13.1 Matrixpotenser og den spektrale radius

Størrelse: px
Starte visningen fra side:

Download "13.1 Matrixpotenser og den spektrale radius"

Transkript

1 SEKTION 3 MATRIXPOTENSER OG DEN SPEKTRALE RADIUS 3 Matrixpotenser og den spektrale radius Cayley-Hamilton-sætningen kan anvendes til at beregne matrixpotenser: Proposition 3 (Lasalles algoritme) Lad A Mat n,n (C), og lad λ,, λ n C være egenværdierne for A, talt med multiplicitet Lad P 0 =, og, for k =,, n, lad P k = k (A λ j ) For k =0,, 2, gælder, at hvor tallene w j (k) er defineret induktivt, ved A k = w (k)p w n (k)p n, ( ) k w (0) =, w (m) =λ w (m ) for m =, 2, og w j (0) = 0, w j (m) =λ j w j (m ) + w j (m ) for m =, 2, og j =2,, n Vi bemærker først, at, ifølge Cayley-Hamilton-sætningen, P n =(A λ I) (A λ n I)=0 Læg også mærke til, at begyndelsesbetingelserne w (0) =, w j (0) = 0 for j =2,, n, sikrer at ( ) 0 gælder Antag nu, induktivt, for k, at ( ) k gælder, dvs Så er A k = = = w j (k )AP j A k = w j (k )P j w j (k )(λ j P j +(A λ j I)P j ) w j (k )(λ j P j + P j ) = λ w (k )P 0 +(λ 2 w 2 (k ) + w (k ))P + +(λ n w n (k ) + w n (k ))P n (vi har brugt, at P n =0) = w (k)p 0 + w 2 (k)p + + w n (k )P n Så ( ) k gælder, induktionsskridtet er taget, og resultatet bevist 23

2 SEKTION 3 MATRIXPOTENSER OG DEN SPEKTRALE RADIUS Vi bruger Lasalles algoritme til at finde betingelser, der sikrer, at A k 0 når k Definition 32 Lad A Mat n,n (C), og lad λ,, λ n C være egenværdierne for A, talt med multiplicitet Den spektrale radius for A er ρ(a) = maks{ λ,, λ n } Lemma 33 Lad A Mat n,n (C), og lad λ,, λ n C være egenværdierne for A, talt med multiplicitet Skriv ρ = ρ(a) og vælg β > ρ Der gælder, for j =,, n, at for k =0,, 2, w j (k) β k (β ρ) j (+) k Læg mærke til, at (+) 0 gælder, idet w (0) =, w j (0) = 0 for j =2,, n Antag, induktivt, for k, at (+) k gælder Vi har da og, for j 2 w (k) = λ w (k ) = λ w (k ) λ β k w j (k) = λ j w j (k ) + w j (k ) (induktionshypotesen) <β k (idet λ ρ(a) =ρ<β ), λ j w j (k ) + w j (k ) = λ j w j (k ) + w j (k ) λ j = β k (β ρ) j + β k (β ρ) j 2 (induktionshypotesen) β k (β ρ) j ( λ j + β ρ) β k (β ρ) j (idet λ j ρ 0) Så (+) k gælder, induktionsskridtet er taget, og resultatet bevist 232

3 SEKTION 3 MATRIXPOTENSER OG DEN SPEKTRALE RADIUS Sætning 34 Lad A Mat n,n (C), antag, at ρ(a) < Så gælder, at A k 0 når k Skriv ρ = ρ(a), og lad β (ρ, ) Vi har da (med brug af Frobenius-normen, [L], s 248) A k = = w j (k)p j w j (k)p j w j (k) P j = β k ( (trekantsuligheden) β k (β ρ) j P j (Lemma 33) 0 når k, (β ρ) j P j ), idet tallet i parenteserne er uafhængigt af k, og 0 < β < Så A k 0 når k 233

4 SEKTION 32 KONVERGENS AF MARKOVPROCESSER 32 Konvergens af Markovprocesser I denne sektion vil A Mat n,n (R) være en positiv stokastisk matrix Lad s R n være den entydige sandsynlighedsvektor i E A () (se Addendum 028) Definer S = [ s,, s ] i søjleform, så Læg mærke til, at Vi vil vise Sz = S = s e T s n e T s (e T z) s n (e T z) i rækkeform =(e T z)s for alle z C n Sætning 32 A k S når k Som konsekvens ser vi, at en Markov Proces med positiv transitionsmatrix altid konvergerer mod en stabil tilstand: Sætning 322 Lad x 0 R n være en sandsynlighedsvektor Der gælder, at A k x 0 s når k Da A k S når k, så gælder, at A k x 0 Sx 0 når k Men Sx 0 =(e T x 0 )s = s idet x 0 er en sandsynlighedsvektor 234

5 SEKTION 32 KONVERGENS AF MARKOVPROCESSER Vi har brug for et par hjælperesultater: Lemma 323 () Ss = s og S 2 = S (2) AS = S = SA (3) A k S = S = SA k for k =, 2, () Ifølge en tidligere beregning er Ss =(e T s)s = s, og derfor er S 2 = S[s,, s] =[Ss,, Ss] = [s,, s] =S (2) Vi har og AS = A[s,, s] =[As,, As] =[s,, s] =S SA = s e T s n e T A = s (e T A) s n (e T A) = s e T s n e T = S (3) Anvend (2) k gange Lemma 324 Der gælder, for k =, 2,, at A k S =(A S) k Resultatet er oplagt for k = Antag induktivt, for k>, at det gælder for k Vi har da (A S) k =(A S)(A S) k =(A S)(A k S) (induktionshypotesen) = A k SA k AS + S 2 = A k S S + S (Lemma 323) = A k S Induktionsskridtet er taget, og resultatet bevist 235

6 SEKTION 32 KONVERGENS AF MARKOVPROCESSER Proposition 325 Lad λ C være en egenværdi for A S Der gælder én af følgende: (a) λ =0, (b) λ er en egenværdi for A, og λ 2 λ < Lad v C n være en egenvektor for A S svarende til λ Vi skriver v =(e T v)s + w hvor w = v (e T v)s Læg mærke til, at e T w = e T v (e T v)(e T s) = 0 idet e T s = Vi har λv =(A S)v = A((e T v)s + w) Sv =(e T v)s + Aw (e T v)s = Aw, (da As = s og Sv =(e T v)s) så Hvis λ =0gælder mulighed (a) λe T v = e T (λv) =e T (Aw) =(e T A)w = e T w =0 Antag nu, at λ 0 Så er e T v =0og λv =(A S)v = Av Sv = Av (e T v)s = Av, så λ er en egenværdi for A Hvis λ =, v E A () = Span(s), så v = αs med α 0 Men så er e T v = αe T s = α, og e T v 0, en modstrid Så λ, og mulighed (b) gælder 2 Det følger af Proposition 027, 2, at λ < for alle egenværdier λ af A for Sætning 32 Ifølge Proposition 325 er alle egenværdier for A S af absolut værdi <, så (A S) k 0 når k (Sætning 34) Men (A S) k = A k S for k =, 2, (Lemma 323) så A k S 0 når k dvs A k S når k 236

7 SEKTION 33 GOOGLE-SØGNING OG VERDENS STØRSTE MATRIXBEREGNING 33 Google-søgning og verdens største matrixberegning For ti år siden var en søgning på internettet ofte en frustrerende oplevelsesøgemaskinerne kunne finde mange, mange sider, hvor søgeordene optrådte, men rækkefølgen, siderne blev vist i, viste kun sjældent de virkeligt interessante sider først Google-søgningen har ændret dette, nu er det oftest således, at de sider, man er mest interesseret i, bliver vist blandt de allerførste Hvordan kan det lade sig gøre? 33 Princippet bag Googles søgemaskine Internettet kravles igennem af en web-crawler For enhver web-side som nås gemmes bla sidens adresse, sidens tekst, og sidens links (dvs referencer til andre web-sider) Data erne gemmes i en gigantisk database (Antal web-sider N ) 2 Enhver web-side tildeles et tal (0 ), sidens PageRank, som angiver sidens vigtighed 3 Ved en forespørgsel findes i databasen de web-sider, som indeholder søgeordene, og de vigtigste, dvs dem med højeste PageRank, vises først Nøglen til Googles succes er PageRank algoritmen 332 Principper bag PageRank Internettet tolkes demokratisk: Ethvert link tæller som en stemme En web-sides vigtighed afhænger af, hvor mange andre web-sider stemmer på den, dvs linker til den 2 Stemmer fra vigtige web-sider er mere betydende end stemmer fra ikke-vigtige websider Disse principper bliver til PageRank-tal med hjælp af en Markov proces: 333 Den tilfældige surfer, version En internet-bruger bevæger sig tilfældigt rundt på nettet Fra en given web-side P vælger han eller hun den næste side: Hvis P ikke har udgående links, så vælges tilfældigt blandt nettets web-sider, med lig sandsynlighed 2 Hvis P har udgående links, så vælges tilfældigt én af de linkede web-sider, med lig sandsynlighed 237

8 SEKTION 33 GOOGLE-SØGNING OG VERDENS STØRSTE MATRIXBEREGNING Vi har defineret en Markov proces, hvis transitionsmatrix A er en N N-matrix, hvor a ij er sandsynlighed for, at den tilfældige surfer skifter fra webside j til web-side i, så m : web-side j har m>0 udgående links, ét af dem til web-side i, a ij = 0: web-side j har udgående links, men ikke et til web-side i, N : web-side j har ingen udgående links Stemmeafgivningen om en web-sides vigtighed burde være angivet ved proportionen af tilfældige link-surfere som efter lang tids surf befandt sig på web-siden Der ønskes derfor en N-vektor x, således at Markov-kæden x 0, x = Ax 0,, x k+ = Ax k, konvergerer mod x, lige meget hvordan proportionerne x 0 af link-surferne på internettets sider var i begyndelsen Desværre kan vi ikke forvente, at en sådan x findes, der er feks mange muligheder for periodiske Markov-kæder (feks web-side linker til web-side 2, som linker til web-side 3, som som linker til web-side k, som linker til web-side, uden at web-siderne til k har andre udgående links) Løsningen er, at løsne tøjlerne lidt på surferne (og gør dem også lidt mere realistiske): 334 Den tilfældige surfer, version 2 En internet-bruger bevæger sig tilfældigt rundt på nettet Fra en given web-side ageres med sandsynlighed α som i version, og med sandsynlighed α vælges tilfældigt blandt nettets web-sider, med lig sandsynlighed Her 0 <α Google har tidligere oplyst, at firmaet anvendte α =0, 5 Vi har defineret en ny Markov proces, med N N-transitionsmatrix G = ( α)a + αe hvor E = N [e,, e] Vi ser umiddelbart, at G er en positiv stokastisk matrix, så: Proposition 335 (Addendum 028 og Sætning 322) Der findes en entydig sandsynlighedsvektor s R N som er en egenvektor for G svarende til egenværdi 2 Lad x 0 R N være en sandsynlighedsvektor Der gælder, at G n x 0 s når n s angiver således PageRank: PageRank en af web-side i er den i te indgang s i af s 238

9 SEKTION 33 GOOGLE-SØGNING OG VERDENS STØRSTE MATRIXBEREGNING Der resterer, at beregne s Umiddelbart er det naturligt at prøve at beregne E (G) = N(G ) (som har s som basis (Proposition 027 og Addendum 028)) vha rækkereduktion, men det ville kræve 3 N 3 talmultiplikationer, dvs talmultiplikationer, effektivt umuligt I stedet for anvendes potensmetoden, dvs man beregner en Markov-kæde x 0, x = Gx 0,, x n = Gx n, ( ) (hvor x 0 er en sandsynlighedsvektor, feks N e) indtil forskellen mellem x n og x n er så lille, at x n er en tilstrækkelig god approksimation til s En matrixmultiplikation By, hvor B er en N N-matrix, kunne kræve generelt N 2 talmultiplikationer, så ser temmelig umulig ud; beregningen af Markov-kæden ( ) er dog mulig, fordi G har en ret speciel form Vi har hvor L er link-matricen, med indgange l ij = G = ( α)a + αe = ( α)(l + H)+αE, { m og H er hængende-sider-matricen, med indgange h ij = : webside j har m udgående links, ét til side i, 0: ellers { N : web-side j har ingen udgående links, 0: ellers For at beregne Gx skal der beregnes Lx, Hx og Ex Først Lx: hver web-side indeholder i gennemsnit omkring 0 links Når der således i gennemsnit er ca 0 komponenter i hver søjle, som er forskellige fra 0, må det samme gælde for rækkerne Så beregning af Lx vil kræve ca 0N multiplikationer Dernæst Hx: Alle ikke-nul rækker er ens i H, så de tilsvarende koordinater i Hx er ens Den fælles værdi er ( x j ) N j: web-side j har ingen udgående link Så beregning af Hx kræver mindre end N additioner og én division Endelig Ex: denne kræver ingen udregning når x er en sandsynlighedsvektor, fordi Ex = N e Ṭ e T x x = N = N = N e e T e T x Beregningen af leddene i Markov-kæden ( ) er således krævende (0N =2 0 multiplikationer er altså ret mange), men overkommelig Hvor mange led skal beregnes, før en acceptabel konvergens har fundet sted? 239

10 SEKTION 33 GOOGLE-SØGNING OG VERDENS STØRSTE MATRIXBEREGNING Lemma 336 Hvis λ C er en egenværdi for G med λ, så er λ α Lad v C N være en egenvektor svarende til λ Så er Gv = λv og e T v =(e T G)v = e T (Gv) =e T (λv) =λe T v Vi har derfor (λ )e T v =0, og, da λ, får vi e T v =0 Men så er Ev = N e Ṭ e T v 0 v = N = N = 0, e T e T v 0 og λv = Gv = ( α)av + αev = ( α)av, altså Av = λ αv Så λ α er en egenværdi for A Da A er en stokastisk matrix, er λ (ifølge Lemma 02), så λ α = α α Korollar 337 Lad β ( α, ) Så findes der en konstant C>0 så G k x s Cβ k for alle sandsynlighedsvektorer x og alle k =, 2, Lad S =[s,, s] Hvis λ C er en egenværdi for G S, så gælder, ifølge Proposition 325, enten at λ =0, eller at λ er en egenværdi for G og λ Så λ α, ifølge Lemma 336, og G S har spektral radius α Ifølge beviset for sætning 34 findes der C>0 således, at (G S) k Cβ k Men (G S) k = G k S ifølge Lemma 324, så G k S Cβ k Der gælder altså, at G k x s = (G k S)x G k S x G k S Cβ k Markov-kæden x 0, x = Gx 0,, x n = Gx n, konvergerer således med en eksponential hastighed (tæt på) α =085 med Googles (tidligere?) valg af α =05 I 2000 oplyste Google, at de beregnede ca 00 led af kæden ( ) men dengang var der kun ca web-sider 240

11 SEKTION 33 GOOGLE-SØGNING OG VERDENS STØRSTE MATRIXBEREGNING Google, Googles beregninger, og PageRank har tiltrukket sig megen interesse fra konkurrenter, fra dem, der gerne så deres web-sider opfattet vigtigere, og fra mange forskere, der ville gøre det bedre og der findes mange offentligt tilgængelige forslag til hurtigere beregninger og anderledes definition af Googles stokastiske proces, foruden Googles egne forbedringer, ikke længere så tilgængelige som i begyndelsen Så det, jeg har skitseret, er nok ikke helt som tingene gøres i dag Men der er skabt en 200 milliarder dollars forretning på basis af Googles søgemaskiner, og det hele startede som jeg har beskrevet fordi to studerende, Sergey Brin and Larry Page, havde hørt efter til Lineær Algebra forelæsninger 24

Filosofien og matematikken bag Google

Filosofien og matematikken bag Google 40 Baggrundsartikel Filosofien og matematikken bag Google Med fokus på PageRank Jakob Lindblad Blaavand, Oxford University Indledning En internetsøgemaskine er god, hvis den først og fremmest kan søge

Læs mere

F i l o s o f i e n o g m at e m at i k k e n b ag G o o g l e. M e d fo k u s på Pag e R a n k.

F i l o s o f i e n o g m at e m at i k k e n b ag G o o g l e. M e d fo k u s på Pag e R a n k. F i l o s o f i e n o g m at e m at i k k e n b ag G o o g l e M e d fo k u s på Pag e R a n k. J a ko b L i n d b l a d B l a ava n d I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e

Læs mere

Google Pagerank Hvordan man finder en nål i en høstak

Google Pagerank Hvordan man finder en nål i en høstak Google Pagerank Hvordan man finder en nål i en høstak Georg Mohr, 4. marts 2008 Kim Knudsen kim@math.aau.dk Institut for Matematiske Fag Aalborg Universitet http://www.math.aau.dk/ kim/georgmohr2008.pdf

Læs mere

12.1 Cayley-Hamilton-Sætningen

12.1 Cayley-Hamilton-Sætningen SEKTION 12.1 CAYLEY-HAMILTON-SÆTNINGEN 12.1 Cayley-Hamilton-Sætningen Sætning 12.1.1 (Cayley-Hamilton) Lad A Mat n,n (C). Så gælder p A (A) =. Sætningen gælder faktisk over et vilkårligt legeme, men vi

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

4.1 Lineære Transformationer

4.1 Lineære Transformationer SEKTION 41 LINEÆRE TRANSFORMATIONER 41 Lineære Transformationer Definition 411 ([L], s 175) Lad V, W være F-vektorrum En lineær transformation L : V W er en afbildning, som respekterer lineær struktur,

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Note om endelige legemer

Note om endelige legemer Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer 1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.

Læs mere

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

Eksamen 2014/2015 Mål- og integralteori

Eksamen 2014/2015 Mål- og integralteori Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Om hvordan Google ordner websider

Om hvordan Google ordner websider Om hvordan Google ordner websider Hans Anton Salomonsen March 14, 2008 Man oplever ofte at man efter at have givet Google et par søgeord lynhurtigt får oplysning om at der er fundet et stort antal - måske

Læs mere

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve.

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve. Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid) Tangenthældninger langs en kurve x Retningsfelter x x(t) sin(π t) + x / π cos(π t) Jeppe Revall Frisvad

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017 Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Ligningssystemer - nogle konklusioner efter miniprojektet

Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax

Læs mere

Oversigt [LA] 10, 11; [S] 9.3

Oversigt [LA] 10, 11; [S] 9.3 Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Her vil jeg gerne være Det er sådan dine kunder skal tænke

Her vil jeg gerne være Det er sådan dine kunder skal tænke Her vil jeg gerne være Det er sådan dine kunder skal tænke I denne gennemgang lægger vi vægt på hjemmesidens opbygning. For at få det optimale udbytte af en hjemmeside skal mange elementer spille sammen.

Læs mere

dpersp Uge 40 - Øvelser Internetalgoritmer

dpersp Uge 40 - Øvelser Internetalgoritmer Øvelse 1 dpersp Uge 40 - Øvelser Internetalgoritmer (Øvelserne 4 og 6 er afleveringsopgaver) a) Hver gruppe får en terning af instruktoren. Udfør 100 skridt af nedenstående RandomWalk på grafen, som også

Læs mere

Jeg foretager her en kort indføring af polynomier over såvel de reelle som

Jeg foretager her en kort indføring af polynomier over såvel de reelle som Polynomier, rødder og division Sebastian Ørsted 20. november 2016 Jeg foretager her en kort indføring af polynomier over såvel de reelle som de komplekse tal, hvor fokus er på at opbygge værktøjer til

Læs mere

Lineær algebra Kursusgang 6

Lineær algebra Kursusgang 6 Lineær algebra Kursusgang 6 Mindste kvadraters metode og Cholesky dekomposition Vi ønsker at finde en mindste kvadraters løsning til det (inkonsistente) ligningssystem hvor A er en m n matrix. Ax = b,

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Besvarelser til Lineær Algebra Reeksamen August 2016

Besvarelser til Lineær Algebra Reeksamen August 2016 Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Bliv opdaget på Internettet! - 10 gode råd til at optimere din hjemmeside til søgemaskiner

Bliv opdaget på Internettet! - 10 gode råd til at optimere din hjemmeside til søgemaskiner Bliv opdaget på Internettet! - 10 gode råd til at optimere din hjemmeside til søgemaskiner Af Henrik Bro og Martin T. Hansen I har måske allerede en flot, og informativ hjemmeside. Og alle jeres kursister

Læs mere

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer. LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote 7 enote 7 Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses Der bruges egenværdier og egenvektorer i løsningsproceduren,

Læs mere

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm.

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm. Institut for Matematiske Fag Plan Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser Helle Sørensen Eftermiddagen vil være bygget om 3 4 eksempler: A. B. Random

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Polynomiumsbrøker og asymptoter

Polynomiumsbrøker og asymptoter Polynomiumsbrøker og asymptoter Frank Villa 9. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

LiA 5 Side 0. Lineær algebra Kursusgang 5

LiA 5 Side 0. Lineær algebra Kursusgang 5 LiA 5 Side 0 Lineær algebra Kursusgang 5 LiA 5 Side 1 Ved bestemmelse af mindste kvadraters løsning til (store) ligningssystemer vil man gerne anvende en metode der opfylder to krav: antallet af regneoperationer

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Nøgleord og begreber Eksistens og entydighed Elementære funktioner Eksponential af matrix Retningsfelt Eulers metode Hastighedsfelt for system Eulers metode for

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 LinAlg 2013 Q3 Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 1 Lineær algebra Dispositioner - Dispo 0 2013 Contents 1 Løsninger, og MKL, af lineære ligningssystemer 3 2 Vektorrum

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet Forberedelsesmateriale frs-matn/a-270420 Onsdag den 27. april 20 Forberedelsesmateriale til stx-a-net MATEMATIK Der skal afsættes

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

DesignMat Uge 4 Systemer af lineære differentialligninger I

DesignMat Uge 4 Systemer af lineære differentialligninger I DesignMat Uge Systemer af lineære differentialligninger I Preben Alsholm Efterår 008 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden I Lineært differentialligningssystem

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe. 0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Anvendt Lineær Algebra

Anvendt Lineær Algebra Anvendt Lineær Algebra Kursusgang 4 Anita Abildgaard Sillasen Institut for Matematiske Fag AAS (I17) Anvendt Lineær Algebra 1 / 32 Vægtet mindste kvadraters metode For et lineært ligningssystem (af m ligninger

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1 1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Reeksamen 2014/2015 Mål- og integralteori

Reeksamen 2014/2015 Mål- og integralteori Reeksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål. Ved bedømmelsen indgår de spørgsmål med samme vægt.

Læs mere

Nummeriske Metoder. 1 Indledning. 2 Davidson metoden. Bo Thomsen, juni 2009

Nummeriske Metoder. 1 Indledning. 2 Davidson metoden. Bo Thomsen, juni 2009 Nummeriske Metoder Bo Thomsen, 20050885 25. juni 2009 1 Indledning I denne opgave søges løsninger på et relativt stort egenværdiproblem. I mit tilfælde er dette fremkommet ved at konstruere hamilton matricen

Læs mere

Lineær Algebra Dispositioner

Lineær Algebra Dispositioner Lineær Algebra Dispositioner Michael Lind Mortensen, 20071202, DAT4 12. august 2008 Indhold 1 Løsning og mindste kvadraters løsninger af lineære ligningssystemer 4 1.1 Disposition............................

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Her skal du lære om Separable ligninger Logistisk ligning og eksponentiel vækst 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens

Læs mere

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe. Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

Matematik Camp Noter og Opgaver

Matematik Camp Noter og Opgaver Matematik Camp 2018 Noter og Opgaver Freja Elbro Simon Skjernaa Erfurth Jonas Rysgaard Jensen Benjamin Muntz Anders Jess Pedersen Eigil Fjeldgren Rischel Nikolaj Jensen Ulrik Indhold Indhold i 1 Introduktion

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen S.&P. DIFFERENTIALLIGNINGER 2. februar 2006 Oversigt nr. 1 I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen [EP] Elementary differential equations with boundary

Læs mere

er en n n-matrix af funktioner

er en n n-matrix af funktioner Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Ligning og løsning Nøgleord og begreber Eksistens og entdighed Elementære funktioner Eksponential af matrix Retningsfelt Hastighedsfelt for sstem for sstem Stabilitet

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

Matricer og Matrixalgebra

Matricer og Matrixalgebra enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

En martingalversion af CLT

En martingalversion af CLT Kapitel 11 En martingalversion af CLT Når man har vænnet sig til den centrale grænseværdisætning for uafhængige, identisk fordelte summander, plejer næste skridt at være at se på summer af stokastiske

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere