 2 preben bernitt brikkerne til regning & matematik vækst, trin 2 ISBN: 978-87-92488-05-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun tilladt

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

Lektion 9s Statistik - supplerende eksempler

Lektion 9s Statistik - supplerende eksempler Lektion 9s Statistik - supplerende eksempler Middelværdi for grupperede observationer... Summeret frekvens og sumkurver... Indekstal... Lektion 9s Side 1 Grupperede observationer Hvis man stiller et spørgsmål,

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring Hovedemne 1: Talsystemet og at gange kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge udvikle metoder til multiplikation og division med naturlige tal udføre beregninger med de

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul Deskriptiv statistik for C-niveau i hf 75 50 25 2015 Karsten Juul DESKRIPTIV STATISTIK 1.1 Hvad er deskriptiv statistik?...1 1.2 Hvad er grupperede og ugrupperede data?...1 1.21 Eksempel pä ugrupperede

Læs mere

Matematik. på AVU. Opgaver til niveau F, E og D

Matematik. på AVU. Opgaver til niveau F, E og D Matematik på AVU Opgaver til niveau F, E og D Denne opgavesamling er lavet i forlængelse af Matematik på AVU - opgaver til niveau G. Opgavesamlingen omfatter derfor kun det fagstof, som ikke er med på

Læs mere

Minut pris. (efter 4 timer : 0,69 pr minut) Happii Basiic 0 0,60 sekund Lebara 0,49 0,19 minut

Minut pris. (efter 4 timer : 0,69 pr minut) Happii Basiic 0 0,60 sekund Lebara 0,49 0,19 minut Mobilaftaler Se alle mulige selskaber: http://telepristjek.dk/ Mobil-priser efterår 2010. Hvad er mon billigst nu? Besvar opgaverne på de følgende sider, mindst til og med opgave 4 Teleselskaber Abonnement

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Du kan bruge filen ISKIOSK eller svararket ved besvarelsen af opgave 1.2 til 1.5.

Du kan bruge filen ISKIOSK eller svararket ved besvarelsen af opgave 1.2 til 1.5. I en iskiosk gør ejeren dagens salg op hver aften. På den måde kan han sammenligne salget på de enkelte ugedage og i forskellige uger Tabellen viser salget i uge 27 og uge 28. Tegning: Hans Ole Herbst

Læs mere

fsa 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær i Simons klasse 6 En figur af kvarte cirkler

fsa 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær i Simons klasse 6 En figur af kvarte cirkler fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2012 Et svarark er vedlagt som bilag til dette opgavesæt 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær

Læs mere

Disposition for kursus i Excel2007

Disposition for kursus i Excel2007 Disposition for kursus i Excel2007 Analyse af data (1) Demo Øvelser Målsøgning o evt. opgave 11 Scenariestyring o evt. opgave 12 Datatabel o evt. opgave 13 Evt. Graf og tendens o evt. opgave 10 Subtotaler

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne?

Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne? Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne? - en fortælling om potensfunktioner 133 Af Seniorforsker Ken H. Andersen, DTU Aqua Tour de France søndag

Læs mere

Lekion 4 Brøker og forholdstal

Lekion 4 Brøker og forholdstal Lekion Brøker og forholdstal Indholdsfortegnelse Indholdsfortegnelse... Hvad er brøker... Forlænge og forkorte brøker... Udtage brøkdele... Uægte brøker og blandede tal... Brøker og decimaltal... Regning

Læs mere

Median, kvartiler, boksplot og sumkurver

Median, kvartiler, boksplot og sumkurver Median, kvartiler, boksplot og sumkurver Median, kvartil, boksplot og sumkurver... 2 Opgaver... 7 Side 1 Median, kvartil, boksplot og sumkurver Medianen er det midterste af en række tal, der er skrevet

Læs mere

Mine noter om funktioner C. Ib Michelsen

Mine noter om funktioner C. Ib Michelsen Mine noter om funktioner C Ib Michelsen Ikast 2006 Indholdsfortegnelse Funktioner...72 Generelt om funktioner...74 Variable...74 Talpar i tabeller...76 Grafer i koordinatsystemet...78 Det almindelige

Læs mere

AEU-1 Matematik. Piffissami nal. Ak./Tidspunkt.: 09.00 12.00. Ulloq misilitsiffik/dato: Torsdag den 26/5-2011

AEU-1 Matematik. Piffissami nal. Ak./Tidspunkt.: 09.00 12.00. Ulloq misilitsiffik/dato: Torsdag den 26/5-2011 NAMMINERSORNERULLUTIK OQARTUSSAT/GRØNLANDS HJEMMESTYRE/GREENLAND HOME RULE AEU-1 Matematik Piffissami nal. Ak./Tidspunkt.: 09.00 12.00 Ulloq misilitsiffik/dato: Torsdag den 26/5-2011 Ikiuutitut atorneqarsinnaasut

Læs mere

sammenhänge 2008 Karsten Juul

sammenhänge 2008 Karsten Juul LineÄre sammenhänge y x 3 3 008 Karsten Juul Dette häfte er en fortsättelse af häftet "VariabelsammenhÄnge, 008". Indhold 8. Hvad er en lineär sammenhäng?... 3 9. Hvordan ser grafen ud for en lineär sammenhäng?...

Læs mere

Lineære funktioner. Erik Vestergaard

Lineære funktioner. Erik Vestergaard Lineære funktioner Erik Vestergaard Erik Vestergaard www.matematikfsik.dk Erik Vestergaard www.matematikfsik.dk Lineære funktioner En vigtig tpe funktioner at studere er de såkaldte lineære funktioner.

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Brøker og forholdstal

Brøker og forholdstal Brøker og forholdstal Hvad er brøker... Forlænge og forkorte... Udtage brøkdele... Forholdstal... Uægte brøker og blandede tal... Brøker og decimaltal... Regning med brøker plus og minus... Regning med

Læs mere

Fs10. 1 Fabrikken 2 Arbejder 3 Plastrør 4 Økonomi 5 Sommerhuset. 10.- klasse prøve. MATEMATIK Marts 2010

Fs10. 1 Fabrikken 2 Arbejder 3 Plastrør 4 Økonomi 5 Sommerhuset. 10.- klasse prøve. MATEMATIK Marts 2010 2010 1 Fabrikken 2 Arbejder 3 Plastrør 4 Økonomi 5 Sommerhuset 10.- klasse prøve MATEMATIK Marts 2010 Som bilag *l de-e opgavesæt er vedlagt svarark Lavet af 10C. Frijsenborg e>erskole 30-03- 2010 11 1

Læs mere

Matematik på VUC Modul 2 Opgaver

Matematik på VUC Modul 2 Opgaver Procentregning Find et antal procent af...55 Procent brøk og decimaltal...58 Hvor mange procent udgør?...60 Find det hele...6 Promille...64 Moms...65 Blandede opgaver...66 Udarbejdet af: Niels Jørgen Andreasen,

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Statistik. Grupperede observationer og summeret frekvens... 12 Indekstal... 14 Median, kvartiler og boksplot... 17.

Statistik. Grupperede observationer og summeret frekvens... 12 Indekstal... 14 Median, kvartiler og boksplot... 17. Statistik Grupperede observationer og summeret frekvens... 12 Indekstal... 14 Median, kvartiler og boksplot... 17 Statistik Side 11 Grupperede observationer og summeret frekvens 1: Fritidsjobs a: Hvor

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Tid og hastighed. Tid...15 Hastighed...19 Blandede opgaver...20. Matematik på VUC Modul 2 Opgaver

Tid og hastighed. Tid...15 Hastighed...19 Blandede opgaver...20. Matematik på VUC Modul 2 Opgaver Tid og hastighed Tid...15 Hastighed...19 Blandede opgaver...20 Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul 2,2 - tid og hastighed Side 14 Tid 1: Omregn til sekunder: a: 2 min.

Læs mere

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3 eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

AEU-2 Matematik. Piffissami nal. Ak./Tidspunkt.: 09.00 12.00. Ulloq misilitsiffik/dato: Torsdag den 26/5-2011

AEU-2 Matematik. Piffissami nal. Ak./Tidspunkt.: 09.00 12.00. Ulloq misilitsiffik/dato: Torsdag den 26/5-2011 NAMMINERSORNERULLUTIK OQARTUSSAT/GRØNLANDS HJEMMESTYRE/GREENLAND HOME RULE AEU-2 Matematik Piffissami nal. Ak./Tidspunkt.: 09.00 12.00 Ulloq misilitsiffik/dato: Torsdag den 26/5-2011 Ikiuutitut atorneqarsinnaasut

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Funktioner. Ib Michelsen

Funktioner. Ib Michelsen Funktioner Ib Michelsen Ikast 2007 Forsidebilledet Tegning af Niels Bo Bojesen, Jyllands-Posten, 13-9 2006. Version 1.01 (18-11-07 23:41) D:\AppServ\www\c\bog2_s.odt Indholdsfortegnelse Sammenhænge mellem

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Lektion 5 Procentregning

Lektion 5 Procentregning Lektion 5 Procentregning Indholdsfortegnelse Indholdsfortegnelse Find et antal procent af Procent, brøk og decimaltal Hvor mange procent udgør.? Find det hele Promille Moms Ændring i procent Forskel i

Læs mere

Deskriptiv statistik

Deskriptiv statistik Deskriptiv statistik Billedet Collage (IM) med hjælp fra Danmarks Statistik, Volsted Plantage Jagtkonsortium og Kriminalforsorgen Version 1.7 incl. Sandsynlighed 16-3-2009 Editeret 18-1-2012 og 6-2-2012

Læs mere

Berlin eksempel på opgavebesvarelse i Word m/mathematics

Berlin eksempel på opgavebesvarelse i Word m/mathematics Berlin eksempel på opgavebesvarelse i Word m/mathematics 1.1 Gennemsnitsfarten findes ved at dividere den kørte strækning med den forbrugte tid i decimaltal. I regnearket bliver formlen =A24/D24. Resultatet

Læs mere

Matematik Niveau B Prøveform b

Matematik Niveau B Prøveform b GUX Matematik Niveau B Prøveform b Torsdag den 15. maj 2014 Kl. 09.00-13.00 GL141 - MAB - NY 1 GUX matematik B sommer 2014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Årsprøve i matematik 1y juni 2007

Årsprøve i matematik 1y juni 2007 Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25

Læs mere

SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER

SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER De supplerende aktiviteter er ikke nødvendige for at deltage i Masseeksperimentet, men kan bruges som et supplement til en undervisning, der knytter an til Masseeksperimentet

Læs mere

Lærereksemplar. Rema 8

Lærereksemplar. Rema 8 Bestil venligst direkte på www.forlagetdelta.dk Kopiering er uøkonomisk og forbudt til erhvervsformål. Side Emne 1. Indhold 2. Koordinatsystemet, start 3. Koordinatsystemet, 1. kvadrant 4. Koordinatsystemet,

Læs mere

brikkerne til regning & matematik statistik preben bernitt

brikkerne til regning & matematik statistik preben bernitt brikkerne til regning & matematik statistik 2+ preben bernitt brikkerne til regning & matematik statistik 2+ 1. udgave som E-bog ISBN: 978-87-92488-33-6 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere