Integralregning. 2. del Karsten Juul

Størrelse: px
Starte visningen fra side:

Download "Integralregning. 2. del. 2006 Karsten Juul"

Transkript

1 Integrlregning del ( ( 6 Krsten Juul

2 Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion ved sustitution" 6 Formlen or uestemt integrtion ved sustitution 6 Bestemme integrl ved rug ormlen or sustitution 6 Endnu et eksempel på integrtion ved sustitution 7 Bestemt integrl 7 Sætning om ekstrem or kontinuerte unktioner 7 Udvidet deinition estemt integrl 77 Indskudssætningen or integrler6 79 Regneregler or estemt integrl 7 7 Formlen or estemt integrtion ved sustitution8 7 Bestemme integrl ved rug ormlen or sustitution9 8 Integrl og rel 8 Smmenhæng mellem rel og stmunktion 8 Formlen or rel mellem grer 8 Eksempel på rug ormlen or rel mellem grer6 88 Arel mellem gr og kse når gr ligger under kse7 89 Smmenhængen mellem reler og integrl8 8 eksempel hvor integrl og/eller rel er givet 9 8 eksempel hvor integrl og/eller rel er givet 8 eksempel hvor integrl og/eller rel er givet 8 Eksempel på eregning rel ved opdeling 8 Eksempel med ortolkning integrl 9 Rumng omdrejningslegeme 9 Formlen or rumng omdrejningslegeme + eksempel 9 Bestemme rumng ring 9 Advrsel vedr rumng ring6 Integrlregning del udgve 6 6 Krsten Juul Dette hæte kn downlodes r wwwmtdk Hætet må enyttes i undervisningen hvis læreren med det smme sender en e-mil til som dels oplyser t dette hæte enyttes, dels oplyser om hold, lærer og skole

3 6 Uestemt integrl 6 Sætning om eksistens stmunktioner (6 Sætning Enhver kontinuert unktion hr en stmunktion 6 Oplæg til "regneregler or integrl" Her lægger vi smmen ør vi tger stmunktion: ( x x = 6x = x + + k Her tger vi stmunktion ør vi lægger smmen: x + x = x + x + k = x + k Husk t det uestemte integrl estår lle unktioner denne type k er ltså lle tl Når to konstnter lægges smmen, ås en konstnt, så det er nok t skrive én konstnt At de to rækkeølger giver smme resultt kn skrives sådn: ( x x = x + + x 6 Øvelse Skriv ølgende påstnd som en ligning med integrltegn: At gnge e x med og tge stmunktion til resulttet giver det smme som t tge stmunktion til e x og gnge resulttet med 6 Øvelse Ld p og q være kontinuerte unktioner Skriv ølgende påstnd som en ligning med integrltegn: Hvis vi lægger p ( og q( smmen og tger stmunktion til resulttet, så år vi det smme som hvis vi tger stmunktion til p ( og q( hver or sig og lægger resultterne smmen Integrlregning Side 8 6 Krsten Juul

4 6 Regneregler or uestemt integrl (6 Sætning (ormlen or uestemt integrl sum Hvis og g er kontinuerte, så gælder: ( g( = ( + ( + g( (6c Sætning (ormlen or uestemt integrl dierens Hvis og g er kontinuerte, så gælder: ( g( = ( ( g( (6d Sætning (ormlen or uestemt integrl konstnt gnge unktion Hvis er kontinuert og k er konstnt, så gælder: = k k ( ( Advrsel: Hvis mn i (6 ersttter de to plusser med gngetegn, så ås en ormel der ikke gælder 66 Øvelse Antg t en stmunktionerne til ( er en kendt unktion qiq(x Bestem ølgende integrler: ( ( + ( ( ( ( ( ( 67 Øvelse Er lig x x x x? Integrlregning Side 9 6 Krsten Juul

5 68 Foreredelse til "integrtion ved sustitution" Nogle typer spørgsmål du år rug or t stille og esvre når du skl estemme visse integrler: Spørgsmål : Når ( t = e og t g ( = x, hvd er så ( g( g (? g( Svr på : ( g( g ( = e g ( = e 6x x Spørgsmål : Bestem (t og ( x = g så 6x e ( g( g ( Svr på : ( t = e og t g ( = x Kontrol svr: ( g( g( g ( = e g ( = e 6x = 6xe x x Spørgsmål : Bestem (t og ( Svr på : ( t = og g ( = x + t x g så = ( g( g ( x + 69 Øvelse Bestem ( g( g ( i hvert ølgende tilælde: ( t ( t = e og g ( = x + ( ( t = t og g ( = x + 6 Øvelse Bestem or hvert ølgende udtryk (t og ( ( x e ( e ( ( x x g så udtrykket er lig ( g( g ( x + ( + 8x x + x, x > Integrlregning Side 6 Krsten Juul

6 6 Formlen or uestemt integrtion ved sustitution (6e Sætning (Formlen or uestemt integrtion ved sustitution I et intervl hvor og integrnden er kontinuerte, kn mn oretge ølgende omskrivning hvor F er en stmunktion til : ( ( g g ( = F( g( * Bemærkning ( + k v Venstre side ligningen (* etyder stmunktionerne til integrnden ( g( g ( h Dierentieres F ( g(, ås integrnden, så ( g( F er en stmunktion til integrnden h Der står + k, så højresiden er lle stmunktionerne Formlen or uestemt integrtion ved sustitution er ltså lot en omormulering reglen or t dierentiere en smmenst unktion 6 Bestemme integrl ved rug ormlen or sustitution 6 x e x = ( g ( g ( hvor = ( g x k t ( t = e, F ( + hvor F =, dvs x + = e k g ( = x, g ( = 6x F( t = e t x e = 6 x x x e D ( x = 6x 6 = ersttter vi x med 6 x D, er det nye udtryk lig det oprindelige g ( hvor = ( g( = F ( g( + k t ( t = e, hvor F =, dvs x + = e k g ( = x, g ( = 6x F( t = e t Integrlregning Side 6 Krsten Juul

7 6 Øvelse Uden hjælpemidler Bestem ølgende integrler: + ( x( x ( x( x 8 + ( x + x 6 Endnu et eksempel på integrtion ved sustitution e x x = e x tiløjer vi D =, er D ( = det nye udtryk lig det oprindelige g ( hvor = ( g( hvor F =, dvs = F ( g( + k x = e + k t ( t = e, g ( = x, g ( = F( t = e t 6 Øvelse Uden hjælpemidler Bestem ølgende integrler: ( x ( ( x, x x > ( e 66 Øvelse Bestem x x + 67 Øvelse Bestem til unktionen punktet P, ( 7 ( =, x >, den stmunktion hvis gr går gennem x 6 Integrlregning Side 6 Krsten Juul

8 7 Bestemt integrl 7 Øvelse Ld etegne unktionen estemt ved ( =, < x x D < og =, er en unktionsværdi or ( Er en unktionsværdi or? ( Er en unktionsværdi or? (c Bestem en unktionsværdi der er større end eller lig enhver de ndre unktionsværdier, eller sig t ingen unktionsværdierne hr denne egensk (d Bestem en unktionsværdi der er mindre end eller lig enhver de ndre unktionsværdier, eller sig t ingen unktionsværdierne hr denne egensk (e Skitsér en gr or en eller nden unktion g ( = L, x som ikke hr en unktionsværdi der er mindre end eller lig enhver de ndre unktionsværdier, eller sig t det ikke kn lde sig gøre ( Skitsér en smmenhængende gr or en eller nden unktion h ( = L, x som ikke hr en unktionsværdi der er mindre end eller lig enhver de ndre unktionsværdier, eller sig t det ikke kn lde sig gøre 7 Sætning om ekstrem or kontinuerte unktioner (7 Sætning: Hvis en unktion er kontinuert i et intervl typen [ p ; q], så hr åde et minimum og et mksimum i [ p ; q] Bemærkning At hr mksimum i, etyder ikke t er mksimum At hr mksimum i, etyder t ( er mksimum Hvis ( =, er det ltså tllet der er mksimum At hr et mksimum i [ ; ], etyder ikke t mksimum er et tl der tilhører [ ; ] At hr et mksimum i [ ; ], etyder t der indes et tl t i [ ; ] så (t er mksimum Integrlregning Side 6 Krsten Juul

9 7 Udvidet deinition estemt integrl (7 Deinition ( estemt integrl Ld være en unktion der er kontinuert i et intervl, og ld og være tl i dette intervl Ld F være en stmunktion til Tllet F( F( kldes det estemte integrl r til, og etegnes med symolet ( Bemærkning: Hvis < er ovenstående lot den tidligere deinition Det nye estår i t vi nu også deinerer integrlet når den nedre grænse er større end den øvre eller lig den øvre, dvs > eller = Eksempler [ x ] = = x = e x [ e ] = e e = x = (7c Sætning Ld være en unktion der er kontinuert i et intervl, og ld og være tl i dette intervl Der gælder Bevis or (7c ( = og ( = ( D er kontinuert, hr en stmunktion F Ved t ruge deinitionen (7 estemt integrl ås ( = F( F( = ( F( F( = ( = F( F( = ( Hermed er de to ormler evist Integrlregning Side 6 Krsten Juul

10 7 Øvelse Ld være kontinuert i R, og ld F være en stmunktion til Udtryk hvert ølgende tre tl ved hjælp F : ( 9 ( ( ( ( ( + ( Udtryk hvert ølgende tre tl ved hjælp integrltegnet: ( F( 6 F( ( F( F( (6 F ( + F( 7 Øvelse Om to unktioner og g gælder t g ( = ( Figuren viser gren or g ( Bestem ( ( Bestem det positive tl or hvilket ( = 76 Øvelse Tellen viser nogle unktionsværdier or unktionerne y, y og y Det oplyses t y er en stmunktion til y, og t y er en stmunktion til y Bestem y ( x Integrlregning Side 6 Krsten Juul

11 77 Indskudssætningen or integrler (7d Sætning (Indskudssætningen or integrler Ld være en unktion der er kontinuert i et intervl, og ld, og c være tl i dette intervl Der gælder Bevis or (7d = ( + c ( ( D er kontinuert, hr en stmunktion F c ( + ( c c = F( c F( + F( F( c Iølge deinitionen på estemt integrl = F( F( = ( Iølge deinitionen på estemt integrl Hermed er sætningen evist 78 Øvelse ( Det oplyses t ( = 7 og ( = Bestem ( ( Det oplyses t ( = og ( = 8 Bestem ( Integrlregning Side 6 6 Krsten Juul

12 79 Regneregler or estemt integrl (7e Sætning (ormlen or estemt integrl sum Hvis og g er kontinuerte i et intervl, og og er tl i dette intervl, er ( * ( ( + g( = ( + g( Bevis or (7e D ( og g ( er kontinuerte, hr de stmunktioner F ( og G ( D gælder t så ( F ( + G( = F ( + G ( = ( + g( F ( + G( er en stmunktion til ( + g( ( ( + g( [ F( + G( = ] Her ås t venstresiden i (* er lig Dette kn omskrives til ( F ( G( ( F( + G( + F( F( + G( G( som iølge deinitionen på estemt integrl er lig højresiden i (* (7 Sætning (ormlen or estemt integrl dierens Hvis og g er kontinuerte i et intervl, og og er tl i dette intervl, er ( g( = ( ( g( (7g Sætning (ormlen or estemt integrl konstnt gnge unktion Hvis er kontinuert i et intervl, og og er tl i dette intervl, og k er konstnt, er = k k ( ( Advrsel: Hvis mn i (7e ersttter de to plusser med gngetegn, så ås en ormel der ikke gælder Integrlregning Side 7 6 Krsten Juul

13 7 Øvelse ( Find ejlen i ølgende udregning: ( g( = [ F( G( ] = F( G( F( G( ( Bevis sætning (7g 7 Øvelse 7 ( Det oplyses t ( = Bestem 7 ( ( Det oplyses t ( ( + = 9 Bestem ( (c Det oplyses t ( ( = x Bestem ( 7 Formlen or estemt integrtion ved sustitution (7h Sætning (Formlen or estemt integrtion ved sustitution Hvis integrnderne er kontinuerte i integrtionsintervllerne, gælder g( (* ( g( g ( = ( t dt Bevis or (7h: g( D er kontinuert, hr en stmunktion F A deinitionen på estemt integrl ås t højresiden i (* er lig D ( g( g( [ F( t ] F( g( F( g( = g( F er stmunktion til integrnden på (* 's venstreside, er venstresiden lig [ F( g( ] F( g( F( g( Altså er de to sider (* ens = Integrlregning Side 8 6 Krsten Juul

14 7 Bestemme integrl ved rug ormlen or sustitution x 6x e ( g ( hvor = ( g t ( t = e, g ( = x, g ( = 6x = g( g( ( t dt = t e dt = [ e ] t d t e er stmunktion til t e = e e = e 7 ( x 7 = ( x 7 = ( g ( g ( x hvor x tiløjer vi D D ( = også er tiløjet, og =, er det nye udtryk lig det oprindelige ( t = t, g ( = x, g ( = g(7 ( t g( = = t dt t dt = [ ] = ( = Integrlregning Side 9 6 Krsten Juul

15 7 Øvelse (Uden hjælpemidler Bestem hvert ølgende integrler: ( ( x x ( x 6 e ( x+ e 7 Øvelse (Uden hjælpemidler Bestem hvert ølgende integrler ( x + ( x ( x 76 Øvelse (Uden hjælpemidler Bestem hvert ølgende integrler x ( x + ( ( x + x ( x e x Integrlregning Side 6 Krsten Juul

16 8 Integrl og rel 8 Øvelse ( Tegn gren or unktionen ( = x +, x ( Skrvér det område M der grænses -gren, ørsteksen og de lodrette linjer gennem punkterne (, og (, (c I intervllet [ ; ] hr minimum i et tl x, og mksimum i et tl x Skriv uden egrundelse tllene x og x (d Bestem ( x og ( x (e Tegn det rektngel med vndret grundlinje som er indeholdt i M og hr højde ( x og grundlinje ( Tegn det rektngel med vndret grundlinje som indeholder M og hr højde ( x og grundlinje (g Når x er et tl mellem og, så hr i intervllet [ ; x] minimum i et tl x Hvilket tl er x tæt ved når x er tæt ved? ( 8 Øvelse ( ( x C D( ( x ( x A B x x Billedet viser en interktiv igur hvor gren or en kontinuert unktion er tegnet med hvid streg Punkterne A, B og C ligger på gren Når x trækkes hen mod x, så lytter x og x sig så de hele tiden ligger mellem x og x Når x ændres, ændres D ( også, men sådn t D ( hele tiden ligger mellem x og x ( Hvilket tl er ( x tæt ved når x er tæt ved x? ( Hvilket tl er ( x tæt ved når x er tæt ved x? (c Hvilket tl er D ( tæt ved når x er tæt ved x? x ( x ( ( Integrlregning Side 6 Krsten Juul

17 8 Smmenhæng mellem rel og stmunktion Ld ( være kontinuert og i et intervl [ ; ], og ld A ( være den tilhørende relunktion Når x er et tl i [ ; ], så er A ( x, som ekendt, relet det område der grænses -gren, ørstekse og de lodrette linjer gennem punkterne (, og ( x, (se igur 8 Vi vil nu evise t der, som tidligere omtlt, gælder ølgende: (8 Sætning: A x = ( ( x ( ( A( x x ( M x x ( Figur 8 Figur 8c Bevis or (8 Iølge deinitionen på dierentilkvotient er (8 ensetydende med A( A( x ( lim = ( x x x x x Vi indører etegnelserne x, x og x : Ld x være et tl i [ ; ] som er x I intervllet med endepunkter x og x, endepunkterne medregnet, indes et tl x så ( x er minimum or i intervllet, og et tl x så ( x er mksimum or i intervllet, d en unktion der er kontinuert i et intervl typen [ p; q], åde hr et minimum og et mksimum i dette intervl (Hvis situtionen er som på igur 8c, så er x = x og x = x Integrlregning Side 6 Krsten Juul

18 Som en hjælp til t evise ( vil vi evise t ølgende gælder: A( A( x ( ( x ( x x x Til rug i eviset heror indører vi etegnelsen M or det område der grænses -gren, ørsteksen og de lodrette linjer gennem punkterne ( x, og (x, Området M er vist på igur 8c Først eviser vi t ( gælder når x > x : så A( A( x er relet M d A ( er relet mellem gr og ørstekse r lodret linje gennem (, til lodret linje gennem (x, og A ( x er relet mellem gr og ørstekse r lodret linje gennem (, til lodret linje gennem ( x, x ( x er relet et rektngel der er indeholdt i M ( x Tllene ( x og x x er hhv højde og grundlinje i rektnglet ( x x ( x er relet et rektngel der indeholder M Tllene ( x og x x er hhv højde og grundlinje i rektnglet ( x ( x x A( A( x ( x ( x x D x x er et positivt tl, vil ulighederne stdig gælde eter t hver side er divideret med x x Hermed er ( evist når x > x Nu eviser vi t ( også gælder når x < x : så A( x A( er relet M ( x x ( x ( x x ( x er relet et rektngel der er indeholdt i M er relet et rektngel der indeholder M ( x ( x A( x A( ( x ( x x D x x er et positivt tl, vil ulighederne stdig gælde eter t hver side er divideret med x x : A( x A( ( x ( x x x Når vi orlænger røken med ås (, som hermed også er evist når x < x Integrlregning Side 6 Krsten Juul

19 Til sidst ruger vi ( til t evise (: For x x ås: x x og x x d x og x ligger i intervllet med endepunkter x og x x ( og x ( ( x d x A( A( x ( ( x x x ( x x x og x og ( er kontinuert d ( er opyldt og x ( og x ( ( x ( x Hermed er (8 evist d ( er ( udtrykt med ndre symoler Bemærkning Ld være en unktion der er kontinuert i et intervl [ ; ], og ld M være området mellem -gren og ørsteksen r den lodrette linje gennem (, til den lodrette linje gennem (, I rmmerne og så vi t mn ud r (8 kn slutte: (8d Sætning Hvis ( or x i [ ; ], så er ( = rel( M Integrlregning Side 6 Krsten Juul

20 8 Formlen or rel mellem grer Ld og g være unktioner der er kontinuerete i et intervl [ ; ], og ld M være området mellem -gren og g-gren r den lodrette linje gennem (, til den lodrette linje gennem (, Se igur 8 Ved hjælp (8d vil vi nu evise ølgende sætning: (8e Sætning (Formlen or rel mellem grer Hvis ( g( or x i [ ; ], så er ( ( g( = rel( M ( ( M ( + k M ( g( ( g ( + k ( Figur 8 Figur 8g Bevis or (8e g ( hr et minimum i [ ; ] d en unktion der er kontinuert i et intervl typen [ p ; q], hr et minimum Altså indes et tl k så grerne or ( + k og g ( + k ligger over ørsteksen Se igur 8g Iølge (8d gælder ( ( ( x + k er relet mellem ørsteksen og gren or ( + k ( ( g ( + k er relet mellem ørsteksen og gren or g ( + k Nu ås: rel( M = rel( M + = ( + k ( g( k ( iølge ( og ( + = (( ( + k ( g( k = ( ( g( Hermed er sætning (8e evist iølge ormlen or integrl dierens Integrlregning Side 6 Krsten Juul

21 8 Eksempel på rug ormlen or rel mellem grer Det er oplyst t grerne or unktionerne ( = x og g( x grænser et område der hr et rel = ( ( For t estemme dette rel tegner vi ørst grerne or og g ( Ved t løse ligningen ( = g( inder vi t ørstekoordinterne til grernes skæringspunkter er og ( D g( ( or x i [ ; ], er det søgte rel lig ( ( g ( g ( ( Ved t estemme dette integrl ås t relet er 8 86 Øvelse Grerne or unktionerne ( = x + x + og g ( = x grænser et område der hr et rel Bestem dette rel 87 Øvelse Betrgt de to unktioner 8 ( = x og g ( = x Grerne or unktionerne grænser smmen med ørsteksen en punktmængde der hr et rel Bestem dette rel Integrlregning Side 6 6 Krsten Juul

22 88 Arel mellem gr og kse når gr ligger under kse Ld være en unktion der er kontinuert i et intervl [ ; ], ld M være området mellem -gren og ørsteksen r den lodrette linje gennem (, til den lodrette linje gennem (, Ved hjælp (8e kn vi nu evise ølgende: (8h Sætning Hvis ( or x i [ ; ], så er ( = rel(m Bevis or (8h Området M kn også eskrives som området mellem -gren og gren or unktionen g ( = r den lodrette linje gennem (, til den lodrette linje gennem (, D g( ( ølger (8e t rel( M = ( g ( ( iølge sætning (8e = ( ( = Hermed er sætningen evist ( iølge sætning (7g med k = Integrlregning Side 7 6 Krsten Juul

23 89 Smmenhængen mellem reler og integrl Eksemplet i denne rmme tydeliggør den smmenhæng der er mellem reler og integrl ( 7 8 ( Figuren viser gren or en unktion A rel r til er I integrl r til er A rel r til 7 er I integrl r til 7 er A rel r 7 til 8 er I integrl r 7 til 8 er A rel r til 8 er I integrl r til 8 er 6 De reler der omtles, er reler mellem -gr og ørstekse De integrler der omtles, er integrler unktionen Begrundelse or I : D ( or x, er integrl = rel Begrundelse or I : D ( or x 7, er integrl = rel Begrundelse or I : D ( or 7 x 8, er integrl = rel Begrundelse or I : A indskudsreglen ås: integrl r til 8 = ( + + ( = Bemærkning: Sproget i denne rmme eterligner en mundtlig orklring hvor der peges på en igur I en skritlig esvrelse en opgve er det mere prktisk t ruge integrltegn Se hvordn i de næste rmmer Integrlregning Side 8 6 Krsten Juul

24 8 eksempel hvor integrl og/eller rel er givet ( M 9 M ( Figuren viser gren or en unktion som hr nulpunkterne, og 9 Det oplyses t rel( M 86 = og rel( 8 M = Vi vil estemme integrlet r til 9 D ( or x i [ ; ], ås 86 ( = rel( M = D ( or x i [ ; 9], ås 9 = rel( M = 8 ( Ved t ruge indskudssætningen ås ( = ( + ( = 86 + ( 8 = Advrsel Sig ikke "rel" når du mener "integrl" I eksemplet ovenor gælder mens dvs relet r til 9 er lig 8 integrlet r til 9 er rel integrlet r til 9 er 8 Integrlregning Side 9 6 Krsten Juul

25 8 eksempel hvor integrl og/eller rel er givet ( x = 8 M ( Figuren viser gren or en unktion hvis nulpunkter er 8 og Smmen med ørsteksen grænser gren en punktmængde M der hr et rel Det er oplyst t relet M er 7 og t Vi vil estemme integrlet r 8 til 9 ( = D ( or x i [ 8; ], ås 8 7 ( = rel( M = Ved t ruge indskudssætningen ås 8 8 ( = 8 ( = ( + ( = 8 Øvelse Figuren viser gren or en unktion som hr nulpunkterne 8, 6 og I tredje kvdrnt grænser gren og ørsteksen en punktmængde M der hr relet I nden kvdrnt grænser gren og ørsteksen en punktmængde N der hr relet 7 Bestem hvert integrlerne 6 8 ( og 8 ( M N ( ( Integrlregning Side 6 Krsten Juul

26 8 eksempel hvor integrl og/eller rel er givet ( x = M M ( På iguren ses gren or en unktion der hr nulpunktet Desuden ses to punktmængder M og M Det er oplyst t relet M er, og t Vi vil estemme relet M D ( or x i [ ; ], ås ( = rel( M = D ( or x i [ ; ], gælder t ( = rel( M Iølge indskudssætningen er dvs Altså er = ( + ( ( ( rel( + M = rel( M = så relet M er ( = Integrlregning Side 6 Krsten Juul

27 8 Eksempel på eregning rel ved opdeling ( ( Figuren viser gren or unktionen skrverede område ( = x x 6 Vi vil eregne relet det Ld M etegne det skrverede område over ørsteksen, og ld M etegne det skrverede område under ørsteksen Ved t løse ligningen ( = inder vi t ørstekoordinterne til grens skæringspunkter med ørsteksen er og D ( or x i [ ; ], gælder t ( = rel( M ( D ( or x i [ ; ], gælder t ( ( = rel( M Ved eregning inder vi t ( ( = 6 ( 7 9 ( = A ( og ( ås t rel( = 6 M, og ( og ( ås t rel( = 7 9 M, så relet det skrverede område er 7 = Integrlregning Side 6 Krsten Juul

28 8 Eksempel med ortolkning integrl Betrgt unktionen ( = x Vi vil eregne ( ( og give en geometrisk ortolkning resulttet ( x = [ x x] = ( ( = Vi tegner gren Den geometriske ortolkning er: ( Skrveret rel under kse er enhed større end skrveret rel over Integrlet er nemlig lig relet S over ksen minus relet S under ksen: S = S 86 Øvelse Betrgt unktionen ( = x 6x Beregn det estemte integrl ( og ortolk resulttet ved hjælp en skitse Integrlregning Side 6 Krsten Juul

29 9 Rumng omdrejningslegeme 9 Formlen or rumng omdrejningslegeme + eksempel Når punktmængden M på igur 9 drejes 6 om ørsteksen, ås omdrejningslegemet på igur 9c (9 Sætning (Formlen or rumng omdrejningslegeme Rumnget V omdrejningslegemet kn eregnes ved hjælp ormlen ( V = ( ( π ( M ( ( Figur 9 Figur 9c Antg t igur 9 viser gren or unktionen ( = x, x Så hr omdrejningslegemet rumnget V ( x = 8 π x = = π [ ] = 8 π ( π 8 = π x 9 Øvelse Gren or unktionen ( = x grænser smmen med koordintkserne i jerde kvdrnt en punktmængde M Bestem rumnget det omdrejningslegeme der remkommer når M drejes 6 om ørsteksen Integrlregning Side 6 Krsten Juul

30 9 Bestemme rumng ring Den skrverede punktmængde M på igur 9d er grænset grerne or unktionerne 9 ( = x x + og g ( = og linjerne med ligningerne x = og x = Når M drejes 6 om ørsteksen, remkommer det ringormede omdrejningslegeme på igur 9e Vi vil eregne ringens rumng V ring ( ( ( ( g g g ( ( ( ( Figur 9d Figur 9e Figur 9 Figur 9g Når den skrverede punktmængde på igur 9 drejes om ørsteksen, ås en skive med rumng V skive Herr skl trækkes hullets rumng V hul Hullet ås når den skrverede punktmængde på igur 9g drejes om ørsteksen A sætning (9 ås V skive ( ( = 7 π = π V hul π ( g( = 9 π = Altså er ringens rumng V ring = Vskive Vhul = 997 π Bemærkning Hullets rumng kunne også være eregnet ved t ruge ormlen or rumng cylinder Integrlregning Side 6 Krsten Juul

31 9 Advrsel vedr rumng ring Ld og g være unktionerne r rmme 9 Figur 9h viser gren or unktionen ( g( Vi etrgter omdrejningslegemet der ås ved t dreje den skrverede punktmængde 6 om ørsteksen For t eregne dets rumng, indsætter vi unktionen ( g( or ( i ormlen i sætning (9: V ( ( g( = 7 π = π ( ( g( ( Vi ser t rumnget er meget mindre end ringens rumng Mn kn ltså ikke estemme ringens rumng ved t indsætte ( g( i ormel (9 Figur 9h 9 Øvelse Grerne or unktionerne ( = x og g ( = x grænser smmen med ørsteksen en punktmængde M Bestem rumnget det omdrejningslegeme der remkommer når M drejes 6 om ørsteksen Integrlregning Side 6 6 Krsten Juul

Integralregning. for A-niveau i stx, udgave Karsten Juul

Integralregning. for A-niveau i stx, udgave Karsten Juul Integrlregning or A-niveu i st, udgve 5 Krsten Juul Stmunktion (uestemt integrl) Hvd er en stmunktion? UndersÄg om g( er stmunktion til ( GÄr rede or t g( er stmunktion til ( En unktion hr mnge stmunktioner

Læs mere

Stamfunktion & integral

Stamfunktion & integral PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn

Læs mere

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul Bogstvregning En indledning for st og f. del 008 Krsten Juul ) )( ( ) ( ) ( Indold 0. Gnge to prenteser....,, osv... 7. Kvdrtsætninger... 0. Brøer. del... Bogstvregning. En indledning for st og f.. del.

Læs mere

Integralregning. Erik Vestergaard

Integralregning. Erik Vestergaard Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

ANALYSE 1, 2014, Uge 3

ANALYSE 1, 2014, Uge 3 ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Et udvalg af funktionerne tegnet på grafregneren (eller her med Derive)

Et udvalg af funktionerne tegnet på grafregneren (eller her med Derive) GDS, opgve 85 En strt på opgven (undervisnings- og tvleprotokol): En milie unktioner hr orskrit 4 ( ) + R, Et udvlg unktionerne tegnet på grregneren (eller her med Derive) Værdier tllet, or hvilke hr henholdsvis

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere

Beregning af bestemt integrale ved partiel integration og integration ved substitution:

Beregning af bestemt integrale ved partiel integration og integration ved substitution: Beregning f estemt integrle ved prtiel integrtion og integrtion ved sustitution: f John V. Petersen Prtiel integrtion Sætning : Prtiel integrtion... si. Løsning f integrle... si. Plot f løsningsrelet...

Læs mere

Elementær Matematik. Vektorer i planen

Elementær Matematik. Vektorer i planen Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul Bogstvregning for gymnsiet og hf 010 (01) Krsten Juul Til eleven Brug lynt og viskeläder når du skriver og tegner i häftet, så du får et häfte der er egenet til jävnligt t slå op i under dit videre rejde

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k 0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Vektorer. koordinatgeometri

Vektorer. koordinatgeometri Vektorer og koordintgeometri for gymnsiet, dge 5 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

ANALYSE 1, 2013, Uge 2

ANALYSE 1, 2013, Uge 2 ANALYSE 1, 2013, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

Integralregning. med Ävelser. for B-niveau i gymnasiet og hf. 2011 Karsten Juul

Integralregning. med Ävelser. for B-niveau i gymnasiet og hf. 2011 Karsten Juul Integralregning med Ävelser or B-niveau i gymnasiet og h 0 Karsten Juul Dette håte gennemgçr integralregningen or B-niveau uden at gäre det mere indviklet end kråvet Évelserne giver eleverne et kendskab

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000.

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000. Tldiktt Nr. Timillioner 0.000.000 Millioner.000.000 Hundredetusinder.000 Tlhus Titusinder 0.000 Tusinder.000 Hundreder Tiere 0 Enere Prktivitet. Træk - kort i skjul fr et lmindeligt kortspil. Læg dem på

Læs mere

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave Teknisk Mtemtik Formler Teknisk Mtemtik Formler Preen Mdsen 8. udge Teknisk mtemtik Formler er et prktisk opslgsærk, der gier et hurtigt oerlik oer lle formler fr læreogens enkelte kpitler. Ud oer formlerne

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:

Læs mere

Opstakning og afstakning, fremadregning og tilbageregning

Opstakning og afstakning, fremadregning og tilbageregning 1 Opstkning og fstkning, fremdregning og tilgeregning 1.1 Fremdregning og tilgeregning...2 1.2 Æskeregning...2 1.3 Høseringe-regning, indkodning og fkodning...3 1.4 Vndret tilgeregning, t dnse en ligning...3

Læs mere

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning: Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Integrationsteknikker

Integrationsteknikker Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1

Læs mere

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion ISBN 978-87-766-498- Projekter: Kapitel 4. Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Materialerne

Læs mere

Integralregning. 1. del. 2006 Karsten Juul. M l

Integralregning. 1. del. 2006 Karsten Juul. M l Integralregning del () M l () 6 Karsten Juul Indhold Stamunktion OplÄg om stamunktion Deinition a stamunktion 6 Kontrol a stamunktion 9 SÄtning om stamunktionerne til en unktion Deinition a ubestemt integral

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx = Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (

Læs mere

PotenssammenhÄnge. 2009 Karsten Juul

PotenssammenhÄnge. 2009 Karsten Juul PotenssmmenhÄnge y b y k k 009 Krsten Juul Dette häfte er en fortsättelse f häftet "Eksponentielle smmenhänge, 009". Indhold 4. Hvd er en potens-smmenhäng?... 83 5. Hvordn ser grfen ud for en potens-smmenhäng...

Læs mere

Bemærkning Den dobbelte Riemannsum af en funktion f : R R er. 2 Sætning (Polært koordinatskift) For f kontinuert på det polære rektangel

Bemærkning Den dobbelte Riemannsum af en funktion f : R R er. 2 Sætning (Polært koordinatskift) For f kontinuert på det polære rektangel Oversigt [S].4,.5,.7 Pol og sigtelinje [S] Appendi H. Polr coordintes Nøgleord og egreer epetition: Polære koordinter Lgkgestkker Koordintskift Tpe II vrinten August, opgve Populære nvendelser Flv højere...

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Gymnasie-Matematik. Søren Toftegaard Olsen

Gymnasie-Matematik. Søren Toftegaard Olsen Gmnsie-Mtemtik Søren Toftegrd Olsen Søren Toftegrd Olsen Skovvænget 6-B 7080 Børkop Gmnsie-Mtemtik. udgve, revision 0 ISBN 978-87-99996-0-0 VIGTIGT: Denne og må ikke sælges eller ændres; men kn frit kopieres.

Læs mere

Matematik A Matematik kompendium til HTX 3år

Matematik A Matematik kompendium til HTX 3år Mtemtik A Mtemtik kompendium til HTX år Skrevet f Jco Lrsen og Mrtin Gyde Poulsen.år HTX Slgelse Udgivet f De Nturvidenskelige Side Indholdsfortegnelse StuGuide 4 Differentilregning 4 Integrlregning 4

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden. Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål

Læs mere

Projekt 10.3 Terningens fordobling

Projekt 10.3 Terningens fordobling Hvd er mtemtik? C, i-og Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deduere sig til og konstruere ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige, t l den viden, der

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1 SEKTION 7 FOURIERANALYSE 7 Fouriernlyse Periodiske funktioner er vigtige i mnge smmenhænge, både videnskbeligt og teknisk Vi vil normlisere, så ntger, t perioden er π Disse funktioner er bedst nlyseret

Læs mere

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE...

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE... MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: FERUAR 04 Michel Mndi (00) Side f 35 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... EN TREKANTS VINKELSUM... 3 PYTHAGORAS

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD

Læs mere

Kap. 1: Integralregning byggende på stamfunktioner.

Kap. 1: Integralregning byggende på stamfunktioner. - - Kp. : Itegrlregig yggede på stmfuktioer... Specielle egesker ved fuktioer. Defiitio... E fuktio f siges t være egræset i et itervl I, hvis f er defieret i itervllet, og hvis der fides to tl k og K,

Læs mere

Matematikkens mysterier - på et højt niveau. 1. Integralregning

Matematikkens mysterier - på et højt niveau. 1. Integralregning Mtemtikkes mysterier - på et højt iveu f Keeth Hse. Itegrlregig Hvd er relet f de skrverede puktmægde? . Itegrlregig Idhold. Stmfuktioer og det uestemte itegrl. Regeregler for det uestemte itegrl 7 Prtiel

Læs mere

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet.

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet. !#" $ "&% (')"&*,+.-&/102%435"&6,+879$ *1')*&: or et system, hvor kun den termiske energi ændres, vil tilvæksten E term i den termiske energi være: E term A + Q hvor A er de ydre kræfters rbejde på systemet

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den

Læs mere

1 Plan og rumintegraler

1 Plan og rumintegraler 1 PLAN OG RUMINTEGRALER 1 1 Pln og rumintegrler Ligesom for funktioner f en vribel kn mn for kontinuerte funktioner f flere vrible definere deres integrle. Vi vil her kun beskæftige os med funktioner f

Læs mere

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske - 8 - Appendi : Logistisk vækst og integrlregning. I forbindelse med eksponentielle vækstfunktioner er der tle om en vækstform, hvor funktionens væksthstighed er proportionl med den ktuelle funktionsværdi,

Læs mere

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks Formelsmling for mtemtik niveu B og A på højere hndelseksmen Appendiks April Mtemtik B Procentregning Procentvis vækst Værdien f en given vriel x liver ændret fr x til x 1. Den %-vise vækst eregnes ved:

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

1. Eksperimenterende geometri og måling

1. Eksperimenterende geometri og måling . Eksperimenterende geometri og måling Undersøgelse Undersøgelsen drejer sig om det såkldte Firfrveproblem. For mere end 00 år siden fndt mn ved sådnne undersøgelser frem til, t fire frver er nok til t

Læs mere

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion)

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion) Mere end lot lektiehjælp Få topkrkter i din SRP 12: Hovedfsnittene i din SRP (Redegørelse, nlyse, diskussion) Hjælp til SRP-opgven Sidste år hjlp vi 3.600 gymnsieelever med en edre krkter i deres SRP-opgve.

Læs mere

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2.

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2. Differentil-kvotient Ld f være en funktion - f.eks. f (x) = 2x 2. Produkt og mrked - differentil og integrlregning Rsmus Wgepetersen Institut for Mtemtiske Fg Alborg Universitet Februry 14, 2014 Differentilkvotienten

Læs mere

Om Riemann-integralet. Noter til Matematik 1

Om Riemann-integralet. Noter til Matematik 1 Om Riemnn-integrlet. Noter til Mtemtik 1 Jon Johnsen Institut for Mtemtiske Fg, Alborg Universitet Fredrik Bjers Vej 7G, 9220 Ålborg Ø 3. december 2001 1 Indledning Integrlregning går tilbge til Newtons

Læs mere

Krydsprodukt. En introduktion Karsten Juul

Krydsprodukt. En introduktion Karsten Juul Kydspodut En ntoduton 5 Ksten Juul Bugsnvsnng Du sl se de fuldt optune mme fo t fnde defntone og sætnnge De e st punteet mme om esemple og evse Indhold Rmme Sde Defnton f ydspodut Esempel på ug f defntonen

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R =

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R = Plnintegrlet Preben Alsholm 5. mj 8 Plnintegrlet. Integrlet f en funktion f én vribel et bestemte integrl efinition Ld f være en funktion defineret på intervllet [ b]. Ld = x x... x n = b være en inddeling

Læs mere

Kap 5 - beviser - matematikb2011

Kap 5 - beviser - matematikb2011 Kap 5 - beviser - matematikb0 Indhold Dierentiation a ln Bevis nr.... Dierentiation a ln Bevis nr.... 4 Dierentiation a e Bevis nr.... 5 Dierentiation a e Bevis nr.... 6 Dierentiation a! Bevis nr.... 8

Læs mere

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2 Mt1GB Minilex Henrik Dhl, Hold 8 29. mj 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 18 2.1 Begrænsethed, åben/lukket..................... 18 2.2 Differentition............................ 18 2.3 Differentilligninger.........................

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... 1 BRØER... PARENTESER... 3 PROCENT... 4 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Dgens emner fsnit 3.5 og 4. oissonfordelingen Sndsynlighedsregning 5. forelæsning Bo Friis Nielsen Mtemtik og Computer Science Dnmrks Tekniske Universitet 800 Kgs. Lyngby Dnmrk Emil: bfni@dtu.dk Kontinuerte

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere