MOGENS ODDERSHEDE LARSEN. Optimering af funktioner af flere variable

Størrelse: px
Starte visningen fra side:

Download "MOGENS ODDERSHEDE LARSEN. Optimering af funktioner af flere variable"

Transkript

1 MOGENS ODDERSHEDE LARSEN Optimering a unktioner a lere variable. udgave 04

2

3 FORORD Dette notat giver en kort indøring i, hvorledes man ved anvendelse a passende regnemidler og benttelse a partielle aledede kan beregne lokale og globale ekstrema or unktioner a lere variable Forudsætninger: Der orudsættes et kendskab til dierentialregning svarende til pensum i matematik på A- niveau (se evt. notatet Kernesto i Matematik op til A - niveau der i pd-ormat kan indes på adressen under Matematik ) Endvidere et elementært kendskab til matricer. Regnemidler: Der bliver i eksemplerne vist, hvorledes man kan oretage beregningerne med programmerne Ti-nspire og Maple For en mere omattende gennemgang henvises til lærebogen Bjarne Hellesen, Mogens Oddershede Larsen: Matematik or Ingeniører bind. Enkelte eksempler er også hentet herra. (Bøgerne kan indes på ovennævnte adresse) juni 04 Mogens Oddershede Larsen

4 Indhold INDHOLD Optimering or unktion a variabel... Optimering or unktion a variable. Indledning Graisk remstilling Partiel dierentiation Geometrisk tolkning a partielle aledede, tangentplan Partielle aledede a højere orden Lokalt ekstrenum Talorpolnomium Bestemmelse a arten a et stationært punkt....9 Globalt ekstrema Optimering or unktion a mere end to variable Usikkerhedsberegning Dierential Fejlvurdering Maksimal ejl Statistisk usikkerhed... 5 Grundlæggende operationer med TI Opgaver... 6 Facitliste... 3 Stikord... 3

5 Optimering or unktion a variabel Optimering or unktion a variabel Funktioner a variabel = (), deres gra i et retvinklet koordinatsstem, dierentiation, bestemmelse a lokale ekstrema osv. osv. er velkendt. Imidlertid vil vi kort repetere hvorledes man bestemmer ekstrema. Ved et stationært punkt orstås et punkt hvor dierentialkvotienten er 0, dvs. hvor tangenten til graen er vandret. På igur. er skitseret en unktion, hvor man kan se orskellige stationære punkter. Man kan endvidere bestemme om et stationært punkt er lokalt maksimumspunkt eller minimumspunkt ved at lave en ortegnsdiskussion a ( ) (se nederst på igur.) Fig. Fortegnsdiskussion or () Imidlertid kan man som regel også agøre arten a et stationært punkt ved at betragte de aledede a. orden i punktet. Sætning. Lad 0 være et stationært punkt or en unktion (dvs. ( ) ). ( ) 0 er et lokalt minimumspunkt 0 0 ( ) 0 er et lokalt maksimumspunkt ( 0 ) 0 nærmere undersøgelse må oretages Begrundelse: Et polnomium a. grad som har de samme dierentialkvotienter i 0 er ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) (Talorpolnomium)!! Approksimeres unktionen med dette polnomium i et stationært punkt, hvor `( 0 ) = 0 bliver polnomiet til et andengradspolnomium. Hvis ( 0 ) 0 vender parablen grenene opad, så der er et minimum 0. Hvis ( ) vender grenene nedad så der er et maksimum i

6 . Optimering or unktion a variabel Eksempel. Find ved hjælp a de anden aledede alle maksimum- og minimumspunkter or unktionen 3 ( ) 6 3 Løsning Håndkrat: ( ) 6 4 ( 6) ( ) ( ) 3 Da () har unktionen et lokalt minimum or = 3 Minimumspunkt 3, Da ( ) 5 0 har unktionen et lokalt maksimum or = - Maksimumspunkt, 8 3 TI-Nspire: De anden aledede indes på PC på dokumentværktøjslinien under matematikskabeloner På lommeregner vælges menu, dierential-og integralregning, dierentialkvotient, Maple Man inder de anden aledede under calculus

7 . Graisk remstilling Funktion a variable. Indledning Vi vil i dette kapitel se på unktioner a variable z = (, ), deres gra i et tredimensionalt koordinatsstem, dierentiation og bestemmelse a lokale ekstrema... Graisk remstilling. En unktion a variable z (, ) vil graisk sædvanligvis kunne remstilles i et rumligt koordinatsstem som en lade med bakker og dale. På igur. er der vist en unktion med et lokalt maksimum tegnet ved hjælp a TI-Nspire. Figur. Gra or unktionen (, ) 00e ( ) ( ) Ti-Nspire:Graer Vis 3D-grategning indtast unktion Se på iguren,trk på højre musetast og ændre indstillinger passende. På igur. er der tegnet en unktion med et saddelpunkt tegnet ved hjælp a Maple (disse begreber deineres mere præcist i et senere kapitel Fig... Gra or unktionen h (, ) ( ) ( 3) 0 Maple: Skriv plot3d((-) -(-3) -@+0,=-5..0,=-5..0), trk på iguren og ændre den. 3

8 . Funktion a variable Sædvanligvis er det alt or besværligt at tegne en rumlig lade, som klart viser hvor der er et minimum- eller et maksimum. Uden de ølgende beregninger ved man jo heller ikke hvor et sådant punkt er beligende..3 Partiel dierentiation Hvis man or unktionen z (, ) holder konstant på værdien 0, så vil (, 0 ) være en unktion a én variabel. Er denne unktion dierentiabel, så kan man på sædvanlig måde inde dens alede unktion. Denne kaldes s partielle aledede med hensn til og skrives eller. (, 0 ) (, 0 ) Tilsvarende deineres s partielle aledede med hensn til. Tegnet læses "blødt d" og markerer, at unktionen har lere variable. Dette indebærer nemlig, at (i modsætning til d d ) ikke uden videre kan opattes som en brøk i beregninger. Eksempel.. Partiel dierentiation Lad unktionen være givet ved (, ) 4 a) Find de to partielle aledede og b) Find og. (,) 0 (,) 0 Løsning: a) Idet vi opatter som en unktion a alene, dvs. opatter som en konstant, ås umiddelbart (, ) 0 Tilsvarende ås (, ) b) Ved indsættelse a (,) = (0.) ås og (,) 0 (,) 0 TI-Nspire og Maple Menuerne er de samme som vist i eksempel. Såremt det a sammenhængen klart remgår, hvilket punkt (,) der er tale om, udelades det ote a betegnelserne, således at man kun skriver og Andre skrivemåder. z I stedet or skrives ote eller når z (, ). 4

9 .4 Geometrisk tolkning a partielle aledede, tangentplan Undertiden skrives z hvor der orneden er angivet, hvad de andre variable er. Eksempelvis kan energien E a en gas E enten opattes som en unktion a trk og rumang eller som en unktion a trk og temperatur. Deror ville P E E tvetdigt smbol, mens og er entdige. P V P T være et.4. Geometrisk tolkning a partielle aledede, tangentplan De partielle aledede kan som anskueliggøres i eksempel.4 geometrisk tolkes som hældningskoeicienter til tangenter. Eksempel.. Geometrisk betdning a partielle aledede. På ig..3 er tegnet graen or (, ) or 4 0 og På iguren er k skæringskur- ven mellem planen = og graen or mens k er skæringskurven mellem planen = 0 og graen or. Fig..3. De to partielle dierentialkvotienter i (0,) er hældnings koeicienterne or tangenterne T og T. er hældningskoeicienten a tangenten T til kurven k l or (,) = (0,) (,) 0 er hældningskoeicienten a tangenten T til kurven k or (,) = (0,). (,) 0 Den plan, som er bestemt ved tangenterne T og T kaldes tangentplanen or graen or i punktet (0,). 5

10 . Funktion a variable Tangentplan Lad unktionen være dierentiabel i et punkt ( 0, 0) og lad z0 ( 0, 0). Lad k være skæringskurven mellem planen 0 og graen or og T være tangenten til k med røringspunkt i (, ). Tilsvarende er og graen or og T er tangen- planen 0 ten til k. k 0 0 er skæringskurven mellem Fig..4. Tangentplan i (, ) Den plan, som er bestemt ved tangenterne T og T kaldes tangentplanen or graen or i punktet ( 0, 0). Ligningen or tangentplan z (, ) (, ) ( 0, 0 ) 0 Bevis: Lad or kortheds skld ' ( 0, 0) og ' ( 0, 0) 0 0 Da er hældningskoeicienten or tangenten T til kurven k har en retningsvektor or T koordinaterne a Tilsvarende er b retningsvektor or T. En normalvektor til tangentplanen er ølgelig ab 0 Planens ligning bliver deror ( 0) ( 0) ( zz0) 0 Eksempel.3. Tangentplan Lad der være givet unktionen (, ). 4 Find ligningen or tangentplanen til unktionen i punktet (0,). Løsning: I eksempel.3 andt man or unktionen (, ) at og 4 (,) 0. Idet ås ligningen: (,) 0 (,) 0 z ( 0) ( ) z 6

11 .5 Partielle aledede a højere orden.5. Partielle aledede a højere orden. Har partielle aledede a ørste orden i deinitionsmængden D, kan og (, ) (, ) igen opattes som unktioner a to variable i D. Hvis disse ne unktioner selv har partielle aledede, siges at have partielle aledede a anden orden i D. Disse skrives,, og For de to sidste blandede aledede gælder, at de sædvanligvis er ens, dvs. Eksempel.4. Partielle aledede a anden orden I eksempel.3 andt man or unktionen de partielle aledede (, ) 4 og (, ) (, ) a) Find de partielle aledede a anden orden or unktionen. b) Find værdierne a ovennævnte partielle aledede i punktet (,) = (,). Løsning: a) Da de blandede anden alede er ens, er det unødvendigt at beregne den anden kombination b) 3 (, ), (, ), (, ), TI-Nspire+ Maple; som beskrevet i eksempel. Eksempelvis: a) TI-Nspire Maple: b) I Maple vælges smbolikken under Epression og Calculus Dette gælder or alle unktioner som er dannet a de sædvanlige stamunktioner 7

12 . Funktion a variable Analogt deineres partielle aledede a højere end anden orden, og også or disse kan dierentiationernes rækkeølge normalt vælges vilkårligt,.eks Stationære punkter Lad P 0 være et indre punkt i deinitionsmængden D or en unktion og M D være en omegn a P 0. Hvis ( P ) ( P) or alle punkter P i M, så kaldes denne værdi or s lokale 0 minimum, og P 0 or et lokalt minimumspunkt. Hvis ( P0 ) ( P) or alle punkter P i M, så kaldes denne værdi or s lokale maksimum, Ved et lokalt ekstremum orstås enten et lokalt maksimum eller et lokalt minimum. Er ( P ) ( P) or alle punkter P i deinitionsmængden D, så kaldes denne værdi or s 0 globale minimum eller mindsteværdi, og er ( P0 ) ( P) or alle punkter P i deinitions- mængden D, så kaldes denne værdi or s globale maksimum eller størsteværdi. Nedenstående igur leder os ind på, at det som et led i ekstremumsbestemmelser kan være nttigt at se på punkter, hvor graen har "vandret tangentplan" - såkaldte stationære (eller kritiske) punkter. Fig.5. Stationære punkter På iguren har g vandret tangentplan i, og 3, globalt maksimum i 3 og globalt minimum i 4 For dierentiable unktioner a variable vil man deror se på de punkter hvor unktionen har vandret tangentplan, dvs. hvor de partielle aledede er 0. 8

13 Deinition a stationært punkt. Lad være en dierentiabel unktion a variable med deinitionsmængde D. Et indre punkt ( 0, 0) i D kaldes et stationært punkt or, hvis ( 0, 0 ) 0 ( 0, 0 ) 0 Eksempel.5 Stationære punkter. En unktion er givet ved (, ) 4 5 Find de stationære punkter or. Løsning: Håndregning: De stationære punkter or indes a ligningssstemet () ( ) 5 A ligning () ås (3). Indsættelse i ligning() giver: Tilælde : Indsættes i ligning (3), ås =0 Stationært punkt:.6 Stationære punkter 0 (, ) 00, Tilælde : Indsættes = i ligning (3), ås = 5 Stationært punkt: (, ) 5, Tilælde : Indsættes = - i ligning (3), ås = 5 Stationært punkt: (, ) 5, TI-Nspire: Hvis der ikke er en eksakt løsning skal man muligvis i stedet bruge nsolve Maple: (, ) ( 00, ) (, ) ( 5, ) (, ) ( 5, ) 9

14 . Funktion a variable.7. Talorpolnomium Skal man skae sig et overblik over en unktions "udseende", kan det være nødvendigt at se på kende arten a de stationære punkter, dvs. vide om de er lokale maksima, minima eller såkaldte saddelpunkter. Som or en unktion a variabel kunne vi bestemme arten a det stationære punkt ved at tilnærme unktionen med et andengradspolnomium. Den samme teknik benttes nu ved at tilnærme en unktion i variable med et andengradspolnomium, som har samme partielle aledede a ørste- og anden-orden som unktionen i et punkt (a,b). Talorpolnomium a. orden Deinition Lad en unktion (,) have kontinuerte partielle aledede a vilkårlig orden i et punkt ( 0, 0 ). Idet de partielle aledede i punktet kort skrives (, ), 0 0 ( 0, 0 ), ( 0, 0), ( 0, 0), ( 0, 0) orstås ved et Talorpolnomium a anden orden polnomiet T(,) = ( 0, 0) + ( 0, 0) ( 0) ( 0, 0) ( 0)! ( 0, 0) ( 0) ( 0, 0) ( 0) ( 0) ( 0, 0) ( 0)! Det ses umiddelbart ved dierentiation, at (,) og T(,) har samme partielle aledede a anden orden. Er ( 0, 0 ) et stationært punkt går Talorpolnomiet over i T(,) = (, ) (, )( ) (, )( )( ) (, )( )! Eksempel.6 Talorpolnomium 4 4 I eksempel.5 andt vi, at unktionen (, ) havde de stationære 5 punkter (0,0) og (;5) og (-,5) Idet de anden aledede er 8 ås 4 4, 4,, nr Talorpolnomium (0,0) T(,)= (,5) T(,) = 8 43( ) 8( )( 5) ( ) 5 3 (-,5) T(,) = 8 43( ) 8( )( 5) ( ) 5 0

15 .8 Bestemmelse a arten a et stationært punkt.8 Bestemmelse a arten a et stationært punkt Hvis man er så heldig, at den blandede anden aledede er 0, kan man umiddelbart bestemme om det stationære punkt er et lokalt maksimum, minimum eller et saddelpunkt. Havde eksempelvis polnomiet været T(,) = 0 + 3@(-) + 5@(+) kan vi ved at sætte = - = + og z =T(,) - 0 omskrive polnomiet til z 3 5 Hera ses, at da de to parabler vender grenene opad, så har unktionen minimum i (,-) Analogt ses, at hvis polnomiet har negative koeicienter har unktionen et maksimum i det stationære punkt. Endelig ses, at hvis det koeicienterne har orskelligt ortegn, så vil den ene parabel vende grenene opad og den anden vende grenene nedad, hvilket medører, at unktionen har et saddelpunkt i det stationære punkt (de 3 igurer illustrerer dette). Problemet er nu, at hvis T(,) indeholder et produktled som i eksempel.4, så kan man ikke umiddelbart angive arten a det stationære punkt. For at kunne inde ud a det, må man skite variable på en sådan måde, at polnomiet omskrives i det ne koordinatsstem til et polnomium uden produktled. Hvis koeicienterne så begge er positive har unktionen et minimum, er koeicienterne negative har polomiet et maksimum, mens orskelligt ortegn giver et saddelpunkt. Følgende sætning inder koeicienterne. Sætning. (undersøgelse a arten a et stationært punkt). Lad (, ) være et stationært punkt or en dierentiabel unktion, og sæt 0 0 A (, og 0, 0) B 0 (, 0) C ( 0, 0) A z B Lad determinantligningen have rødderne og B C z 0 z z Der gælder da ) z og z begge positive: har lokalt minimum i (, ) 0 0 ) z og z begge negative: har lokalt maksimum i (, ) 0 0

16 . Funktion a variable 3) z og z har orskelligt ortegn: har saddelpunkt i ( 0, 0) 3) z = 0 eller z = 0: Nærmere undersøgelse må oretages. A B Regneteknisk er det lettere, at inde egenværdierne z og z i matricen H= B C H kaldes Hessian matricen (eller Hess-matricen) Bevis (or kortheds skld er en detaljeret orklaring på visse påstande anbragt sidst i beviset) For nemheds skld antages, at har det stationære punkt (0,0), og at (0,0) = 0, hvorved Talorpolnomiet a anden grad bliver A B C (se evt. orklaring ) hvor B 0 Polnomiet omskrives nu til matriormen (, ) H hvor (se evt. orklaring ) H A B B C Vi ønsker nu at dreje koordinatsstemet til en position, så produktleddet orsvinder. q q Vi år (se evt.orklaring 3), eller kort q q Q T Idet (, ) (transormeret) ås (, ) H Q T H Q Idet Q T T T Q (se evt. orklaring 4) haves T (, ) Q H Q Vi ønsker nu, at vi kan inde Q, så Q T d 0 HQ D hvor D er en diagonalmatri D= 0 d Da Q Q (se evt. orklaring 5) haves Q HQ D HQ QD A B q q A q B q A q B q HQ B C q q Bq Cq Bq Cq q q d q d q d QD q q 0 0 d q d qd Da to matricer kun er ens, hvis de tilsvarende elementer er ens, har vi Aq Bq qd Aq Bq q d Bq Cq q d Bq Cq qd Betragtes ørste søjle i () ås ligningssstemet ( Ad) q Bq 0 Bq ( Cd) q 0 A d B Hvis ligningsstemets determinant 0 har ligningsstemet kun en løsning q 0 q 0 B C d Da vi ønsker, at inde en egentlig løsning, må determinanten være 0 Vi må deror have, at A d B B C d 0 Det andet ligningssstem i () har en determinantligning, der har de samme rødder (se evt. orklaring 6) Determinantligningen har orskellige rødder d og d (se evt. orklaring 7) De to værdier d og d kaldes egenværdier or matricen H. Vi har dermed ået Talorpolnomiet omormet til en lignng uden produktled, og kan så ud ra ortegnet or d bestemme arten a lokalt ekstrema. Sætningen er dermed bevist. () d og

17 .8 Bestemmelse a arten a et stationært punkt Forklaring Idet de partielle aledede a ørste orden er 0 i det stationære punkt bliver Talorpolnomiet T(,) = ( 0, 0) ( 0, 0) ( 0) ( 0, 0) ( 0) ( 0) ( 0, 0) ( 0)! Indsættes A, B og C samt sættes 0, 0 og z T(, )_ ( 0, 0) går polnomiet over i z ( A B C ) Forklaring. A B, ( A B, BC ) og B C ( A B, BC ) A B B C A B Forklaring 3 Lad basisvektorerne i det drejede koordinatsstem have koordinaterne i og q q i q q Lad punktet P have koordinaterne (,) i det oprindelige koordinatsstem og koordinaterne (, ) i det drejede koordinat- sstem (se iguren). j j Vi har da, at vektoren OP i j i j i 0 q q i eller 0 q q Hea ås q q q q q q Omskrives til matriorm haves q q Forklaring 4 Q T T T q q q q T q q q q Q q q (, ) q q q q q q T T Hera ses, at Q T Q Forklaring 5 QQ T q q q q q q qq q q 0 E hvor E er en enhedsmatri. q q q q qq qq q q 0 T T Analogt ses, at QQ E. Hea ølger, at Q Q. Forklaring 6 Aq Bq q d ( Ad) q Bq 0 A d B q B q C q q d B q ( C d) q 0 B C d q Determinanten bliver den samme. da B( B) BB B Forklaring 7 A d B 0( Ad)( Cd) B 0 d ( AC) d AC B 0 B C d Andengradaligningen har diskriminanten ( AC) 4( AC B ) A C AC4AC4B ( A B) 4B Da B 0, er diskriminanten positiv og ligningen har deror altid orskellige rødder. 3

18 . Funktion a variable Eksempel.7. Lokale ekstrema I eksempel.5 andt man at de stationære punkter or unktionen givet ved 4 4 (, ) 5 var (, ) ( 00, ) (, ) ( 5, ) (, ) ( 5, ) Agør or hver a ovennævnte stationære punkter, om det er et lokalt maksimumspunkt, lokalt minimumspunkt eller saddelpunkt. Løsning: TI-Nspire Lokalt minimum i (0,0) Saddelpunkt i (,5) Saddelpunkt i (-,5) Egenværdier indes ved at vælge Matricer og vektorer, avanceret, egenværdier Maple Minimum i punktet (0,0) Egenværdier indes ved at trkke på matricen og vælge Eigenvalues De to andre punkter bestemmes analogt. 4

19 .9 Globalt ekstremum.9 Globalt ekstrema Ved optimeringsproblemer er man interesseret i at inde et globalt ekstremum or et konkret problem. Følgende eksempel illustrerer remgangsmåden, som jo er nært beslægtet med de tilsvarende problemer or unktion a. variabel. Eksempel.8. Optimering En retvinklet kasse uden låg skal have et rumang på 3m 3. Kassen skal konstrueres således, at dens overlade bliver mindst (mindst materialeorbrug). Find kassens optimale dimensioner. Løsning: ) Optimeringsproblemet opstilles. Lad længde, bredde og højde a kassen være, og z. Vi har da Find det globale minimum (mindsteværdi) or unktionen g(,, z) z z i mængden S givet ved begrænsningen z 3,, 0, 0, z 0. ) Problemet reduceres. Begrænsningsligningen benttes til at reducere antallet a variable. 3 z 3 z. Ved indsættelse a z 3 i g og de øvrige begrænsninger ås , 3 0, 0, 0. Problemet kan deror nu reduceres til Find det globale minimum (mindsteværdi) or unktionen (, ) 64 i 64 mængden S givet ved begrænsningerne 0, 0 (. kvadrant) 3) De mulige ekstremumspunkter bestemmes. Ti-Nspire Samlet har vi altså undet stationært punkt (4,4). 4) Vurdering a, at det stationære punkt er et globalt minimumspunkt 5

20 . Funktion a variable Hera ses, at unktionen har et lokalt minimum i punktet (4,4) At det også er et globalt minimumspunkt snes rimeligt, da det er det eneste stationære punkt i deinitionsmængden. Endvidere ses at 0 0 så går (, ) Anvendes Maple til at tegne unktionen ås ølgende tegning: ses, at unktionen har globalt minimum i (4,4). Dimensionerne er = 4 m, = 4 m og z = m Hera 6

21 3 Funktion a mere end variable 3. Optimering or unktioner a mere end variable De deinitioner og begreber som er gælder or unktioner a variable kan umiddelbart generaliseres til unktioner a 3 og lere variable. Graisk remstilling Graen or en unktion a 3 variable muligt at tegne en niveaulade hvor (,, z) (,, z) kan naturligvis ikke tegnes i et 4-dimensionalt rum. Derimod er det har en konstant værdi k. Eksempelvis er en såkaldt orbital eller bølgeunktion ( z,, ) or et atom anskueliggjort ved en niveaulade or på igur 3.. (Orbitaler spiller en stor rolle or orståelsen a atomers og moleklers egenskaber). Et andet eksempel er nogle kugleormede niveaulader or tngdepotentialet igur 3.. a z omkring jorden vist på Fig. 3.. Niveaulade or en atomorbital ( z,, ) Fig. 3.. Niveaulader or tngdepotentialet omkring jorden For at inde et lokalt ekstremum er beregningerne ganske analogt med de or variable. Deinition a stationært punkt. Lad være en dierentiabel unktion (,,z) a 3 variable med deinitionsmængde D. Et indre punkt (,, z ) i D kaldes et stationært punkt or, hvis z z ( 0, 0, 0) 0 ( 0, 0, 0) 0 ( 0, 0, z0) 0 z 7

22 3. Optimering or Funktioner a mere end variable Sætning 3. Lokalt ekstremum or unktion a 3 variable Lad Lad være et stationært punkt or en dierentiabel unktion a 3 variable. a ( 0, 0, z0) a a z a ( ) ( ) ( ) Lad H være matricen H = a a z a ( ) ( ) ( ) z a z a ( ) ( ) ( a ) z Lad H have egenværdierne u, u og u 3. Der gælder da ) u, u og u 3 alle positive: har lokalt minimum i a (,, z ) ) u, u og u 3 alle negative: har lokalt maksimum i a (,, z ) ) u, u og u 3 har ikke samme ortegn: har intet lokalt ekstremum i a ( 0, 0, z0) 4) Hvis én eller lere a rødderne u, u og u 3 er 0 og de øvrige har samme ortegn, : Nærmere undersøgelse må oretages. Eksempel 3.. Lokale ekstrema or unktion a 3 variable Lad unktionen være bestemt ved (,, z) e z z 4 3 a) Find de stationære punkter or b) Undersøg arten a de stationære punkter undet i spørgsmål a) Løsning: I det ølgende skrives or kortheds skld e 4 3 e a) z z a b) Stationært punkt (,, z)=(, 3,) Hera ses, at har et lokalt minimum i punktet (,, z)=(, 3,) 8

23 4 Usikkerhedsberegning 4.. Dierential Dierential or unktion a variabel 4. Dierential Følger vi graen or en dierentiabel unktion ( ) ra et punkt med abscissen 0 til et punkt med abscissen 0 bliver unktionstilvæksten ( 0 ) ( 0 ) jævnør igur igur 4.. Fig. 4.. Tilvækst i tangents retning I stedet or at ølge graen ra 0 til 0 kunne vi som en tilnærmelse ølge tangenten i 0. I så ald bliver - tilvæksten ( 0 ) som kaldes dierentialet d eller d. For den ahængige variabel, gælder d (betragtes den identiske unktion ( ) år vi nemlig d d, dvs. d ) Vi har deror d ( ) d. 0 d Divideres med d, ås den kendte sammenhæng. d Bemærk, at man altid gerne må dividere med d, når blot d 0. Navnet dierentialkvotient betder netop en kvotient mellem dierentialer. Eksempel 4.. Dierential Find dierentialet a unktionen ( ) 5 4 Løsning: Dierentialet d ( ) d 0 3 d Dierential or unktion a variable Lad unktionen være dierentiabel i et punkt ( 0, 0) og lad z0 ( 0, 0). Går vi ra punktet ( 0, 0 ) til punktet ( 0, 0 ) bliver unktionstilvæksten z ( 0, 0 ) ( 0, 0) jævnør igur.9. I stedet or a ølge graen or, kunne vi som en tilnærmelse ølge tangentplanen i (, ) 0 0 9

24 4. Usikkerhedsberegning Da tangentplanen har ligningen z (, ) (, ) bliver z- ( 0, 0 ) 0 tilvæksten z (, ) (, ) ( 0, 0 ) Denne z-tilvækst, som ås ved at ølge tangentplanen, kaldes dierentialet d eller d z. Ligesom or unktioner a variabel gælder, at man kan erstatte med d og med d, hvorved dierentialet kan skrives d d d Ved visse anvendelser kaldes dierentialet or det totale dierential a. Eksempel 4.. Dierential Lad unktionen være givet ved z (, ) 4 ) Beregn z når punktet (,) ændrer sig ra (,) til (.03, 0.98) ) Beregn dz når punktet (,) ændrer sig ra (,) til (.03, 0.98) Løsning: ) z (. 03,. 0 98) (,) ) dz d d hvor d og d = , 0, 003. dz ( 0. 0) Fejlvurdering. Ved enhver måling kan den siske størrelse aldrig måles eksakt. Målingen behætes altid med en vis usikkerhed. Det kan skldes usikkerhed på objektet, måleinstrumentet, brugeren a instrumentet osv. Sstematiske ejl er ejl, hvor man eksempelvis har glemt at korrigere or temperaturens indldelse på måling a et stos hårhed. Er målingen beriet or sstematiske ejl, er der kun tilbage tilældige ejl. Eksempelvis vil der ote på et instrument være anørt en instrumentusikkerhed, som viser hvor nøjagtigt instrumentet kan måle. En sådan usikkerhed kan eksempelvis indes ved at man oretager en måling lere gange eventuelt a orskellige personer. 4.. Maksimal ejl eller usikkerhed Den maksimale usikkerhed er så deineret som den numerisk største avigelse mellem en målt værdi og gennemsnittet. Er eksempelvis en temperatur angivet som menes hermed, at i værst tænkelige tilælde kunne målingen være eller Relativ ejl eller relativ usikkerhed Ved den relative ejl (usikkerhed) på en størrelse orstås størrelsen 0

25 4. Fejlvurdering Eksempel 4.3. Maksimal og relativ ejl Lad = 53 m og = 5 m a) Find den maksimale ejl z på z = - b) Find den relative ejl på z. Løsning: Det ses umiddelbart, at z = 53-5 = 8 og a) z = + =3 m dvs. z = 8 3 m 3 b) rel(z) = % 8 Den maksimale ejl (eller usikkerheden) på to størrelser kan jo godt være den samme,.eks. cm, men hvis den ene størrelse er usikkerheden på diameteren a et rør på 0 cm og den anden er højden på et hus, så er det klart, at det er den relative usikkerhed, der siger mest. Ved mere komplicerede udtrk er det ikke som i eksempel 4,3 muligt direkte at beregne den maksimale usikkerhed. Man må så i stedet erstatte bentte dierentialet ved beregningen. Det svarer jo til, at man erstatter unktionen med dens tangentplan. Dette er tilladeligt når blot usikkerhederne og er små. Der gælder ølgende: Maksimal ejlberegning Den maksimale absolutte ejl z or unktionen z (, ) i punktet ( (, ) er z orudsat ejlene og er små (, ) (, ) Koeicienterne og kaldes så s ølsomhed overor ejl på henholdsvis og. 0 0 Formlen kan umiddelbart udvides til at gælde or en unktion a mange variable. Eksempel 4.4 Maksimal usikkerhed En kugleormet tank har radius r. Med en pejlestok måler man væskehøjden h or at kunne beregne væskerumanget V h ( 3rh) 3 a) Angiv et den maksimale ejl på V, når r = 0. m og h = m b) Angiv den maksimale relative ejl på V. Løsning (håndregning) 3 V ( h r h ) 3 V V a) ( hrh ) Indsættes r = og h = 0. ås h h ( ) V V h Indsættes r = og h = 0. ås r r V

26 4. Usikkerhedsberegning 3 b) V =π@ V ( ) Relativ maksimal usikkerhed = % TI-Nspire 4.. Statistisk usikkerhed I statistikken beregner man midddelværdi og spredning, og spredningen er et udtrk or den statistiske usikkerhed. Der orudsættes, at disse begreber er kendt. For at orklare en ormel or beregning a usikkerhed i sammensatte udtrk a variable, vil vi ørst se på et simpelt tilælde hvor en statistisk variabel Z = a@x+by +c, hvor X og Y er statistiske variable med spredningen ( X ) og ( Y), og a, b og c er konstanter. Hvis de to variable er uahængige gælder det, at ( Z) a ( X) b ( Y) Eksempel 4.5. To variable. Insektpulver sælges i papkartoner. Lad være vægten a pulveret, mens er vægten a papkartonen. I middel ldes der 500 gram insektpulver i hver karton med en usikkerhed på 5 gram. Kartonen vejer i middel 0 gram med en usikkerhed på.0 gram. z = + er da bruttovægten. Det antages, at de variable er uahængige, dvs, der er ingen sammenhæng mellem vægten på pulver og vægten på karton. De er måske lavet på orskellige abrikker. Find middelværdien på bruttovægten E(Z), den statistiske usikkerhed ( Z) og den relative usikkerhed på Z Løsning: X = vægt a pulver E(X) = 500, σ(x) = 5 E(Y) = 0, σ(y) = Vi har nu, at E(Z) = = 50 Spredningen på z er σ(z) = ( Z). Relativ usikkerhed:. EZ ( ) %

27 4. Fejlvurdering Er z en unktion a variable, så kan vi tilnærme unktionen med Talorpolnomium a grad (graen erstattes med sin tangentplan). Vi kan deror beregne usikkerheden a ormlen ( Z) z (, ) ( ) (, ) ( ) X z Y Koeicienterne og kaldes så s ølsomhed overor ejl på henholdsvis og. Eksempel 4.6. Beregning a usikkerhed på udtrk i variable Et clindrisk hul med radius r og højde h bores i en metalblok. Man ved, at r = 3cm med en spredning på 0. cm og h = 0 cm med en spredning på 0. cm ) Find den statistiske usikkerhed på hullets volumen V = r h ) Find den relative ejl på V 3) Har V størst ølsomhed overor r eller overor h? Løsning ) ) Håndregning: V V rh og dermed or r = 3 og h = 0, er r r V V r og dermed or r = 3 og h = 0, er h h ( V ) 37699, ( 0. ) 87. ( 0. ) 38. ) V = Den relative ejl er ( V ) %. V ) V har størst ølsomhed over or ejl på r, da dv dr TI-Nspire: ) dv dh ) σ(v) = 38. relativ ejl = =6.7% 3

28 4. Usikkerhedsberegning Formlen kan naturligvis generaliseres til unktioner a mange variable. Eksempel 4.7 Beregning a usikkerhed på udtrk i 3 variable Måles trkket P, volumenet V og temperaturen T a en ideal gas, optræder der tilældige måleejl, PV som gør værdierne usikre. Beregnes molantallet n nu a ligningen PV nrt n, RT bliver værdien a n deror også usikker. Vi ønsker at kunne beregne usikkerheden på n ud ra usikkerhederne på P, V og T. Gaskonstant R 834. J K mol. P 3400 Pa, V 567. m 3, T 678 K med usikkerheder ( P) 000 Pa, ( V ) 006. m 3 og ( T) 3K. Det kan antages, at måleresultaterne or P, V og T er statistisk uahængige. Find den statistiske usikkerhed ( n) Løsning TI-Nspire σ(n) =.74 mol 4

29 5. Grundlæggende operationer med TI89. 5 Grundlæggende operationern med TI89 Lad unktionen være givet ved (, ) 4 ) Indlægge unktion: ^A^/4 STO (,) STO står i række or neden, ) Finde partielt aledede: (, ) d(((,),) dierentialet d står over 8-tallet 3) Finde partielt aledede i punkt (,3) d(((,),)*= and =0 : den lodrette streg står til venstre i jerde række or neden og kan læses orudsat at and står i Catalog 4) Finde partielt aledede a anden orden: (, ) : d(d((,)),,) 5) Løse ligningsstem =0 og =0 (, ) (, ) F, solve(d((,),)=0 and d((,),)=0,{,}) 6) Oprette en matri A: Lad matricen have rækker og 3 søjler APPS, Data/Matri Enter New Udld Tpe = Matri, Variable = A, antal rækker= og søjler = 3, ENTER, ENTER. Udld skemaet med matricen A, Home 6) Udregne determinant a matri a: MATH nr 4: MATRIX, ENTER nr det(a) MATH står over 5-tal 5

30 Funktion a eller lere variable Opgaver Opgave Man er interesseret i graisk remstilling a unktionen (, ). Der ønskes hovedsageligt betragtet punkter, hvor (, ), og der lægges ikke vægt på nøjagtighed, men på principielle træk. a) Tegn i et rumligt koordinatsstem graen or unktionen ved anvendelse a et matematikprogram b) Agør herudra om unktionen har noget lokalt minimum? - lokalt maksimum? - saddelpunkt? Opgave Find de partielle aledede a ørste og anden orden or ølgende unktioner 3 3 ) (, ) 4 ) e (, ) 3) (, ) ln 4 Opgave 3 Find ligningen or tangentplanen or ) (, ) i punktet (,) = (-,3) ) (, ) i punktet (,) = (, -) Opgave 4 Find de stationære punkter or unktionerne 3 3 ) (, ) 97 ) (, ) ) (, ) cos( ), 3 ; 4) (, ) 58 Opgave 5 Lad virkningsgraden or en motor være givet tilnærmet ved 3 3 (, ) 30.,hvor og er to variable. ) Find de partielle aledede a. og. orden a. ) Find de partielle aledede a. og. orden a i punktet (-,). 3) Er punktet (-,) et lokalt maksimumspunkt. 6

31 Opgaver Opgave 6. Find alle lokale maksimums- og minimumspunkter or ølgende unktioner: ) (, ) 4 ) (, ) 4 3) (, ) 3 3 4) (, ) 3 5) (, ) 3 3 6) (, ) 5 4 7) (, ) ) (, ) ( ) 9) (, ) 0) (, ) 6 Opgave 7. Vis, at unktionen givet ved (, ) 4 8 har 5 stationære punkter og agør or hvert, om det er et lokalt maksimumspunkt, lokalt minimumspunkt eller saddelpunkt. Opgave 8. 4 a) Find samtlige stationære punkter or unktionen (, ) 4 b) Betragt de stationære punkter (, ) or hvilke 0. Agør or hvert a disse punkter, om punktet er et lokalt maksimumspunkt, et lokalt minimumspunkt eller et saddelpunkt. Opgave 9. Find de stationære punkter or unktionen (, ) og agør or 5 hvert, om det er et lokalt maksimumspunkt, lokalt minimumspunkt eller saddelpunkt. Opgave 0 En kasseormet tank skal konstrueres, så den år et rumang på 000 m 3. Bund, sider og låg koster henholdsvis 4000 kr./m, 000 kr./m og 000 kr./m. Dimensionér tanken således, at prisen bliver mindst, idet dog ingen a kanterne må overstige 0 m. 7

32 Funktion a eller lere variable Opgave. z En plan har ligningen, hvor a b c a, b4og c > 5. Planen skærer koordinatakserne i punkterne A, B og C (se iguren). Koordinatsstemets begndelsespunkt kaldes D. Værdierne a a, b og c ønskes bestemt, således at punktet P = (,4,5) ligger på planen gennem A, B og C, og tetraederet ABC s volumen V abc bliver mindst 6 mulig. Det oplses, at der eksisterer værdier a a, b og c med de ønskede egenskaber. Opgave Find de partielle aledede a ørste orden or ølgende unktioner 3 3 ) (,, z) z z ) (,, z) sin( z) Opgave 3 z Find alle lokale ekstremumspunkter or de ølgende unktioner ) ) 3) Opgave 4 Find dierentialet a unktionen ) (, ) 4 4 ) (, ) 4 i punktet (,0) Opgave 5 En bunke har orm som en kegle med højde h og grundladeradius r. Man måler h og r, or at kunne beregne rumanget V r h 3 a) Angiv den maksimale ejl på V, når r = 0 0. m og h = 0 0. m b) Angiv den maksimale relative ejl på V. 8

33 Opgaver Opgave 6 En olietank er kasseormet med længden L = 3 m, bredden B = m og højden H = m. Tanken er nedgravet vandret, men ejeren år mistanke om, at den hælder en vinkel u. For at inde u, hælder ejeren V = m 3 olie i den tomme tank, og måler oliestandens højde h i den højeste side til 0.0 m.(se iguren) Vinklen u kan indes a ormlen V h u Arctan B L L ) Find vinklen u. ) Det anslås, at V= 00. og h = Find den maksimale absolutte ejl på u (alle resultater med 3 betdende cire) 3) Angiv den maksimale relative ejl på u Opgave 7 Man har målt vægten a en karton indeholdende tableter a en vis tpe imod hovedpine til 70 g med usikkerhed på 0.04 g Vægten a kartonen er målt til g med en usikkerhed på 0.0 g Det kan antages, at måleresultaterne or R og H er statistisk uahængige. Beregn den samlede vægt V a tabletterne, usikkerheden ( V ), samt den relative usikkerhed rel( V ). Opgave 8 En mængde råmateriale til en produktion ligger i kegleormet bunke. En kegle med radius R og højde H har volumenet V R H. 3 Man har målt R. 0 m, H 0. m, med usikkerheder ( R) 0. m, ( H) 0. m. Det kan antages, at måleresultaterne or R og H er statistisk uahængige. Find volumenet V, usikkerheden ( V ), samt den relative usikkerhed rel( V ). Opgave 9 For en rektangulær lade har man målt længden L og bredden B : L. 3 m, B 84. m med usikkerheder ( L) 0. m, ( B) 0. m. Det kan antages, at måleresultaterne or L og B er statistisk uahængige. Find ladens areal A, usikkerheden ( A), samt den relative usikkerhed rel( A). 9

34 Funktion a eller lere variable Opgave 0 For et bassin a orm som en retvinklet kasse har man målt længden L, bredden B og højden H L 8. 0 m, B. 3 m H 45. m med usikkerheder ( L) 0. m, ( B) 0. m, ( H) 0. m. Det kan antages, at måleresultaterne or L, B og H er statistisk uahængige. Find bassinets volumen V, usikkerheden ( V ), samt den relative usikkerhed rel( V ). Opgave På den viste orsøgsopstilling kan man oretage målinger til bestemmelse a et stos længdeudviddelseskoeicient. l er længden a stangen ved starttemeraturen t. l er længden a stangen ved sluttemeraturen t. Under orsøget er ølgende størrelser bestemt. l : middelværdi 500 mm med spredning 0. mm l : middelværdi mm med spredning 0. mm t - t : middelværdi 78 0 med spredning 0. 0 C Længdeudvidelseseskoeicienten k kan bestemmes l l udtrkket k, l( t t) hvor t - t beregnes i radianer. a) Find den statistiske usikkerhed på k b) Find den relative statistiske usikkerhed på k. a 30

35 Facitliste a) - b) saddelpunkt ) ,, 6 4,, 6 4 ) 3) Facitliste 3 3 e 3 e 9 3 e 3 e 3 3,,,, e, ( ) ( 3 ) 4,,,,, ) z30 ( ) 6( 3) ) z 4 4( ) 4( ) ) (0, 0) (3, 3) () (5, -8) 3) 0,, 0, 4) (-4, -3) 3 5 ) 3 3, 3 3, 6, 6, 3, ) 0, 0, -6, -3, -6 3) ja 6) lok.min.pkt. (0, 0) 7) lok.min.pkt. (, 0) 8) lok.min.pkt.,,, 6 ) lok.min.pkt. (0, 0) ) lok.min.pkt., 3) ingen 4) ingen 5)lok.min.pkt. (, 0) 3 9) lok.ma.pkt. 0) ingen, 0 7 lok.ma.pkt. (0, 0) lok.min.pkt. (0, ) lok.min.pkt. (0, -) saddelpunkt 0 og, 0, 8 a) (0, 0), (0, ), (0, -), 6,, 6, b) saddelpunkt (0,0) lok. ma. pkt (0,-) 0, 0 9 lok.min.pkt. (0, 0) saddelpunkt 0, saddelpunkt 0 435, 435, z 535, 6,, 5 ) z z, z z, z 3z z ) z z cos( z) z z ln, sin( z) z ln, z z cos( z) ln 3 ) lok. ma.pkt. (3,, 3) ) lok. min.pkt. (0.0.0) 3) ingen ) 6 d 4 d ) lnd lnd 5 ) ) 5% 6 ) eller radianer ) eller 0.0 radianer 3).4% % % % % % 0 3

36 Funktion a eller lere variable STIKORD A aledede, partiel 4, 7 B blandede partielle aledede 7 D dierential 9 dierentiation, partiel 4,7 E egenværdi, 4, 8 ekstremum globalt 8, 5 lokalt 8 F acitliste 3 ejlvurdering 0 unktion a variabel a variable 3 a 3 variable 7 G globalt ekstremum 3, 8, 5 gra or unktion a variable 3 grundlæggende operationer med TI89 5 H Hesse matri L lokalt maksimum/minimum or unktion a variabel a variable 8 a 3 variable 7 M maksimal ejl 0 maksimum/minimum lokalt or unktion a variabel a variable 8 a 3 variable 7 maksimum globalt or unktion a variable 8, 5 Maple inde stationære punkter or unkt. a variabel (solve ligning) variable (solve ligningssstem) 9 partiel dierentiation, 7 bestemme art a stationært punkt variabel variable (egenværdier) tegning a unktion a variable 3, mindsteværdi 8 minimum globalt or unktion a to variable 8, 5 O opgaver 6 optimering or unktion a variabel a variable 8 a 3 variable 7 P partiel dierentialkvotient 4 partiel dierentiation 4 partielle aledede 4, 7 R relativ ejl 0 S saddelpunkt stationære punkter, 9, 7 statistisk usikkerhed størsteværdi 8 T tangentplan 5 Talorpolnomium, 0 TI-Nspire inde stationære punkter or unkt. a variabel (solve ligning) variable (solve ligningssstem) 9 3 variable (solve ligningssstem) 8 partiel dierentiation, 7 bestemme art a stationært punkt variabel variable (egenværdier) 3 variable (egenværdier) 8 tegning a unktion a variable 3, U usikkerhedsberegning 9 3

Funktioner af to og tre variable

Funktioner af to og tre variable MOGENS ODDERSHEDE LARSEN Kort indøring i Funktioner a to og tre variable. udgave 00 FORORD Dette notat giver en kort indøring i, hvorledes man ved anvendelse a passende regnemidler og benttelse a partielle

Læs mere

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable MOGENS ODDERSHEDE LARSEN Funktioner af flere variable. udgave 015 i FORORD Dette notat giver en kort indføring i, hvorledes man ved anvendelse af passende regnemidler og benyttelse af partielle afledede

Læs mere

Funktion af to eller flere variable I

Funktion af to eller flere variable I MOGENS ODDERSHEDE LARSEN Funktion a to eller lere variable I Dierentiation og Optimering. udgave 005 FORORD Dette notat giver en indøring i de grundlæggende begreber or analse a reelle unktioner a to og

Læs mere

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable MOGENS ODDERSHEDE LARSEN Funktioner af flere variable 3. udgave 016 i FORORD Dette notat giver en kort indføring i, hvorledes man ved anvendelse af passende regnemidler og benyttelse af partielle afledede

Læs mere

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable MOGENS ODDERSHEDE LARSEN Funktioner af flere variable 3. udgave 06 i FORORD Dette notat giver en kort indføring i, hvorledes man ved anvendelse af passende regnemidler og benyttelse af partielle afledede

Læs mere

Integralregning. med Ävelser. for B-niveau i gymnasiet og hf. 2011 Karsten Juul

Integralregning. med Ävelser. for B-niveau i gymnasiet og hf. 2011 Karsten Juul Integralregning med Ävelser or B-niveau i gymnasiet og h 0 Karsten Juul Dette håte gennemgçr integralregningen or B-niveau uden at gäre det mere indviklet end kråvet Évelserne giver eleverne et kendskab

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion ISBN 978-87-766-498- Projekter: Kapitel 4. Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Materialerne

Læs mere

Integralregning. 1. del. 2006 Karsten Juul. M l

Integralregning. 1. del. 2006 Karsten Juul. M l Integralregning del () M l () 6 Karsten Juul Indhold Stamunktion OplÄg om stamunktion Deinition a stamunktion 6 Kontrol a stamunktion 9 SÄtning om stamunktionerne til en unktion Deinition a ubestemt integral

Læs mere

MATRICER LINEÆRE LIGNINGER. Usikkerhedsberegning

MATRICER LINEÆRE LIGNINGER. Usikkerhedsberegning MOGENS ODDERSHEDE LARSEN MATRICER LINEÆRE LIGNINGER Usikkerhedsberegning med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad 0 3 4 3 4 0 3 0 3 0 3 4 = x x x x. udgave 0 FORORD Dette

Læs mere

Lokalt ekstremum DiploMat 01905

Lokalt ekstremum DiploMat 01905 Lokalt ekstremum DiploMat 0905 Preben Alsholm Institut for Matematik, DTU 6. oktober 00 De nition Et stationært punkt for en funktion af ere variable f vil i disse noter blive kaldt et egentligt saddelpunkt,

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Ekstremumsbestemmelse

Ekstremumsbestemmelse Ekstremumsbestemmelse Preben Alsholm 24. november 2008 1 Ekstremumsbestemmelse 1.1 Ekstremum for funktion af én variabel: Definitioner Ekstremum for funktion af én variabel: Definitioner Punktet a kaldes

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50.

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet GU HHX MAJ 2009 MATEMATIK A Onsdag den 13. maj 2009 Kl. 9.00 14.00 Undervisningsministeriet GL091-MAA Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 008 HHX08-MAB Matematik Niveau B Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en

Læs mere

Integralregning. for B-niveau i stx. 2015 Karsten Juul

Integralregning. for B-niveau i stx. 2015 Karsten Juul Integralregning or B-niveau i st 05 Karsten Juul Stikordsregister A areal mellem gra og -akse6, 7, 8, 9 areal mellem to graer0, arealunktion, 5, 6 B bestemt integral 5 bestemt integral med Nspire5 bestemt

Læs mere

Facitliste til eksamensopgaver hf-tilvalgsfag 1999-2005

Facitliste til eksamensopgaver hf-tilvalgsfag 1999-2005 Facitliste til eksamensopgaver hf-tilvalgsfag 1999-005 99-8-1 C = (,-) radius = 7 f (x) = 6x + 4x 5 + y = x + : dist(t, ) = 1,0607 A(1,) og B(5,-1) M AB = (,1) m: y = x 1 x Redegørelse! f(x) = 70,74 x

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

20 = 2x + 2y. V (x, y) = 5xy. V (x) = 50x 5x 2.

20 = 2x + 2y. V (x, y) = 5xy. V (x) = 50x 5x 2. 17 Optimering 17.1 Da omkræsen skal være 0cm har vi at 0 = x + y. Rumfanget V for kassen er en funktion der afhænger af både x og y givet ved V (x, y) = 5xy. Isolerer vi y i formlen for omkredsen og indsætter

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Kap 5 - beviser - matematikb2011

Kap 5 - beviser - matematikb2011 Kap 5 - beviser - matematikb0 Indhold Dierentiation a ln Bevis nr.... Dierentiation a ln Bevis nr.... 4 Dierentiation a e Bevis nr.... 5 Dierentiation a e Bevis nr.... 6 Dierentiation a! Bevis nr.... 8

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2016til juni 2019 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid i

Læs mere

Løsninger til matematik B-niveau HF maj 2016 April 2017

Løsninger til matematik B-niveau HF maj 2016 April 2017 Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl Cristina Sissee Jensen Side 1 af 4 Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl

Læs mere

Peter Harremoës Mat A eksamen med hjælpemidler 15. december 2014. f (x) = 0. 2x + k 1 x = 0 2x 2 + k = 0 2x 2 = k x 2 = k 2. k 2.

Peter Harremoës Mat A eksamen med hjælpemidler 15. december 2014. f (x) = 0. 2x + k 1 x = 0 2x 2 + k = 0 2x 2 = k x 2 = k 2. k 2. Opgave 6 Se Bilag 3! Funktionen f er givet ved f (x) = x 2 + k ln (x), x > 0. Det oplyses at funktionen har netop ét ekstremum, når k > 0, så x-værdien til dette ekstremum må kunne findes ved at løse ligningen

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

2. Funktioner af to variable

2. Funktioner af to variable . Funktioner af to variable Opgave 1 Grafisk udformning af de to funktioner,, Opgave f (, y) = z = 5 y N(0) = z = 0 0 = 5 y + y = 5 C = ( ; y) = (0;0) r = 5 Dette medfører som vist en cirkel, med centrum

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Matematikken bag Parallel- og centralprojektion

Matematikken bag Parallel- og centralprojektion Matematikken bag parallel- og centralojektion 1 Matematikken bag Parallel- og centralojektion Dette er et redigeret uddrag af lærebogen: Programmering med Delphi fra 2003 (570 sider). Delphi ophørte med

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Kvadrant - instrumentbeskrivelse og virkemåde

Kvadrant - instrumentbeskrivelse og virkemåde Kvadrant instrumentbeskrivelse og virkemåde Kvadrant - instrumentbeskrivelse og virkemåde Kvadranterne i instrumentpakken fra geomat.dk er kopier af et instrument lavet af Georg Hartman i 1547. Originalen

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx131-MATn/A-29052013 Onsdag den 29. maj 2013 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 4 udgave 04 FORORD Dette notat giver en gennemgang af de matrixoperationer,

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning Projekt 55 Andengradspolynomier af to variable Kvadratiske funktioner i to variable - de tre typer paraboloider f() = A + B + C, hvor A 0 Et andengradspolynomium i en variabel har en forskrift på formen

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 4 4 0 0 0 4 x x x x 5 udgave 05 FORORD Dette notat viser hvorledes man kan dels kan løse lineære

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave B

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave B Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Opgaven består af fire dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Integralregning. for B-niveau i stx Karsten Juul

Integralregning. for B-niveau i stx Karsten Juul Integralregning or B-niveau i st 0 Karsten Juul Stikordsregister A areal5, 7, 9 areal mellem to graer 8, 9 arealunktion, 6 B bestemt integral5 bestemt integral med Nspire 5 bestemt integral uden hjälpemidler

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen st10-mat/b-108010 Torsdag den 1. august 010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

Vejledende årsplan for matematik 5.v 2009/10

Vejledende årsplan for matematik 5.v 2009/10 Vejledende årsplan for matematik 5.v 2009/10 Uge Emne Formål Opgaver samt arbejdsområder 33-36 Geometri 1 Indlæring af geometriske navne Figurer har bestemte egenskaber Lære at måle vinkler med vinkelmåler

Læs mere

Opgaver med hjælp Funktioner 2 - med Geogebra

Opgaver med hjælp Funktioner 2 - med Geogebra Opgaver med hjælp Funktioner 2 - med Geogebra Nulpunkter, monotoniforhold og ekstrema Formålet med denne note er at tegne os frem til nulpunkter, monotoniforhold og ekstrema for en funktion ved hjælp af

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Matematik & Statistik

Matematik & Statistik Matematik & Statistik Simon Kaiser August 6 FORORD... - 4 - KAPITEL 1: SIMPLE REGNEREGLER OG LIGNINGER... - 5-1. ELEMENTÆRE REGNEREGLER...- 5-1.1 Parentesregning... - 5-1. Brøkregneregler... - 5-1..1 Generelle

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår forår 2019, eksamen maj-juni 2019 Institution Kolding HF & VUC Uddannelse STX Fag og niveau Matematik

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Facitliste opgaver 9. f er aftagende i intervallerne ]- ; -0,7] og [0 ; 0,7] (0,0) Kernestof 2 ISBN Opg a. b. c.

Facitliste opgaver 9. f er aftagende i intervallerne ]- ; -0,7] og [0 ; 0,7] (0,0) Kernestof 2 ISBN Opg a. b. c. Website: Facitlister til opgaver i Facitliste opgaver 9 Opg. 901 c. = 3 ( x) 4x x x = 0,7 og x = 0,7 er atagende i intervallerne ]- ; -0,7] og [0 ; 0,7] er voksende i intervallerne [-0,7 ; 0] og [0,7 ;

Læs mere

MAT B GSK december 2008 delprøven uden hjælpemidler

MAT B GSK december 2008 delprøven uden hjælpemidler MAT B GSK december 008 delprøven uden hjælpemidler Opg Nedenstående diagram viser sumkurven F() for fordelingen af målte hastigheder højst 60 km/t. Bestem kvartilsættet (bent bilag ) og bestem hvor mange

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Matematik A Delprøven uden hjælpemidler

Matematik A Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 009 HHX091-MAA Matematik A Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over

Læs mere

Kapitel 8. Hvad er matematik? 1 ISBN Øvelse 8.2

Kapitel 8. Hvad er matematik? 1 ISBN Øvelse 8.2 Kapitel 8 Øvelse 8.2 Til Maria Pia broen bruger vi de tre punkter (0,0), (80,60) og (160,0). Disse er indtegnet i et koordinatsstem og vi har lavet andengradsregression. Og Garabit broen: Øvelse 8.8 Definitionsmængden

Læs mere

Løsninger til eksamensopgaver på A-niveau 2016

Løsninger til eksamensopgaver på A-niveau 2016 Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7

Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7 Oversigt [S] 11.8 Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7 Calculus 2-2006 Uge 47.2-1 Skitse [S] 11.8 Niveaukurver y f(x,y)=1

Læs mere

Løsninger til eksamensopgaver på A-niveau 2013

Løsninger til eksamensopgaver på A-niveau 2013 Løsningerne er hentet på www.szymanskispil.dk Quizspillene ASHRAM, MIR og SPORTSNØRD Løsninger til eksamensopgaver på A-niveau 013 4. maj 013: Delprøven UDEN hjælpemidler Opgave 1: Udtrykket reduceres

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Løsninger til eksamensopgaver på B-niveau 2017

Løsninger til eksamensopgaver på B-niveau 2017 Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 til juni 2018 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Matematik A studentereksamen

Matematik A studentereksamen Xxxx Side 1 af 11 Opgave 7 Jeg aflæser af boksplottet for personbeskatningen i 2007 medianen til. Første og anden kvartil aflæser jeg til hhv. og. Den mindst observerede personbeskatning i år 2007 var

Læs mere