Funktioner af to og tre variable

Størrelse: px
Starte visningen fra side:

Download "Funktioner af to og tre variable"

Transkript

1 MOGENS ODDERSHEDE LARSEN Kort indøring i Funktioner a to og tre variable. udgave 00

2

3 FORORD Dette notat giver en kort indøring i, hvorledes man ved anvendelse a passende regnemidler og benttelse a partielle aledede kan tegne graer or unktioner a to variable, beregne lokale og globale ekstrema og ved hjælp a dierentialer oretage ejlvurderinger Der gives også en kort orientering om hvorledes de tilsvarende begreber kan beregnes or unktioner a tre variable Forudsætninger: Der orudsættes et kendskab til dierentialregning svarende til pensum i matematik på A- niveau (se evt. notatet Matematik ra C til A - niveau der i pd-ormat kan indes på adressen ) Endvidere kendskab til beregning a determinanter a 3. orden i en udstrækning svarende til emnet i notatet Matricer og lineære ligninger (kan også indes på ovennævnte adresse) Regnemidler: Der bliver i eksemplerne vist, hvorledes man kan oretage beregningerne med matematiklommeregneren Ti 89 og edb-programmet Mathcad For en mere omattende gennemgang henvises til lærebogen Bjarne Hellesen, Mogens Oddershede Larsen: Matematik or Ingeniører bind. Enkelte eksempler er også hentet herra. (Bøgerne kan indes på ovennævnte adresse) januar 0 Mogens Oddershede Larsen iii

4 Indhold INDHOLD Funktion a variable. Indledning.... Graisk remstilling....3 Partiel dierentiation Geometrisk tolkning a partielle aledede, tangentplan Partielle aledede a højere orden Lokalt ekstremum Globalt ekstremum....8 Grænseværdi, kontinuitet, dierentiabilitet Dierential... 5 Funktion a mere end to variable... 8 Opgaver... 0 Facitliste... 4 Stikord... 6 iv

5 Funktion a variable Grundlæggende begreber. Indledning Funktioner a variabel = (), deres gra i et retvinklet koordinatsstem, dierentiation, bestemmelse a lokale ekstrema osv. osv. er velkendt. Vi vil i dette kapitel se på unktioner a variable z = (, ), deres gra i et tredimensionalt koordinatsstem, dierentiation og bestemmelse a lokale ekstrema... Graisk remstilling. En unktion a variable z = (, ) vil graisk sædvanligvis kunne remstilles i et rumligt koordinatsstem som en lade med bakker og dale. En sådan rumlig tegning kan være vanskelig at orestille sig. Man vil deror ote i stedet tegne niveaukurver, som svarer til højdekurver på et geodætisk kort. Ligesom en dgtig orienteringsløber kan se landskabet or sig ved at betragte højdekurverne på et kort, kan man ved at studere niveaukurverne å et godt indtrk a laden. En niveaukurve er en punktmængde (, (, ) k hvor har en konstant værdi { } = (, ) k. På igur. er der vist niveaukurver or en unktion med et lokalt maksimum samt den samme unktions 3-dimensionale udseende. På igur. er de tilsvarende igurer tegnet or et lokalt minimum, og på igur.3 er der tegnet en unktion med et saddelpunkt (disse begreber deineres mere præcist i et senere kapitel). Figur. Gra og niveaukurvediagram or unktionen (, ) = 00 e ( ) + ( ) +

6 Funktioner a to eller lere variable Matcad: Skriv unktionen (,):= osv. ) Tredimensional gra: Vælg Paletten: Surace Plot Skriv i nederste venstre hjørne. En tredimensional gra viser sig. Man kan nu ændre graens udseende på orskellig måde. Cursor på graen. a) Højre musetast. Vælg Bo og man år en kasse som på iguren. b) Trk to gange. Der viser sig en menu, hvor man kan skite arver osv. Vælges Quick Plot Data kan man skite grænserne or og. c) Med venstre musetast nede kan man trække iguren rundt så man ser iguren ra en bedre retning. ) Niveaukurver: Vælg paletten Contour Plot Skriv i nederste venstre hjørne. Der tegnes nogle niveaukurver. Man kan nu på samme måde som under punkt ændre grænser, arver osv, Ti 89: Mode: Graph = 3D, Y= (indtast unktion), gul rude,vælg akser m.m., F, Vælg ZoomStd, Se på iguren, og eventuelt: i Windows ændre ma osv, ved piletaster ændre hvorledes graen ses, trk på X,Y og Z or at se i akseretninger. Niveaukurver : Trk på. Jo større Grid vælges jo mere detaljeret bliver tegningen, og jo længere tid tager det et tegne den g g Fig... Niveaukurvediagram og tredimensional gra or en unktion g (, ) = ( ) + ( 3) + 0 med minimum. h Fig..3. Niveaukurvediagram og tredimensional gra or en unktion h (, ) = ( ) ( 3) + 0 med saddelpunkt.

7 . Graisk remstilling Sædvanligvis er det alt or besværligt selv at tegne en rumlig lade og dens niveaukurver. Kun hvis niveaukurverne er velkendte kurver som linier, cirkler hperbler og parabler kan det være hensigtsmæssigt selv at skitsere laderne. Det ølgende er et eksempel herpå. Eksempel.. Graisk remstilling a enkle unktioner a to variable. Der ønskes en graisk remstilling a unktionen (, ) = + Løsning: Lad z = + Først tegnes nogle niveaukurver. Lad a > 0 være en given konstant. Vi har da: z = a + = a + = a Niveaukurverne er ølgelig cirkler med centrum i (0,0) se ig..4. Hera kan sluttes, at laden må være a orm som en rund skål med minimum 0 i punktet (0.0). Fig..4. For at å et tværsnit a skålen skæres laden med z-planen ved at indsætte = 0 i ligningen z = +. Vi år da: z = z = (se ig..5). Fig..5. Vi kan nu se, at skålen er en kegle med spidsen nedad. (se ig..6). Fig..6. 3

8 Funktioner a to eller lere variable.3 Partiel dierentiation Hvis man or unktionen z = (, ) holder konstant på værdien 0, så vil (, 0 ) være en unktion a én variabel. Er denne unktion dierentiabel, så kan man på sædvanlig måde inde dens alede unktion. Denne kaldes s partielle aledede med hensn til og skrives eller. (, 0 ) (, 0 ) Tilsvarende deineres s partielle aledede med hensn til. d Tegnet læses "blødt d" og markerer, at unktionen har lere variable. Dette indebærer nemlig, at (i modsætning til ) d ikke uden videre kan opattes som en brøk i beregninger. Eksempel.3. Partiel dierentiation Lad unktionen være givet ved (, ) = a) Find de to partielle aledede og b) Find og. (,) 0 (,) 0 Løsning: a) Idet vi opatter som en unktion a alene, dvs. opatter som en konstant, ås umiddelbart (, ) = Tilsvarende ås (, ) = + Ti89: dierentialet d står over 8-tallet : a) : d(^*^/4+^/+/,), : d(^*^/4+^/+/,) Matcad: : d d 4 d : d 4 b) Ved indsættelse a (,) = (0.) ås og (,) 0 = (,) 0 = Ti89: (0,): d(^*^/4+ /+/,) =0 and = Den lodrette streg indes i venstre række (betder orudsat) og and i CATALOG Matcad: skriv :=0 := og dereter som under punkt a) Såremt det a sammenhængen klart remgår, hvilket punkt (,) der er tale om, udelades det ote a betegnelserne, således at man kun skriver og 4

9 .4 Geometrisk tolkning a partielle aledede, tangentplan Andre skrivemåder. z I stedet or skrives ote eller når z= (, ). z Undertiden skrives hvor der orneden er angivet, hvad de andre variable er. Eksempelvis kan energien E a en gas E enten opattes som en unktion a trk og rumang eller som en unktion a trk og temperatur. Deror ville være et tvetdigt P E E smbol, mens og er entdige. P V P T.4. Geometrisk tolkning a partielle aledede, tangentplan De partielle aledede kan som anskueliggøres i eksempel.4 geometrisk tolkes som hældningskoeicienter til tangenter. Eksempel.4. Geometrisk betdning a partielle aledede. På ig..7 er tegnet graen or (, ) = + + or 4 0 og På iguren er k skæringskur- ven mellem planen = og graen or mens k er skæringskurven mellem planen = 0 og graen or. Fig..7. De to partielle dierentialkvotienter i (0,) er hældnings koeicienterne or tangenterne T og T. er hældningskoeicienten a tangenten T til kurven k l or (,) = (0,) (,) 0 er hældningskoeicienten a tangenten T til kurven k or (,) = (0,). (,) 0 Den plan, som er bestemt ved tangenterne T og T kaldes tangentplanen or graen or i punktet (0,). 5

10 Funktioner a to eller lere variable Tangentplan Lad unktionen være dierentiabel i et punkt ( 0, 0) og lad z0 = ( 0, 0). Lad være skæringskurven mellem planen = k 0 og graen or og T være tangenten til k med røringspunkt i (, ). Tilsvarende er og graen or og T er tangen- planen = 0 ten til k. k 0 0 er skæringskurven mellem Fig..8. Tangentplan i (, ) Den plan, som er bestemt ved tangenterne T og T kaldes tangentplanen or graen or i punktet ( 0, 0). Ligningen or tangentplan z = (, ) + ( ) ( ) (, ) ( 0, 0 ) 0 Bevis: Lad or kortheds skld ' = ( 0, 0) og ' = ( 0, 0) 0 0 r Da er hældningskoeicienten or tangenten T til kurven k har en retningsvektor or T koordinaterne a = r r r Tilsvarende er b = retningsvektor or T. En normalvektor til tangentplanen er ølgelig a b = 0 = Planens ligning bliver deror ( 0) ( 0) + ( z z0) = 0 Eksempel.5. Tangentplan Lad der være givet unktionen (, ) = Find ligningen or tangentplanen til unktionen i punktet (0,). Løsning: I eksempel.3 andt man or unktionen (, ) = + + at og 4 (,) 0 =. Idet ås ligningen: (,) 0 = (,) 0 = z = + ( 0) + ( ) z = + 6

11 .4 Geometrisk tolkning a partielle aledede, tangentplan Dette gælder or alle unktioner som er dannet a de sædvanlige stamunktioner 7.5. Partielle aledede a højere orden. Har partielle aledede a ørste orden i deinitionsmængden D, kan og (, ) (, ) igen opattes som unktioner a to variable i D. Hvis disse ne unktioner selv har partielle aledede, siges at have partielle aledede a anden orden i D. Disse skrives,, og = = = = For de to sidste blandede aledede gælder, at de sædvanligvis er ens, dvs. = Eksempel.6. Partielle aledede a anden orden I eksempel.3 andt man or unktionen de partielle aledede (, ) = og (, ) = + (, ) = + a) Find de partielle aledede a anden orden or unktionen. b) Find værdierne a ovennævnte partielle aledede i punktet (,) = (0.). Løsning: a) = = + = = = + = = = + = + Da de blandede anden alede er ens, er det unødvendigt at beregne den anden kombination = TI89; : d(d(^*^/4+ /+/,,), : d(d(^*^/4+ /+/,,), Matcad: : d d b) (, ), (, ), (, ), = = = Ti89: (0,): d(d(*e^(*)+cos(/(^+)),,) =0 and = Matcad: skriv :=0 := og dereter som under punkt a)

12 Funktioner a to eller lere variable Analogt deineres partielle aledede a højere end anden orden, og også or disse kan dierentiationernes rækkeølge normalt vælges vilkårligt,.eks = =.6. Lokalt ekstremum Lad P 0 være et indre punkt i deinitionsmængden D or en unktion og M D være en omegn a P 0. Hvis ( P ) ( P) or alle punkter P i M, så kaldes denne værdi or s lokale 0 minimum, og P 0 or et lokalt minimumspunkt. Hvis ( P0 ) ( P) or alle punkter P i M, så kaldes denne værdi or s lokale maksimum, Ved et lokalt ekstremum orstås enten et lokalt maksimum eller et lokalt minimum. Er ( P ) ( P) or alle punkter P i deinitionsmængden D, så kaldes denne værdi or s 0 globale minimum eller mindsteværdi, og er ( P0 ) ( P) or alle punkter P i deinitionsmæng- den D, så kaldes denne værdi or s globale maksimum eller størsteværdi. Nedenstående igurer leder os ind på, at det som et led i ekstremumsbestemmelser kan være nttigt at se på punkter, hvor graen har "vandret tangent(plan)" - såkaldte stationære (eller kritiske) punkter. Fig..9. Stationære punkter Fig.0. Stationære punkter ( ), ( ) ( ) På igurerne har (og g) vandret tangent (tangentplan) i og 3 3, globalt maksimum i 3 ( 3 ) og globalt minimum i 4 ( 4) Endvidere er graen or vandret mellem a og b. Fra dierentiable unktioner a én variabel vides, at man inder de stationære punkter or en unktion ved at inde de værdier or hvilke ( ) = 0 Man kan endvidere bestemme om et stationært punkt er lokalt maksimumspunkt eller minimumspunkt ved at lave en ortegnsdiskussion a ( ) (se igur.) 8

13 .6 Lokalt ekstremum Imidlertid kan man som regel også agøre arten a et stationært punkt ved at betragte de aledede a. orden i punktet. Der gælder nemlig ølgende: Lad 0 være et stationært punkt or en unktion (dvs. ( ) = ). ( ) > 0 er et lokalt minimumspunkt 0 0 ( ) < 0 er et lokalt maksimumspunkt 0 0 Fig. Fortegnsdiskussion or () ( 0 ) = 0 nærmere undersøgelse må oretages 0 0 For dierentiable unktioner a variable vil man tilsvarende se på de punkter hvor unktionen har vandret tangentplan, dvs. hvor de partielle aledede er 0. Deinition a stationært punkt. Lad være en dierentiabel unktion a variable med deinitionsmængde D. Et indre punkt ( 0, 0) i S kaldes et stationært punkt or, hvis ( 0, 0 ) = 0 ( 0, 0 ) = 0 Eksempel.7 Stationære punkter. 3 En unktion er givet ved (, ) = Find de stationære punkter or. Løsning: De stationære punkter or indes a ligningssstemet = = 0 () = = 0 ( ) I ligning () kan sættes udenor en parentes. Vi år: ( 3 4) = 0 = = 0 9

14 Funktioner a to eller lere variable 4 Tilælde : Indsættes = 0 i ligning (), ås = 0 =. 3 4 Stationært punkt: (, ) = 0, 3 Tilælde : Ligningen 3 4= 0løses med hensn til og indsættes i ligning (). 3 4 = indsættes: = = 0 = ± = 4 = 5 Stationære punkter ( (, ) = ( 4, 4) (, ) = 5, TI89: Funktionen deineres ^* - ^3 - *^ + 3*^ + 8* - STO (,) ENTER F: solve(d ((,),)=0 and d ((,),)=0,{,}) Resultat: =-4 and =_/ or =-4 and = -4 or =0 and =-4/3 Bemærk: d indes over 8 tast og and i CATALOG 3 Matcad: (,) := := := (startværdier) Given d d (, ) = 0 d d (, ) = 0 Find(,) boolsk lighedstegn Skal man skae sig et overblik over en unktions "udseende", kan det være nødvendigt at se på kende arten a de stationære punkter, dvs. vide om de er lokale maksima, minima eller såkaldte saddelpunkter. Da man jo ikke kan lave en ortegnsdiskussion på en unktion a variable, må man i stedet betragte de partielt aledede a anden orden. Der gælder ølgende sætning som anøres uden bevis: Sætning. (undersøgelse a arten a et stationært punkt). Lad (, ) være et stationært punkt or en dierentiabel unktion, og sæt 0 0 A = (, og 0, 0) B = 0 (, 0) C = A z B Lad determinantligningen B C z = 0 have rødderne z og z (, ) 0 0 0

15 .6 Lokalt ekstremum Der gælder da a) z og z positive: har lokalt minimum i (, ) 0 0 b) z og z negative: har lokalt maksimum i (, ) 0 0 ) z og z orskelligt ortegn: har intet lokalt ekstremum i (, ) 0 0 3) z = 0 og/eller z = 0: Nærmere undersøgelse må oretages. Eksempel.8. Lokale ekstrema 4 4 a) Find de stationære punkter or unktionen givet ved (, ) = b) Agør or hver a ovennævnte stationære punkter, om det er et lokalt maksimumspunkt, lokalt minimumspunkt eller saddelpunkt. Løsning: a) 3 = = = 0 8 (, ) = ( 00, ) (, ) = ( 5, ) (, ) = ( 5, ) + = 0 5 (Ti 89 eller Matcad benttet) b) (0, 0) (, 5 ) (-, 5) A = = B = = 4 C = =

16 Funktioner a to eller lere variable (0,0): 4 z = z = z z = 5 5 Lokalt minimum (, 5): 3 z ( 3 ) = 5 z z = z =. z =. z 5 Saddelpunkt (-, 5): 3 z ( 3 ) = 5 z z = z =. z =. z 5 Saddelpunkt.7 Globalt ekstrema Ved optimeringsproblemer er man interesseret i at inde et globalt ekstremum or et konkret problem. Følgende eksempel illustrerer remgangsmåden, som jo er nært beslægtet med de tilsvarende problemer or unktion a. variabel. Eksempel.9. Optimering En retvinklet kasse uden låg skal have et rumang på 3m 3. Kassen skal konstrueres således, at dens overlade bliver mindst (mindst materialeorbrug). Find kassens optimale dimensioner. Løsning: ) Optimeringsproblemet opstilles. Lad længde, bredde og højde a kassen være, og z. Vi har da Find det globale minimum (mindsteværdi) or unktionen g(,, z) = z + z + i mængden S givet ved begrænsningen z = 3,, > 0, > 0, z > 0. ) Problemet reduceres. Begrænsningsligningen benttes til at reducere antallet a variable. 3 z = 3 z =. Ved indsættelse a z = 3 i g og de øvrige begrænsninger ås =, > 0, > 0, > 0. Problemet kan deror nu reduceres til Find det globale minimum (mindsteværdi) or unktionen (, ) = 64 i mængden S givet ved begrænsningerne 0<, 0 (. kvadrant)

17 .7 Globalt ekstremum 3) De mulige ekstremumspunkter bestemmes = 0 + = 0 = 64 = 0 + = 0 () Indsættes = 64 i ligning () ås = 0 + = = 0 = 0 = 4 64 Da > 0 er kun = 4 en løsning. Ved indsættelse a = 4 i = 64 ås = 4 Samlet har vi altså undet stationært punkt (4,4). 4) Vurdering a, at det stationære punkt er et globalt minimumspunkt =, =, = 3 3 Indsættes (4,4) ås A =, B =, C = z 0 = ( z) = z = ± z = z 3 Hera ses, at unktionen har et lokalt minimum i punktet (4,4) At det også er et globalt minimumspunkt snes rimeligt, da det er det eneste stationære punkt i deinitionsmængden. Endvidere ses at 0 0 så går (, ) Anvendes Matcad til at tegne niveaulinierne or unktionen ås ølgende tegning: For at å tal rem, så Sæt cursor på igur, Trk to gange, Vælg Special, number, og slet markering ved Autocontour Hera ses, at unktionen har globalt minimum i (4,4). Dimensionerne er = 4 m, = 4 m og z = m 3

18 Funktioner a to eller lere variable.8 Grænseværdi, kontinuitet, dierentiabilitet De ølgende deinitioner på grænseværdi, kontinuitet og dierentiabilitet er generaliseringer a tilsvarende begreber or unktion a variabel. Lad (, ) have deinitionsmængden D. Lad endvidere a være et reelt tal i D Grænseværdi: Hvis (, ) er vilkårlig tæt på a, blot (, ) er tilstrækkelig tæt på ( 0, 0 ) (og (, ) D), siger vi, at (, ) har grænseværdien a or (, ) gående mod ( 0, 0). Skrives: (, ) a or (, ) ( 0, 0) For en præcis deinition se :Matematik or ingeniører bind side 0. Kontinuitet: er kontinuert i ( 0, 0), hvis (, ) ( 0, 0) or (, ) ( 0, 0) Intuitivt kan man orestille sig kontinuerte unktioner som unktioner, hvis gra er "ubrudt". På igur.8 er vist nogle ikke-kontinuerte unktioners graer. Fig... Nogle ikke-kontinuerte unktioners graer. På basis a disse deinitioner, kan man vise ølgende sætninger, som gør, at det er nemt at agøre om en unktion a lere variable er dierentiabel. Sætning. Har en unktion kontinuerte partielle aledede i en åben mængde D, da er dierentiabel i D (og dermed også kontinuert). Til at agøre om en unktion er kontinuert gælder ølgende: Sætning.3. Enhver unktion, der ved "sædvanlig regning" ( + g, g, g,, ) g o g (ep, ln, potens, sin, cos, osv.), blive kontinuert i sin deinitionsmængde. kan dannes ud ra standardunktionerne 4

19 .9 Dierential.9. Dierential Dierential or unktion a variabel Følger vi graen or en dierentiabel unktion ra et punkt med abscissen til et punkt = ( ) 0 med abscissen 0 + bliver unktionstilvæksten = ( 0 + ) ( 0 ) jævnør igur igur.. Fig..3. Tilvækst i tangents retning I stedet or at ølge graen ra 0 til 0 + kunne vi som en tilnærmelse ølge tangenten i 0. I så ald bliver - tilvæksten ( 0 ) som kaldes dierentialet d eller d. For den ahængige variabel, gælder = d (betragtes den identiske unktion ( ) = år vi nemlig d = d =, dvs. d = ) Vi har deror d = ( ) d. 0 d Divideres med d, ås den kendte sammenhæng =. d Bemærk, at man altid gerne må dividere med d, når blot d 0. Navnet dierentialkvotient betder netop en kvotient mellem dierentialer. Eksempel.0. Dierential Find dierentialet a unktionen ( ) = 5 4 Løsning: Dierentialet d = ( ) d = 0 3 d Dierential or unktion a variable Lad unktionen være dierentiabel i et punkt ( 0, 0) og lad z0 = ( 0, 0). Går vi ra punktet ( 0, 0 ) til punktet ( 0 +, 0 + ) bliver unktionstilvæksten z = ( 0 +, 0 + ) ( 0, 0) jævnør igur.9. I stedet or a ølge graen or, kunne vi som en tilnærmelse ølge tangentplanen i ( 0, 0) d.v.s. den plan der udspændes a tangenterne AB og AD på igur.. 5

20 Funktioner a to eller lere variable Da tangentplanen har ligningen z = (, ) + (, ) ( ) + (, ) ( ) bliver z-tilvæksten z (, ) = (, ) ( 0, 0 ) Fig..4. Dierential dz Denne z-tilvækst, som ås ved at ølge tangentplanen, kaldes dierentialet d eller d z. Ligesom or unktioner a variabel gælder, at man kan erstatte med d og med d, hvorved dierentialet kan skrives d = d + d Ved visse anvendelser kaldes dierentialet or det totale dierential a. Eksempel.. Dierential Lad unktionen være givet ved z = (, ) = ) Beregn z når punktet (,) ændrer sig ra (,) til (.03, 0.98) ) Beregn dz når punktet (,) ændrer sig ra (,) til (.03, 0.98) Løsning: ) z = (. 03,. 0 98) (,) = = ) dz= + d d hvor d og d = =, 0 =, = 003. dz= ( 0. 0) =

21 .9 Dierential Fejlvurdering. Ved enhver måling kan den siske størrelse aldrig måles eksakt. Målingen behætes altid med en vis usikkerhed. Det kan skldes usikkerhed på objektet, måleinstrumentet, brugeren a instrumentet osv. Sstematiske ejl er ejl, hvor man eksempelvis har glemt at korrigere or temperaturens indldelse på måling a et stos hårhed. Er målingen beriet or sstematiske ejl, er der kun tilbage tilældige ejl. Eksempelvis vil der ote på et instrument være anørt en instrumentusikkerhed, som viser hvor nøjagtigt instrumentet kan måle. En sådan usikkerhed kan eksempelvis indes ved at man oretager en måling lere gange eventuelt a orskellige personer. Maksimal ejl eller usikkerhed Den maksimale usikkerhed er så deineret som den numerisk største avigelse mellem en målt værdi og gennemsnittet. Er eksempelvis en temperatur angivet som ± 0.05 menes hermed, at i værst tænkelige tilælde kunne målingen være eller Relativ ejl eller relativ usikkerhed Ved den relative ejl (usikkerhed) på en størrelse orstås størrelsen Eksempel.. Maksimal og relativ ejl Lad = 53 ± m og = 5 ± m a) Find den maksimale ejl z på z = - b) Find den relative ejl på z. Løsning: Det ses umiddelbart, at z = 53-5 = 8 og a) z = + =3 m dvs. z = 8 ± 3 m 3 b) rel(z) = = =. 34% 8 Den maksimale ejl (eller usikkerheden) på to størrelser kan jo godt være den samme,.eks. cm, men hvis den ene størrelse er usikkerheden på diameteren a et rør på 0 cm og den anden er højden på et hus, så er det klart, at det er den relative usikkerhed, der siger mest. Fejlberegning ved anvendelse a dierentialer. Ved mere komplicerede udtrk er det ikke som i eksempel. muligt direkte at beregne den maksimale usikkerhed. Man må så i stedet erstatte bentte dierentialet ved beregningen. Det svarer jo til, at man erstatter unktionen med dens tangentplan. Dette er tilladeligt når blot usikkerhederne og er små. Der gælder ølgende: 7

22 Funktioner a to eller lere variable Fejlberegning Den maksimale absolutte ejl z or unktionen z = (, ) i punktet ( (, ) er z orudsat ejlene og er små + (, ) (, ) Koeicienterne og kaldes så s ølsomhed overor ejl på henholdsvis og. Eksempel.3. Fejlvurdering. Et clindrisk hul med radius r og højde h bores i en metalblok. Man ved, at r = 3 ± 0. cm og h = 0 ± 0. cm ) Find den maksimale absolutte ejl på hullets volumen V ) Find den maksimale relative ejl på V 3) Har V størst ølsomhed overor r eller overor h? Løsning. V = π r h. Dierentialet på V er dv = π r dh + π r hdr ) Den maksimale absolutte ejl på hullets volumen V: V = π 3 h+ π 3 0 r = 9π π 0. = ) V = Den maksimale relative ejl er dv V = 77%. 3) V har størst ølsomhed over or ejl på r, da dv dv = π 0 > = π 3 dr dh Formlen er ikke mere kompliceret end man kan regne den maksimale ejl direkte V = π π 3 0 =

23 Funktion a mere end variable. Funktion a mere end variable De deinitioner og begreber som er gælder or unktioner a variable kan umiddelbart generaliseres til unktioner a 3 og lere variable. Graisk remstilling Graen or en unktion a 3 variable muligt at tegne en niveaulade hvor (,, z) (,, z) kan naturligvis ikke tegnes i et 4-dimensionalt rum. Derimod er det har en konstant værdi k. Eksempelvis er en såkaldt orbital eller bølgeunktion Ψ( z,, ) or et atom anskueliggjort ved en niveaulade or Ψ på igur.. (Orbitaler spiller en stor rolle or orståelsen a atomers og moleklers egenskaber). Et andet eksempel er nogle kugleormede niveaulader or tngdepotentialet på igur.. a + + z omkring jorden vist Fig... Niveaulade or en atomorbital Ψ( z,, ) Fig... Niveaulader or tngdepotentialet omkring jorden Begreberne ra kapitel kan umiddelbart kan generaliseres ra til lere variable. Eksempelvis gælder or en unktion a 3 variable analogt med unktion a variable: Sætning. Art a lokalt ekstremum or unktion a 3 variable Lad a = (,, z ) være et stationært punkt or en dierentiabel unktion a 3 variable. A = (, ), B = og 0 (, 0) C = 0 0 (, ) 0 0 a u a ( ) ( ) ( z a ) Lad determinantligningen a ( ) ( a) u ( z a ) z a z a ( ) ( ) ( a) u z = 0 have rødderne u, u og u 3. Der gælder da ) z, z og z 3 alle positive: har lokalt minimum i a = (,, z ) ) z, z og z 3 alle negative: har lokalt maksimum i (, )

24 . Funktion a mere end variable 3) z, z og z 3 har ikke samme ortegn: har intet lokalt ekstremum i (, ) 4) Hvis én eller lere a rødderne z, z og z 3 er 0 og de øvrige har samme ortegn, : Nærmere undersøgelse må oretages. Eksempel.. Funktion a 3 variable Lad unktionen være bestemt ved (,, z) = e z z a) Find de partielle aledede or unktionen b) Find de stationære punkter or c) Undersøg arten a de stationære punkter undet i spørgsmål b) Løsning: I det ølgende skrives or kortheds skld e = e a) = ( 4) e a, = ( 4 ) e a, = ( z ) e a z z z a = 0 = b) = 0 = 3 Stationært punkt (,, z)=(, 3,) z = = 0 z = + ( 4) e, = 4+ ( 4 ) e, = + ( z ) z 0 0 c) ( ) ( ) ( ) a a a a a a = ( 4)( 4 ) e, = ( 4)( z ) e, = ( 4 )( z ) e z z (,,) 3 =, (,,) 3 = 4, (,,) 3 =, (,,) 3 = (,,) 3 = (,,) 3 = 0 z z z u u u = 0 u = u = 4 u = Hera ses, at har et lokalt minimum i punktet (,, z)=(, 3,) e 0

25 Opgaver Opgaver Opgave. Lad være en unktion givet ved (, ) = a) Tegn i et rumligt koordinatsstem graen or unktionen ved anvendelse a et matamatikprogram b) Tegn niveaukurverne or unktionen og agør herudra om unktionen har noget lokalt minimum? - lokalt maksimum? - saddelpunkt? Opgave. Man er interesseret i graisk remstilling a unktionen (, ) = +. Der ønskes hovedsageligt betragtet punkter, hvor (, ) 3 og der lægges ikke vægt på nøjagtighed, men på principielle træk. Såvel positive som negative - og -værdier betragtes. a) Tegn i et rumligt koordinatsstem graen or unktionen ved anvendelse a et matamatikprogram b) Tegn niveaukurverne or unktionen og agør herudra om unktionen har noget lokalt minimum? - lokalt maksimum? - saddelpunkt? Opgave.3 4 Lad være en reel unktion a to variable givet ved (, ) =. 3 9 ) Angiv s deinitionsmængde (skitsér den i - planen). ) Skitsér i et - koordinatsstem s niveaukurver svarende til niveauerne 0,,, 3 og 4. 3) Skitsér i et z - koordinatsstem skæringskurven mellem s gra og planen = 0. 4) Skitsér graen or i et z - koordinatsstem, således at man år et indtrk a graens 3- dimensionale udseende. Opgave.4 Man er interesseret i graisk remstilling a unktionen (, ) =. Der ønskes hovedsageligt betragtet punkter, hvor (, ), og der lægges ikke vægt på nøjagtighed, men på principielle træk. a) Tegn i et rumligt koordinatsstem graen or unktionen ved anvendelse a et matamatikprogram b) Tegn niveaukurverne or unktionen og agør herudra om unktionen har noget lokalt minimum? - lokalt maksimum? - saddelpunkt? Opgave.5 Find de partielle aledede a ørste og anden orden or ølgende unktioner 3 ) (, ) = ) (, ) = ( > ) + 3 3) e (, ) = 4) (, ) = ln + 4

26 Funktion a eller lere variable Opgave.6 Find ligningen or tangentplanen or ) (, ) = i punktet (,) = (-,3) ) (, ) = i punktet (,) = (, -) Opgave.7 Find de stationære punkter or unktionerne 3 3 ) (, ) = ) (, ) = ) (, ) = cos( ), π 3π ; 4) (, ) = Opgave Lad virkningsgraden or en motor være givet tilnærmet ved (, ) = 3 0. og er to variable. ) Find de partielle aledede a. og. orden a. ) Find de partielle aledede a. og. orden a i punktet (-,). 3) Er punktet (-,) et lokalt maksimumspunkt. Opgave.9. Find alle lokale maksimums- og minimumspunkter or ølgende unktioner: ) (, ) = ) (, ) = ) (, ) = ) (, ) = ) (, ) = ) (, ) = ) (, ) = ) (, ) = + ( ) 9) (, ) = + + 0) (, ) = + 6 Opgave.0. ( ) Vis, at unktionen givet ved (, ) = + 4 8,hvor har 5 stationære punkter og agør or hvert, om det er et lokalt maksimumspunkt, lokalt minimumspunkt eller saddelpunkt.

27 Opgaver Opgave.. 4 a) Find samtlige stationære punkter or unktionen (, ) = + 4 b) Betragt de stationære punkter (, ) or hvilke 0. Agør or hvert a disse punkter, om punktet er et lokalt maksimumspunkt, et lokalt minimumspunkt eller et saddelpunkt. Opgave.. Find de stationære punkter or unktionen (, ) = ( ) + og agør or hvert, 5 om det er et lokalt maksimumspunkt, lokalt minimumspunkt eller saddelpunkt. Opgave.3 En kasseormet tank skal konstrueres, så den år et rumang på 000 m 3. Bund, sider og låg koster henholdsvis 4000 kr./m, 000 kr./m og 000 kr./m. Dimensionér tanken således, at prisen bliver mindst, idet dog ingen a kanterne må overstige 0 m. Opgave.4. z En plan har ligningen + + =, hvor a b c a >, b> 4og c > 5. Planen skærer koordinatakserne i punkterne A, B og C (se iguren). Koordinatsstemets begndelsespunkt kaldes D. Værdierne a a, b og c ønskes bestemt, således at punktet P = (,4,5) ligger på planen gennem A, B og C, og tetraederet ABC s volumen V abc bliver mindst mulig. Det 6 oplses, at der eksisterer værdier a a, b og c med de ønskede egenskaber. Opgave.5 Find dierentialet a unktionen ) (, ) = ) (, ) = + 4 i punktet (,0) Opgave.6 En kugleormet tank har radius r. Med en pejlestok måler man væskehøjden h or at kunne beregne væskerumanget V = π h ( 3r h) 3 a) Angiv et den maksimale ejl på V, når r = ± 0. m og h = 0. ± 0.0 m b) Angiv den maksimale relative ejl på V. 3

28 Funktion a eller lere variable Opgave.7 En bunke har orm som en kegle med højde h og grundladeradius r. Man måler h og r, or at kunne beregne rumanget V = π r h 3 a) Angiv den maksimale ejl på V, når r = 0 ± 0. m og h = 0 ± 0. m b) Angiv den maksimale relative ejl på V. Opgave.8 En olietank er kasseormet med længden L = 3 m, bredden B = m og højden H = m. Tanken er nedgravet vandret, men ejeren år mistanke om, at den hælder en vinkel u. For at inde u, hælder ejeren V = m 3 olie i den tomme tank, og måler oliestandens højde h i den højeste side til 0.0 m.(se iguren) Vinklen u kan indes a ormlen V h u = Arctan B L L ) Find vinklen u. ) Det anslås, at V= ± 00. og h = 0. ± 0.0. Find den maksimale absolutte ejl på u (alle resultater med 3 betdende cire) 3) Angiv den maksimale relative ejl på u. Opgave. Find de partielle aledede a ørste orden or ølgende unktioner 3 3 ) (,, z) = z + z ) (,, z) = sin( z) + Opgave. z Find alle lokale ekstremumspunkter or de ølgende unktioner ) ) 3) 4

29 Facitliste Facitliste. a) - b) -,ingen a delene. a) - b) -, lokalt minimum.3 ) + 9 ) - 3) - 4) -.4 a) - b) -, saddelpunkt ) = 3 + 4, = +, = 6 + 4, =, = ) = ( ) + 3 = + 3 = + 3 ( ), ( ) ( ), ( )( ) ( + ) 5, = ( )( ) ( + ), = ( + )( ) ( + ), 3) 4) = 3 3 e = 3 e = 9 3 e = 3 e = 3 3,,,, e, ( ) ( 3 ) 4 =, =, =, =, =, ( + ) 4 ( + ) ( + ).6 ) z= 30 ( + ) + 6( 3) ) z = 4 4( ) 4( + ) ( ) ( ) ( ).7 ) (0, 0) (3, 3) () (5, -8) 3) 0, π, 0, π 4) (-4, -3) 3.8 ) = 3 3, = 3 3, = 6, = 6, = 3, ) 0, 0, -6, -3, -6 3) ja ( ) 6) lok.min.pkt. (0, 0) 7) lok.min.pkt. (, 0) 8) lok.min.pkt. (, ), (, ).9 ) lok.min.pkt. (0, 0) ) lok.min.pkt. ±, 3) ingen 4) ingen 5)lok.min.pkt. (, 0) 3 9) ) lok.ma.pkt. ± 0) ingen, 0.0 lok.ma.pkt. (0, 0) lok.min.pkt. (0, ) lok.min.pkt. (0, -) saddelpunkt 0 og ( ) ( ). a) (0, 0), (0, ), (0, -), 6,, 6, b) saddelpunkt (0,0) lok. ma. pkt (0,-). lok.min.pkt. (0, 0) saddelpunkt 0, saddelpunkt 0, = 435, = 435, z = 535,.4 6,, 5.5 ) 3 6 d d ) lnd + lnd ( ) (, ) ( 0, ).6 (a) m 3 (b) 0%.7 ) ) 5%.8 ) eller radianer ) eller 0.0 radianer 3).4% ) = 3 z + z, = z + z, = z + 3z z z z z ) = cos( z) z + z ln, = sin( z) + z ln, = cos( z) + ln z. ) lok. ma.pkt. (3,, 3) ) lok. min.pkt. (0.0.0) 3) ingen 5

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion ISBN 978-87-766-498- Projekter: Kapitel 4. Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Materialerne

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Matematik & Statistik

Matematik & Statistik Matematik & Statistik Simon Kaiser August 6 FORORD... - 4 - KAPITEL 1: SIMPLE REGNEREGLER OG LIGNINGER... - 5-1. ELEMENTÆRE REGNEREGLER...- 5-1.1 Parentesregning... - 5-1. Brøkregneregler... - 5-1..1 Generelle

Læs mere

Integralregning. 1. del. 2006 Karsten Juul. M l

Integralregning. 1. del. 2006 Karsten Juul. M l Integralregning del () M l () 6 Karsten Juul Indhold Stamunktion OplÄg om stamunktion Deinition a stamunktion 6 Kontrol a stamunktion 9 SÄtning om stamunktionerne til en unktion Deinition a ubestemt integral

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Lineære funktioner. Erik Vestergaard

Lineære funktioner. Erik Vestergaard Lineære funktioner Erik Vestergaard Erik Vestergaard www.matematikfsik.dk Erik Vestergaard www.matematikfsik.dk Lineære funktioner En vigtig tpe funktioner at studere er de såkaldte lineære funktioner.

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh121-mat/a-04062012 Mandag den 4. juni 2012 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Bedømmelseskriterier for skriftlig matematik stx A-niveau

Bedømmelseskriterier for skriftlig matematik stx A-niveau Bedømmelseskriterier for skriftlig matematik stx A-niveau Sådan bedømmes opgaverne ved skriftlig studentereksamen i matematik En vejledning for elever Skriftlighedsgruppe 01.04.09 Dette dokument henvender

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Lineær og kvadratisk programmering med TI NSpire CAS version 3.2

Lineær og kvadratisk programmering med TI NSpire CAS version 3.2 Lineær og kvadratisk programmering med TI NSpire CAS version 3.2 Indhold 1. Lineær programmering i 2 variable: x og y... 1 Eksempel 1: Elementær grafisk løsning i 2d... 1 Eksempel 1: Grafisk løsning i

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Differentialregning. for B-niveau i hf udgave 3. 2015 Karsten Juul

Differentialregning. for B-niveau i hf udgave 3. 2015 Karsten Juul Dierentialregning r B-niveau i h udgave t s 05 Karsten Juul Dierentialkvtient. Tangent g räringspunkt..... FunktinsvÅrdi g dierentialkvtient..... Frtlkning a ' vedr. gra... 4. Frtlkning a ' nçr er tiden....

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

MATINTRO FUNKTIONER AF FLERE VARIABLE

MATINTRO FUNKTIONER AF FLERE VARIABLE MATINTRO FUNKTIONER AF FLERE VARIABLE Tore August Kro Matematisk Institutt Universitetet i Oslo 5.kapitel skrevet af: Jan Philip Solovej Institut for de Matematiske Fag Københavns Universitet Forår 3 På

Læs mere

Vektorregning. Vektorer som lister

Vektorregning. Vektorer som lister 10 Vektorregning Vektorer som lister En vektor laves nemmest som en liste på TI-89 Titanium / Voyage 200. I nedenstående skærmbillede ser du, hvordan man definerer vektorer og laver en simpel udregning

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Brugervejledning til Graph (1g, del 1)

Brugervejledning til Graph (1g, del 1) Graph (brugervejledning 1g, del 1) side 1/8 Steen Toft Jørgensen Brugervejledning til Graph (1g, del 1) Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet

Læs mere

GeoGebra 3.0.0.0 Quickstart. det grundlæggende

GeoGebra 3.0.0.0 Quickstart. det grundlæggende GeoGebra 3.0.0.0 Quickstart det grundlæggende Grete Ridder Ebbesen frit efter GeoGebra Quickstart af Markus Hohenwarter Virum, 28. februar 2009 Introduktion GeoGebra er et gratis og meget brugervenligt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Herningsholm Gymnasium, hhx i Herning Uddannelse Fag og niveau Lærer(e) hhx Matematik

Læs mere

brikkerne til regning & matematik statistik preben bernitt

brikkerne til regning & matematik statistik preben bernitt brikkerne til regning & matematik statistik 2+ preben bernitt brikkerne til regning & matematik statistik 2+ 1. udgave som E-bog ISBN: 978-87-92488-33-6 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Årsprøve i matematik 1y juni 2007

Årsprøve i matematik 1y juni 2007 Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Lineær Programmering i GeoGebra Side 1 af 8

Lineær Programmering i GeoGebra Side 1 af 8 Lineær Programmering i GeoGebra Side 1 af 8 Grundlæggende find selv flere funktioner, fx i GG s indbyggede hjælpefunktion. Vær opmærksom på at grænsefladen i GeoGebra ændrer sig med tiden, da værktøjet

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

MM01 (Mat A) Ugeseddel 1

MM01 (Mat A) Ugeseddel 1 Institut for Matematik og Datalogi 2. august 200 Syddansk Universitet, Odense HJM/LL MM0 (Mat A) Ugeseddel Velkommen til kurset MM0 (Matematik A). Forelæsninger: afholdes i to ugentlige timer, onsdag kl.

Læs mere

vækst trin 2 brikkerne til regning & matematik preben bernitt

vækst trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik vækst trin 2 preben bernitt brikkerne til regning & matematik vækst, trin 2 ISBN: 978-87-92488-05-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun tilladt

Læs mere

Lineær programmering. med Derive. Børge Jørgensen

Lineær programmering. med Derive. Børge Jørgensen Lineær programmering med Derive Børge Jørgensen 1 Indholdsfortegnelse. Forord ---------------------------------------------------------------------------------- 2 Introduktion til lineær programmering

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

Hint: Man kan alternativt benytte genvejstasterne ctrl+6/cmd+6 for at sprede applikationerne og ctrl+4/cmd+4 for at samle applikationer.

Hint: Man kan alternativt benytte genvejstasterne ctrl+6/cmd+6 for at sprede applikationerne og ctrl+4/cmd+4 for at samle applikationer. [OPGAVER I NSPIRE] 1 Opgave 1) Opgaver og sider - dokumentstyring Start et nyt Nspire dokument. Følg herefter nedenstående trin. a) Opret to opgaver i dokumentet, hvor første opgave består to sider, og

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ. abcdefghijklmnopqrstuvxyzæøå ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ. abcdefghijklmnopqrstuvxyzæøå ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ

ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ. abcdefghijklmnopqrstuvxyzæøå ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ. abcdefghijklmnopqrstuvxyzæøå ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ Graisk Desin OPGAVEN Je skulle lave en plakat som projektplan over Randerup branddam. Dammen skulle nemli laves om til et hyelit adekær. Der var tenet en skitse over runden, med noter til hvad der skulle

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

How to do in rows and columns 8

How to do in rows and columns 8 INTRODUKTION TIL REGNEARK Denne artikel handler generelt om, hvad regneark egentlig er, og hvordan det bruges på et principielt plan. Indholdet bør derfor kunne anvendes uden hensyn til, hvilken version

Læs mere

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling Om brugen af matematiske tegn og objekter i en god matematisk fremstilling af Petur Birgir Petersen Et særpræg ved matematik som videnskab er den udstrakte brug af symboler. Det er vigtigt at symbolerne

Læs mere

Bemærkninger til den mundtlige årsprøve i matematik

Bemærkninger til den mundtlige årsprøve i matematik Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august 2010. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august 2010. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh10-mat/a-1608010 Mandag den 16. august 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består af

Læs mere

Storcirkelsejlads. Nogle definitioner. Sejlads langs breddeparallel

Storcirkelsejlads. Nogle definitioner. Sejlads langs breddeparallel Storcirkelsejlads Denne note er et udvidet tillæg til kapitlet om sfærisk geometri i TRIPs atematik højniveau 1, ved Erik Vestergaard. Nogle definitioner I dette afsnit skal vi se på forskellige aspekter

Læs mere

Introduktion til EXCEL med øvelser

Introduktion til EXCEL med øvelser Side 1 af 10 Introduktion til EXCEL med øvelser Du kender en almindelig regnemaskine, som kan være til stort hjælp, når man skal beregne resultater med store tal. Et regneark er en anden form for regnemaskine,

Læs mere

INDHOLDSFORTEGNELSE. Side Indledning 2. Kapitel 1 Introduktion til funktioner af 2 variable 3 Niveaukurver 5

INDHOLDSFORTEGNELSE. Side Indledning 2. Kapitel 1 Introduktion til funktioner af 2 variable 3 Niveaukurver 5 INDHOLDSFORTEGNELSE Side Indledning Kapitel 1 Introduktion til funktioner af variable 3 Niveaukurver 5 Kapitel Partiel differentiation og gradienten 7 Kapitel 3 Differentialet 1 Fejlvurdering 13 Tangentplan

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer:

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer: Euclidean Eggs Freyja Hreinsdóttir, University of Iceland 1 Introduction Ved hjælp af et computerprogram som GeoGebra er det nemt at lave geometriske konstruktioner. Specielt er der gode værktøjer til

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

MOGENS ODDERSHEDE LARSEN. Lineær Planlægning (programmering) med Excel

MOGENS ODDERSHEDE LARSEN. Lineær Planlægning (programmering) med Excel MOGENS ODDERSHEDE LARSEN Lineær Planlægning (programmering) med Excel 2. udgave 2007 1 Indhold FORORD Denne bog forklarer ved anvendelse af nogle typiske eksempler, hvad der er karakteristisk ved LP -

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh101-mat/a-27052010 Torsdag den 27. maj 2010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere