MATEMATISK FORMELSAMLING

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "MATEMATISK FORMELSAMLING"

Transkript

1 MATEMATISK FORMELSAMLING GUX Grønlnd

2 Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup

3 MtemtiskformelsmlingtilB-niveu GUX Grønlnd

4 FORORD Denne formelsmling til mtemtik B-niveu er udrbejdet for t give et smlet overblik over de formler og det symbolsprog, der knytter sig til kernestoffet for dette niveu på GUX ifølge læreplnerne fr 0. Formelsmlingen vil være prktisk både for elever og lærere. Den finder nvendelse i det dglige rbejde, som et opslgsværk, og et nyttigt redskb under eksmen. Formelsmlingen hr imidlertid ingen juridisk sttus, og kernestoffet til skriftlig eksmen er ikke defineret f den. For overblikkets skyld er medtget formler for rel og rumfng f en række elementære geometriske figurer. Endvidere indeholder formelsmlingen en liste over mtemtiske stndrdsymboler. Hensigten hermed er dels t give eleverne et hurtigt overblik, dels t bidrge til t undervisere og forfttere f undervisningsmteriler kn nvende ensrtet nottion, symbolsprog og terminologi. Listen over mtemtiske stndrdsymboler rækker derfor ud over kernestoffet, men holder sig dog inden for det mtemtiske område. Nogle formler optræder flere steder i formelsmlingen, hvor de hører nturligt hjemme. Dette er vlgt for t skbe smmenhæng i det enkelte fsnit og f hensyn til elevers søgning i en eksmenssitution. En række f formlerne i formelsmlingen er kun nvendelige under visse forudsætninger (f.eks. t nævneren i en brøk er forskellig fr 0). Sådnne forudsætninger er f hensyn til overskueligheden ikke eksplicit nævnt. Figurerne er medtget som illustrtion til formlerne, og den enkelte figur viser ofte ét blndt flere mulige tilfælde. Betydningen f de størrelser, der indgår i formlerne, er ikke ltid forklret, men vil dog være det i tilfælde, hvor denne betydning ikke følger umiddelbrt f skik og brug i den mtemtiske littertur. Formelsmlingen udgives f Deprtementet for uddnnelse og stilles frit til rådighed vi deprtementets undervisningsportl. Tk til Mtemtiklærerforeningen smt opgvekommissionen for deres kommentrer og bidrg til rbejdet. Redktionen er fsluttet december 05. Rsmus Andersen Fgkonsulent Jens Thostrup

5 Indholdsfortegnelse Mtemtisk formelsmling til B-niveu... Delprøven uden hjælpemidler - forventninger til eleven... 4 Procentregning... 5 Potenser... 5 Ensvinklede treknter... 6 Retvinklet treknt... 6 Vilkårlig treknt... 6 Kvdrtsætninger... 7 Proportionlitet... 7 Koordintsystem... 7 Linjer... 8 Cirkel... 9 Prbel... 9 Polynomier... 0 Logritmefunktioner... Eksponentielt voksende funktioner... Eksponentiel ftgende funktioner... 3 Potensfunktioner... 4 Differentilregning... 5 Afledet funktion... 6 Integrlregning... 7 Stmfunktion... 8 Arel... 8 Ugrupperede observtioner... 9 Grupperede observtioner... 0 Arel og omkreds, rumfng og overflde f geometriske figurer... Mtemtiske stndrdsymboler... Stikordsregister... 7 Formler, der kn forekomme i delprøven uden hjælpemidler i prøveform b, er ngivet med blå skrift. 3

6 Delprøven uden hjælpemidler - forventninger til eleven Ved prøveform b er der en delprøve uden hjælpemidler. Nedenstående er en beskrivelse f forventninger til eleven ved denne delprøve. Beskrivelsen bør eleverne gøres bekendt med. Med hensyn til forståelse skl eleverne kunne: Opstille enkle formler og ligninger ud fr en sproglig beskrivelse Aflæse på sumkurver, herunder flæse frktiler og give en fortolkning f disse Hve kendskb til grfers forløb Redegøre for konstnternes betydning i det grfiske forløb for første- og ndengrdspolynomier smt eksponentielle funktioner Fortolke konstnter i lineære og eksponentielle vækstmodeller Anvende viden om fordoblings- og hlveringskonstnt for eksponentiel vækst Anvende viden om smmenhængen mellem væksthstighed og differentilkvotient Anvende viden om smmenhængen mellem fledet funktion og monotoniforhold Fortolke værdien f fledet funktion Anvende viden om smmenhængen mellem stmfunktion, bestemt integrl og rel Med hensyn til formler, ligninger og funktionsudtryk skl eleverne kunne: Løse simple første- og ndengrdsligninger Sætte tl ind i formler Bestemme fstnd mellem to punkter Foretge beregninger i ensvinklede og retvinklede treknter Anvende og opstille ligning for cirkel Bestemme ligning for linjer og bestemme linjers skæring Isolere ukendte størrelser i simple formeludtryk Bestemme regneforskrifter for lineære og eksponentielle funktioner Differentiere polynomier, e, ln() og, herunder og Anvende følgende regneregler for differentition: Bestemme en tngentligning f g og k f Bestemme integrler f polynomier, e, og Anvende de regneregler for integrtion, som er beskrevet i kernestoffet 4

7 Procentregning Begyndelsesværdi B Slutværdi S Vækstrte r Strtkpitl K0 Rentefod pr. termin r Kpitl K efter n terminer () S B( r) () K K0 ( r) n Smlet rente R (3) R ( r) n Gennemsnitlig rente (4) r n ( r) ( r) ( r n ) Potenser n m n m Potensregneregler (5) (6) n m (7) ( ) nm n m nm (8) ( b) n n b n (9) n b b 0 (0) () () n n n n n n (3) q p p q Potensligninger Løsning til ligningen Løsning til ligningen n n (4) c (5) log( c) log() c log( ) 5

8 Ensvinklede treknter (6) (7) b c k b c b c k kb kc Sklfktor, forstørrelsesfktor k Retvinklet treknt Pythgors sætning (8) c b Cosinus (9) b cos( A) c Sinus (0) sin( A) c Tngens () tn( A) b Vilkårlig treknt Cosinusreltion () (3) Sinusreltion (4) (5) Trekntens rel T (6) c b b C b c cos( C) b cos( ) b c sin( A) sin( B) sin( C) sin( A) sin( B) sin( C) b c T b C sin( ) 6

9 Kvdrtsætninger Kvdrt på en sum (7) Kvdrt på en differens (8) To tls sum gnge smme to tls differens (9) ( ) b b b ( ) b b b ( b) ( b) b Proportionlitet og y er proportionle y (30) y k k Proportionlitetsfktor k og y er omvendt proportionle (3) yk k y Koordintsystem Afstnd AB mellem to punkter A og B Midtpunkt M f linjestykke AB (33) (3) AB ( ) ( y y ), y M y 7

10 Linjer Ligning for linjen gennem punktet (0, b) med hældningskoefficient Hældningskoefficient for linjen gennem A og B (34) y b (35) y y (36) tn() v Ligning for linjen gennem punktet P0( 0, y 0) med hældningskoefficient (37) y( 0) y0 Ortogonle linjer (38) l m c Afstnd fr punktet P til linjen l med ligningen byc 0 Afstnd fr punktet P til linjen l med ligningen yb (39) (40) byc dist( Pl,) b by dist( Pl,) 8

11 Cirkel Ligning for cirklen med centrum C(, b ) og rdius r (4) ( ) ( yb) r Prbel Ligning for prbel (4) Diskriminnt d (43) y bc d b 4 c b d Toppunkt T (44) T, 4 b d Nulpunkter (45), b d 9

12 Polynomier Førstegrdspolynomium, lineær funktion f (46) f ( ) b y y Hældningskoefficient, stigningstl (47) Andengrdspolynomium p med nulpunkter (rødder) og (48) Diskriminnt d (49) ) p( bc ( ) ( ) d b c b d Nulpunkter (rødder) i p (50) 4, b d 0

13 Logritmefunktioner Grfen for den nturlige logritmefunktion (5) yln( ) e y (5) ln( ) når 0 (53) ln( ) når Logritmeregneregler (54) ln(e) (55) ln( b) ln( ) ln( b) (56) ln ln( ) ln( b) b r (57) ln( ) rln( ) Grfen for logritmefunktionen med grundtl 0 (58) y log( ) 0 y (59) log( ) når 0 (60) log( ) når Logritmeregneregler (6) log(0) (6) log( b) log( ) log( b) (63) log log( ) log( b) b r (64) log( ) rlog( )

14 Eksponentielt voksende funktioner Grf for en eksponentielt voksende funktion f Fremskrivningsfktor > Vækstrte r > 0 (65) f( ) b f( ) b( r) k f( ) be, hvor k ln( ) (66) f( ) når (67) f( ) 0 når Fremskrivningsfktor ud fr to punkter på grfen (, y ) og (, y) (68) y y y y Grf for f( ) b i et enkeltlogritmisk koordintsystem Fordoblingskonstnt T (69) T log ln ln log ln k

15 Eksponentiel ftgende funktioner Grf for en eksponentielt ftgende funktion f Fremskrivningsfktor 0 < < Vækstrte r < 0 (70) f( ) b f( ) b( r) k f( ) be, hvor k ln( ) (7) f( ) 0 når (7) f ( ) når Fremskrivningsfktor ud fr to punkter på grfen (, y ) og (, y) (73) y y y y Grf for f( ) b i et enkeltlogritmisk koordintsystem Hlveringskonstnt T (74) T log ln ln log( ) ln( ) k 3

16 Potensfunktioner Potensfunktion (75) f( ) b Grfer for f( ) Grf for f( ) b i et dobbeltlogritmisk koordintsystem Tllet ud fr to punkter på grfen (, y ) og (, y) (76) y y log ln y y log ln Reltiv tilvækst i -værdi r Reltiv tilvækst i y-værdi ry (77) r ( r ) y 4

17 Differentilregning Differentilkvotienten f ( 0) for funktionen f i tllet 0 (78) f( ) f( 0) f( 0 ) lim 0 f( 0 h) f( 0) lim h0 h 0 Ligning for tngenten t til grfen for f i punktet P( 0, f( 0)) (79) y f( ) ( ) f( ) ( 0) y0, hvor f( 0) og y 0 f ( 0 ) Regneregler for differentition (80) ( f ( ) g( )) f ) g( ) (8) ( f ( ) g( )) f ) g( ) (8) ( k f ( )) k f ( ) (83) ( f ( ) g( )) f ) g( ) f ( ) g( ) 5

18 Afledet funktion Funktion Afledet funktion dy y f ( ) y f ( ) d Logritmefunktion (84) ln( ) Eksponentilfunktioner (85) e e (86) e k k e k (87) ln( ) Potensfunktioner (88) (89) (90) 6

19 Integrlregning Ubestemt integrl (9) f( ) d F( ) c, hvor F ( ) er en stmfunktion til f( ) Regneregler for ubestemte integrler (9) ( f ( ) g( )) d f ( ) d g( ) d (93) ( f ( ) g( )) d f ( ) d g( ) d (94) k f ( ) d k f ( ) d b Bestemt integrl (95) b f() d F () Fb () F (), hvor F ( ) er en stmfunktion til f( ) Regneregler for bestemte integrler b b b (96) ( f () g()) d f () d g() d b b b (97) ( f () g ()) d fd () gd () b (98) k f () d k f () d Indskudsreglen (99) f() d f() d f() d b c b c b 7

20 Stmfunktion Funktion Stmfunktion f ( ) f () d Eksponentilfunktioner (00) e e (0) e k (0) e k k ln( ) Potensfunktioner (03) (04) (05) ln( ) Arel Arel A f det mrkerede område (06) A () b f d Arel A f det mrkerede område (07) A ( f () g()) d b 8

21 Ugrupperede observtioner Pindedigrm (stolpedigrm) (66) Højden f en pind svrer til frekvens (eller hyppighed) Trppedigrm (08) Q : nedre kvrtil, 5%-frktil m : medin, 50%-frktil Q : øvre kvrtil, 75%-frktil 3 Middeltl for observtionssættet,,..., n (09) n... n Middeltl for observtionsværdierne,,..., n med frekvenser f, f,..., fn f f f (0) n n 9

22 Grupperede observtioner Histogrm () Arelet f en blok svrer til intervlfrekvens (eller intervlhyppighed) Histogrm med ens intervlbredder () Højden f en blok svrer til intervlfrekvens (eller intervlhyppighed) Sumkurve (3) Q : nedre kvrtil, 5%-frktil m : medin, 50%-frktil Q : øvre kvrtil, 75%-frktil 3 Middeltl på bggrund f intervlmidtpunkter m, m,, m3 og intervlfrekvenser f, f,, f3 m f m f m f (4) n n 0

23 Arel og omkreds, rumfng og overflde f geometriske figurer Treknt Prllelogrm Trpez Cirkel Kugle Cylinder Kegle h højde g grundlinje A rel A hg h højde g grundlinje A rel Ahg h højde, prllelle sider b A rel A h( b) r rdius A rel Ar O omkreds O r r rdius O overflde O4r V rumfng 4 V 3 r 3 h højde r grundflderdius O krum overflde O rh V rumfng V r h h højde s sidelinje r grundflderdius O krum overflde O rs V rumfng V 3 r h

24 Mtemtiske stndrdsymboler Symbol Betydning Eksempler, bemærkninger m.v. {.,.,.,} mængde på listeform { 5, 0,3,0}, {,4,6}, {,,0,, } N, mængden f nturlige tl N {,,3, } Z, mængden f hele tl Z {,,,0,,, } Q, mængden f rtionle tl tl, der kn skrives som brøk p q, hvor p Z, q N R, mængden f reelle tl tilhører / er element i N, dvs. tllet er et nturligt tl b ; lukket intervl b ; hlvåbent intervl b ; hlvåbent intervl b ; åbent intervl ;3 svrer til 3 ;3 svrer til 3 ;3 svrer til 3 ;3 svrer til 3 < er mindre end 3 < 7 > er større end 5 > 4, er mindre end eller lig med 3 7, 3 3, er større end eller lig med 5 4, 4 4 og i betydningen både og (konjunktion) eller i betydningen og/eller (disjunktion) medfører, hvis så (impliktion) ensbetydende, hvis og kun hvis (biimpliktion) y

25 Symbol Betydning Eksempler, bemærkninger m.v. f ( ) Dm( f ) Vm( f ) funktionsværdi f ved funktionen f definitionsmængden for f værdimængden for f f ( ), så er f (4) 9. log logritmefunktionen med grundtl 0 ln den nturlige logritmefunktion ln e den nturlige eksponentilfunktion eksponentilfunktion med grundtl, > 0 potensfunktion ylog 0 y y e e y betegnes også ep() b eksponentilfunktion eller en eksponentiel udvikling kldes undertiden for en b potensfunktion eller en potensudvikling kldes undertiden for en numerisk (bsolut) værdi f 3 3, 7 7 betegnes også bs() sin( ) sinus cos( ) tn( ) cosinus tngens sin( ) tn( ) cos( ) sin ( y) omvendt funktion til sinus sin( ) y sin ( y) sin ( y) betegnes også rcsin( y) cos ( y) omvendt funktion til cosinus cos( ) y cos ( y) cos ( y) betegnes også rccos( y) tn ( y) omvendt funktion til tngens tn( ) y tn ( y) tn ( y) betegnes også rctn( y) 3

26 Symbol Betydning Eksempler, bemærkninger m.v. lim f( ) 0 grænseværdi for f ( ) når går mod 0 8 lim 3 lim f( ) f( ) når 0 f( ) når grænseværdi for f() når går mod f ( ) går mod når går mod 0 f ( ) går mod når går mod lim 0 e 3 når 8 0 når -tilvækst 0 y, f funktionstilvækst for y f( ) y f, differenskvotient for y f( ) f( 0) differentilkvotient for y f( ) i 0 y yy f f( ) f( ) 0 y f f( ) f( 0) f 0 f( ) f( 0) ) lim 0 f lim f fledet funktion f y f ( ) betegnes f ( ), y og dy d 0 0 y lim b f ( ) d f ( ) d stmfunktion (ubestemt integrl) til f ( ) bestemt integrl fr til b f f () 4

27 Symbol Betydning Eksempler, bemærkninger m.v. AB AB AB AB linjestykke AB længde f linjestykket AB cirkelbue AB længde f cirkelbuen AB er prllel med er vinkelret på l m læses også l og m er ortogonle A vinkel A A 0 eller A 0 ABD vinkel B i treknt ABD retvinklet treknt midtnorml n for linjestykket AB 5

28 Symbol Betydning Eksempler, bemærkninger m.v. h b højde fr B på siden b eller dens forlængelse mb medin fr B på siden b vb vinkelhlveringslinje for vinkel B treknt ABC s omskrevne cirkel treknt ABC s indskrevne cirkel 6

29 Stikordsregister A fledet funktion 6, 4 G gennemsnitlig rente 5 fstnd fr punkt til linje 8 grupperede observtioner 0 fstnd mellem to punkter 7 grænseværdi 4 ndengrdspolynomium 0 rccosinus 3 H hlveringskonstnt 3 rcsinus 3 histogrm 0 rctngens 3 hypotenuse 5 rel hældningskoefficient 8, 0 - bestemt ved grfer 8 højde 6 - f cirkel - f prllelogrm 0, 5, I impliktion - f treknt 7, 0, 5, indskreven cirkel 6 indskudsreglen 7 B bestemt integrl 7, 4 integrlregning 7 biimpliktion intervl intervlfrekvens 0 C cirkel 9, invers funktion 3 cosinus 6,3 cosinusreltion 6 K kpitl 5 cylinder ktete 5 kegle D definitionsmængde koordintsystem 7 differenskvotient 4 kvdrtsætninger 7 differentilkvotient 4 kvrtiler 9, 0 differentilregning 5 diskriminnt 9, 0 L lineær funktion 0 linjer 8 E eksponentilfunktioner linjestykke 5,3, 6, 8, 3 logritmefunktioner, 6, 3 ensvinklede treknter 6 M medin 9, 0, 6 F fordoblingskonstnt middeltl 9, 0 frekvens 9,0 midtnorml 5 fremskrivningsfktor,3 midtpunkt f linjestykke 7 førstegrdspolynomium 0 mængde 7

30 N nedre kvrtil 30, 3 S smlet rente 5 nulpunkt 9, 0 sinus 6, 3 numerisk værdi 3 sinusreltion 6 stmfunktion 8 O omskreven cirkel 6 stigningstl 0 omvendt funktion 3 stolpedigrm 9 omvendt proportionlitet 7 sumkurve 0 ortogonle 8 symbolliste -6 overflde f - cylinder, - kegle, - kugle T tngens 6, 3 tngent 9, 5 P prbel 9 toppunkt 9 prllelogrm trpez pindedigrm 9 trppedigrm 9 polynomier 0 treknt 6, potensfunktion 4, 6, 8, 3 potensregneregler 5 U ubestemt integrl 7, 4 potensligninger 5 ugrupperede observtioner 9 procentregning 5 proportionlitet 7 V vilkårlig treknt 6 Pythgors sætning 7 vinkelhlveringslinje 6 vinkelret 5 R regneregler for vinkel 5 - differentition 5 vækstrte 5,, 3 - integrtion 7 værdimængde retvinklet treknt 6, 5 rentefod 5 Ø øvre kvrtil 9, 0 rod, rødder 0 rumfng f - cylinder 3 - kegle 3 - kugle 3 8

31

32

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til A-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup Mtemtisk formelsmling til A-niveu GUX Grønlnd FORORD

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks Formelsmling for mtemtik niveu B og A på højere hndelseksmen Appendiks April Mtemtik B Procentregning Procentvis vækst Værdien f en given vriel x liver ændret fr x til x 1. Den %-vise vækst eregnes ved:

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... 1 BRØER... PARENTESER... 3 PROCENT... 4 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER STUDENTEREKSAMEN NOVEMBER-DECEMBER 007 007-8-V MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Tirsdg den 18 december 007 kl 900-1000 BESVARELSEN AFLEVERES KL 1000 Der

Læs mere

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1 Mtemtisk fomelsmling til A-niveu - i fosøget med netdgng til skiftlig eksmen Food Mtemtisk fomelsmling til A-niveu e udejdet fo t give et smlet ovelik ove de fomle og det symolspog, de knytte sig til kenestoffet

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:

Læs mere

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave Teknisk Mtemtik Formler Teknisk Mtemtik Formler Preen Mdsen 8. udge Teknisk mtemtik Formler er et prktisk opslgsærk, der gier et hurtigt oerlik oer lle formler fr læreogens enkelte kpitler. Ud oer formlerne

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Matematik F Geometri

K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Matematik F Geometri K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN Mtemtik F Geometri www.if.dk Mtemtik F Geometri Forord Redktør Hgen Jørgensen År 2004 est. nr. Erhvervsskolernes Forlg Munkehtten 28 5220 Odense

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

gudmandsen.net Geometri C & B

gudmandsen.net Geometri C & B gudmndsen.net Geometri C & B Indholdsfortegnelse 1 Geometri & trigonometri...2 1.1 Område...2 2 Ensvinklede treknter...3 2.1.1 Skleringsfktoren...4 3 Retvinklede treknter...5 3.1 Pythgors lærersætning...5

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0 INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Gymnasie-Matematik. Søren Toftegaard Olsen

Gymnasie-Matematik. Søren Toftegaard Olsen Gmnsie-Mtemtik Søren Toftegrd Olsen Søren Toftegrd Olsen Skovvænget 6-B 7080 Børkop Gmnsie-Mtemtik. udgve, revision 0 ISBN 978-87-99996-0-0 VIGTIGT: Denne og må ikke sælges eller ændres; men kn frit kopieres.

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

Stamfunktion & integral

Stamfunktion & integral PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn

Læs mere

Elementær Matematik. Vektorer i planen

Elementær Matematik. Vektorer i planen Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning

Læs mere

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11 Formelsmling Mt. C BRØER... LIGNINGER... PARENTESER... RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... VILÅRLIG TREANT... Sinusreltionerne:... Cosinusreltionerne:...

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010 Institution Frederikshavn Handelsgymnasium Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Nsser 20. pril 2011 c 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

Elementær Matematik. Plangeometri

Elementær Matematik. Plangeometri Elementær Mtemtik Plngeometri Ole Witt-Hnsen Køge Gymnsium 006 Kp Indhold. Plngeometriens Aksiomer.... Vinkler.... Et pr simple geometriske sætninger...3 Kp. Trekntskonstruktion...5. Kongruenssætningerne...5.

Læs mere

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE...

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE... MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: FERUAR 04 Michel Mndi (00) Side f 35 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... EN TREKANTS VINKELSUM... 3 PYTHAGORAS

Læs mere

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k 0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler

Læs mere

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske

Læs mere

Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2

Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2 geometri exempler 4 m 3 m rel: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m 5 m 5 m rel: 5 5 = 25 m 2 omkreds: 5+5+5+5 = 20 m 8 dm 5 dm rel: 8 5 = 40 dm 2 8 dm 5 mm 4 mm 1 2 rel: 4 (5+9) = 28 mm 2 9 mm 7 km rel:

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeborg 09-0-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Udrbejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger fejl i

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Maj-juni 2015 VUCHA Hf-2 Matematik-C Ivan Jørgensen(itj) Hold

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y

GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y GEOMETRI Generelt om inkler Nottion for inkler: u, A, BAC Topinkler er lige store, x y Komplementinkler er inkler, der tilsmmen er 90 u + 90 Supplementinkler er inkler, der tilsmmen er 180 (I stedet for

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

FORMELSAMLING. Indholdsfortegnelse

FORMELSAMLING. Indholdsfortegnelse FOMELSAMLNG ndholdsfortegnelse ndholdsfortegnelse... EL-LÆE...3 Ohm s lov:...3 Effekt lov:...3 egler ved måling:...3 egler ved serieforbindelser:...3 egler ved prllelforbindelser:...4 egler ved blndede

Læs mere

1. Eksperimenterende geometri og måling

1. Eksperimenterende geometri og måling . Eksperimenterende geometri og måling Undersøgelse Undersøgelsen drejer sig om det såkldte Firfrveproblem. For mere end 00 år siden fndt mn ved sådnne undersøgelser frem til, t fire frver er nok til t

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet.

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet. !#" $ "&% (')"&*,+.-&/102%435"&6,+879$ *1')*&: or et system, hvor kun den termiske energi ændres, vil tilvæksten E term i den termiske energi være: E term A + Q hvor A er de ydre kræfters rbejde på systemet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016/Januar 2017 Institution HF & VUC Nordsjælland Helsingør-afdelingen Uddannelse Fag og niveau

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010 Mtemtikprojekt om Integrlregning Lvet f Arendse Morsing Gunill Olesen Julie Slvensky Michel Hnsen 15 Oktober 21 Indhold I Del 1................................ 3 I Generelt om stmfunktioner og integrler........

Læs mere

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R =

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R = Plnintegrlet Preben Alsholm 5. mj 8 Plnintegrlet. Integrlet f en funktion f én vribel et bestemte integrl efinition Ld f være en funktion defineret på intervllet [ b]. Ld = x x... x n = b være en inddeling

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Louise Jakobsen,

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

ANALYSE 1, 2014, Uge 3

ANALYSE 1, 2014, Uge 3 ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.

Læs mere

Matematisk formelsamling. Hf C-niveau

Matematisk formelsamling. Hf C-niveau Mtemtisk fomelsmling Hf C-niveu Denne udgve f Mtemtisk fomelsmling Hf C-niveu e udgivet f Undevisningsministeiet og gjot tilgængelig på uvm.dk. Fomelsmlingen e udejdet i et smejde mellem Mtemtiklæefoeningen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2011 Institution Frederikshavn Handelsgymnasium Uddannelse Fag og niveau Lærer(e) HHX Matematik B Niels

Læs mere

Vektorer. koordinatgeometri

Vektorer. koordinatgeometri Vektorer og koordintgeometri for gymnsiet, dge 5 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors

Læs mere

Eksamensspørgsmål: Potens-funktioner

Eksamensspørgsmål: Potens-funktioner Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Jun 2016 Institution HF & VUC Nordsjælland Helsingør afdeling Uddannelse Fag og niveau Lærer(e) Hold HF

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj, 2015 Institution VID Gymnasier, Handelsgymnasium Rønde Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2015-2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab1 Oversigt over gennemførte undervisningsforløb

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Januar 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2014/15, eksamen maj-juni 2015 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Krumningsradius & superellipsen

Krumningsradius & superellipsen Krumningsrdius & suerellisen Side /5 Steen Toft Jørgensen Krumningsrdius & suerellisen Formålet med dette mini-rojekt er t erhverve mtemtisk viden om krumningsrdius f en kurve og nvende denne viden å det

Læs mere

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2.

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2. Differentil-kvotient Ld f være en funktion - f.eks. f (x) = 2x 2. Produkt og mrked - differentil og integrlregning Rsmus Wgepetersen Institut for Mtemtiske Fg Alborg Universitet Februry 14, 2014 Differentilkvotienten

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2014 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Susanne Hansen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2009 Institution Herningsholm Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B og A (1.år)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 til juli 2017 Institution Teknisk Gymnasium Sønderborg Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2016 VUCHA Hf-2 og Hf-Enkeltfag Matematik-C Anders

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2011 Institution Frederikshavn Handelsgymnasium Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2015 Roskilde

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2017 Institution HANSENBERG Gymnasium Uddannelse Fag og niveau Lærer(e) Hold htx Matematik A Irina Kristensen

Læs mere