Stamfunktion & integral

Størrelse: px
Starte visningen fra side:

Download "Stamfunktion & integral"

Transkript

1 PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn findes ved hjælp f CAS-værktøj... Stmfunktion En funktion F kldes stmfunktion til en funktion f hvis F = f. Fx: F(x) = x² og f(x) = 2x. Der findes uendelig mnge stmfunktioner til 2x, l.. også (x²+) idet (x²+) = 2x Der gælder, t lle stmfunktioner til 2x er (x²+k) hvor k er et tl, der med et fint ord kldes en ritrær konstnt. Aritrær etyder tilfældig eller vilkårlig. Enhver f disse stmfunktioner kn etegnes med den særlige skrivemåde: 2x, som udtles integrlet f 2x med hensyn til x. Nogen gnge siger mn det uestemte integrl. Det er uestemt hvilken stmfunktion, der menes, når mn skriver 2x Der gælder således 2x = x² + k, hvor k er en ritrær konstnt At integrere en funktion vil sige t finde stmfunktionerne. Eksempler: F(x) = x² er en stmfunktion til f(x) = 2x, fordi (x²) = 2x G(x) = x² + er en stmfunktion til g(x) = 2x, fordi (x² + ) = 2x Bemærk G(x) = F(x) + Generelt kn mn sige: Hvis der til en funktion f findes en stmfunktion F, så gælder:. G(x)=F(X)+k er også stmfunktion for f, idet k er et tilfældigt tl, kldet en ritrær konstnt. 2. Enhver stmfunktion til f kn skrives på formen G(x) =F(X)+k hvor k er et konstnt tl. Dvs., lle stmfunktioner til f udgøres f dem, der kn skrives på formen G(x)=F(X) + k

2 Bevis:. G (x) = (F(x)+k ) = f(x) + 0 = f(x). hvorfor G er stmfunktion til f. 2. Vi etrgter stmfunktion til f : G. (G(x) F(x)) = G (x) F (x) = f(x) f(x) = 0. Grfen for (G(x) F(x)) er derfor vndret overlt og (G(x) F(x)) = et konstnt tl k. Altså G(x)=F(X)+k. Integrl (Uestemt integrl) En stmfunktion til f kldes også det uestemte integrl til f og etegnes f(x) Ofte siges lot integrlet til f Eksempler på integrler ses til højre, hvor k er en ritrær konstnt og Ln er en særlig funktion, vi skl lære om senere. Løs interktive opgver og Se regler for integrtion f(x) f(x) x 2 x² + k x + 2 x² + x + k x + k x² ⅓ x³ + k x² x³ + k 6x² 2 x³ + k x³ ¼ x + k x³ / x +k /n+ x n+ + k Ln(x) Ln(-x) xⁿ (n ikke lig -) x - (x>0) x - (x<0) Det estemte integrl Ld F være en stmfunktion til f. Det estemte integrl f f fr til defineres som F() F() og etegnes F() F() kn kortfttet skrives således: [ F ( x)] Altså: Det estemte integrl f f fr til = f x) f x) ( = ( hr smme værdi unset hvilken stmfunktion til f, mn etrgter. [ F ( x)] = F() F(). Bevis Hvis mn etrgter 2 forskellige stmfunktioner til f, F og F 2, vil de kun dskille sig fr hinnden ved en ritrær konstnt. Dvs F 2 (x) - F ( x) vil ltid give den smme værdi unset x. Den værdi kn vi klde k. Det kn udtrykkes således: F 2 (x) - F ( x) = k F 2 (x) = F ( x) + k Herefter ses det let t F 2 () F 2 () hr smme værdi som F () F (), idet F 2 () F 2 () = (F () + k) (F () + k) = F () F ().

3 Bemærk Det estemte integrl er et estemt tl, nemlig = 6²-² = 6-9 = 2 Det estemte integrl er en estemt funktion med regneforskrift: = x²-² = x²-9 Vi skl i øvrigt snrt se, t er relet f det område i koordintsystemet, der ligger mellem intervllet [; 6] på x-ksen og grfen for 2x. Bemærk 2x>0 når x er i intervllet [; 6]. Arel og integrl Ved integrlregning kn mn finde rel f mnge forskellige figurer. Vi vil nu etrgte en funktion, som er positiv eller eventuelt nul og kontinuert i et lukket intervl [; ]. x er et tl i intervllet. I ovenstående tegning etrgtes det skrverede rel, der fgrænses f grfen, x-ksen og de lodrette linjer gennem og x. Dette rel fhænger f, hvor i intervllet x plceres. Arelet er således en funktion f x, og kldes relfunktionen, og den vil vi etegne således: A A(x) er således lig det skrverede rel. Der gælder: A er en stmfunktion til f, og A er den stmfunktion, hvor A() = 0. Det vil vi ikke evise, men nskueliggøre. At A() = 0 virker temmelig indlysende. At A er en stmfunktion til f er også temmelig indlysende. Det ses således: A A ( x h) A( x) = h x I tegningen til højre vises situtionen ved en lille positiv h-værdi. Det virker troværdigt, t tælleren er lig, eller næsten lig, relet f det mørkt mrkerede rektngel. D rektnglet hr grundlinjen h er røken så godt som lig højden f rektnglet, ltså f(x). A Dermed hr vi nskueliggjort, t x Altså, t A (x) = f(x), som etyder, t A en stmfunktion til f. f(x) for h 0 (røken nærmer sig f(x). når h nærmer sig nul)

4 Bemærk = A() - A() = A() 0 = A(). Dvs. hvis en grf for en funktion f ligger over x-ksen på stykket fr til, kn mn eregne relet f det område, der ligger mellem x-ksen og grfen fr til således: Arelet f området f fr til mellem 2 grfer for funktionerne f og g, hvor f(x)>g(x) kn eregnes således: Eksempel: f(x) = 2x, F(x) = x 2 g(x)= x², G(x) = Arelet mellem de to grfer er Regneregler for estemte integrler g( x) = g ( x) c = c = c + c Den sidste regel kldes Indskudsreglen Eksempler: = = ( / 2 ² - / 2 2² ) (2 2 2) = 2½ x = x = [½x ²] = ( ½ ² - ½ ² ) = 6½ = 82½ 2x = [x ²] = ² - ² = 2 2x = 2x + 2x = 2 [x ²] + [x ²] = (² - ²) + (² - ²) = ² - ² =

5 Integrler / stmfunktioner kn findes ved hjælp f CAS-værktøj På TI89 findes f. eks. 2 x ved t tste: F6 Enter Enter F 2 2 x, x ) Enter 2x fås ved t tste: F6 Enter Enter F 2 2 x, x,, ) Enter På PC med TI Interctive gøres følgende: Klik i Mth Box (Første ikon i skærmens. linje) Klik i Tools i det nye vindue Vælg Integrl Vælg Single integrl w/out limits Skriv 2x i det venstre felt Skriv x i det højre felt Tst Enter I RegneRoot, klik i Guide & CAS og vælg Differentil- og integrlregning. Se eventuelt Vejledning til RegneRoot. Se eventuelt det sidste f videoen: CAS

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0 INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem

Læs mere

Eksamensspørgsmål: Potens-funktioner

Eksamensspørgsmål: Potens-funktioner Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Integralregning. Version juni Mike Vandal Auerbach

Integralregning. Version juni Mike Vandal Auerbach Integrlregning Version.0 27. juni 209 y f x Mike Vndl Auerch www.mthemticus.dk Integrlregning Version.0, 209 Disse noter er skrevet til mtemtikundervisningen på stx A- og B-niveu efter gymnsiereformen

Læs mere

Integration ved substitution og delvis (partiel) integration

Integration ved substitution og delvis (partiel) integration DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK INTEGRATION EFTERÅRET Integrtion ved sustitution og delvis (prtiel) integrtion Differentil- og integrlregningens hovedsætning lyder: Hvis ƒ er

Læs mere

Analysens Fundamentalsætning

Analysens Fundamentalsætning Anlysens Fundmentlsætning Frnk Nsser 11. juli 2011 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb Hvd er mtemtik?, e-og Projekter: Kpitel 5 Projekt 57 Hovedsætninger om differentile funktioner Projekt 57 Hovedsætninger om differentile funktioner et opgveforlø Projektet er en udvidelse f fsnittet i

Læs mere

Beregning af bestemt integrale ved partiel integration og integration ved substitution:

Beregning af bestemt integrale ved partiel integration og integration ved substitution: Beregning f estemt integrle ved prtiel integrtion og integrtion ved sustitution: f John V. Petersen Prtiel integrtion Sætning : Prtiel integrtion... si. Løsning f integrle... si. Plot f løsningsrelet...

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... 1 BRØER... PARENTESER... 3 PROCENT... 4 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

1 Plan og rumintegraler

1 Plan og rumintegraler 1 PLAN OG RUMINTEGRALER 1 1 Pln og rumintegrler Ligesom for funktioner f en vribel kn mn for kontinuerte funktioner f flere vrible definere deres integrle. Vi vil her kun beskæftige os med funktioner f

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 38, 010 Produceret f Hns J. Munkholm berbejdet f Jessic Crter 1 l Hopitls regler Afsnit 4.3 l Hopitls regel I omhndler beregning f grænseværdier f formen lim x f(x) g(x), hvor

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11 Formelsmling Mt. C BRØER... LIGNINGER... PARENTESER... RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... VILÅRLIG TREANT... Sinusreltionerne:... Cosinusreltionerne:...

Læs mere

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R =

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R = Plnintegrlet Preben Alsholm 5. mj 8 Plnintegrlet. Integrlet f en funktion f én vribel et bestemte integrl efinition Ld f være en funktion defineret på intervllet [ b]. Ld = x x... x n = b være en inddeling

Læs mere

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k 0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 39, 200 Produceret f Hns J. Munkholm berbejdet f Jessic Crter Integrtion ved substitution Afsnit5.6 Ubestemte integrler s. 37-39 Reglen om differentition f en smmenst funktion

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

Opgave 1 ( Toppunktsformlen )

Opgave 1 ( Toppunktsformlen ) Opgve 1 ( Toppunktsformlen ) Et nengrspolynomium er givet ve f x x 2 b x c. For t fine toppunktet vil vi først ifferentiere f x Derefter løser vi ligningen f ' x x b f ' x 0 x b 0 x b D f ' x x b er en

Læs mere

Integralregning. Erik Vestergaard

Integralregning. Erik Vestergaard Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER STUDENTEREKSAMEN NOVEMBER-DECEMBER 007 007-8-V MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Tirsdg den 18 december 007 kl 900-1000 BESVARELSEN AFLEVERES KL 1000 Der

Læs mere

Matematik A Matematik kompendium til HTX 3år

Matematik A Matematik kompendium til HTX 3år Mtemtik A Mtemtik kompendium til HTX år Skrevet f Jco Lrsen og Mrtin Gyde Poulsen.år HTX Slgelse Udgivet f De Nturvidenskelige Side Indholdsfortegnelse StuGuide 4 Differentilregning 4 Integrlregning 4

Læs mere

INFINITESIMALREGNING del 2 Stamfunktioner og differentialkvotienter Regneregler Optimering Taylorrækker

INFINITESIMALREGNING del 2 Stamfunktioner og differentialkvotienter Regneregler Optimering Taylorrækker INFINITESIMALREGNING del Stmfunktioner og differentilkvotienter Regneregler Optimering Tylorrækker -klsserne Gmmel Hellerup Gymnsium Indholdsfortegnelse STAMFUNKTIONER... 3 REGNEREGLER... 9 AFLEDEDE FUNKTIONER...

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Vill 3. oktober 2012 2008-2012. IT Teching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere

Læs mere

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C Mihel Mndix (07) Sinusreltionen Nott Side f 9 Sinusreltionen Indtil videre, er der kun eskrevet, hvordn mn eregner på retvinklede treknter. Men desværre er det lngtfr lle treknter, som er retvinklede.

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Nsser 20. pril 2011 c 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod Navn: Klasse: Matematik Opgave Kompendium Potens & Kvadratrod Opgaver: Ekstra: Point: http://madsmatik.dk/ d.0-0-01 1/1 Potenser: Du har måske set udtrykket før eller måske 10 1. Begge to er det vi kalder

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... BRØER... LIGNINGER... 3 PARENTESER... 3 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2.

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2. Differentil-kvotient Ld f være en funktion - f.eks. f (x) = 2x 2. Produkt og mrked - differentil og integrlregning Rsmus Wgepetersen Institut for Mtemtiske Fg Alborg Universitet Februry 14, 2014 Differentilkvotienten

Læs mere

Projekt 8.4 Logaritmefunktionerne

Projekt 8.4 Logaritmefunktionerne Hvd er mtemtik? Projekter: Kpitel 8. Projekt 8.4 Logritmefunktionerne Projekt 8.4 Logritmefunktionerne Indhold. log( ) og 0 som omvendte funktioner... 2 2. Den nturlige logritmefunktion, ln( ) og den nturlige

Læs mere

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes

Læs mere

Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2

Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2 geometri exempler 4 m 3 m rel: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m 5 m 5 m rel: 5 5 = 25 m 2 omkreds: 5+5+5+5 = 20 m 8 dm 5 dm rel: 8 5 = 40 dm 2 8 dm 5 mm 4 mm 1 2 rel: 4 (5+9) = 28 mm 2 9 mm 7 km rel:

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

Definition Givet D [a, b] [c, d] og f : D R en funktion. 1. Figur

Definition Givet D [a, b] [c, d] og f : D R en funktion. 1. Figur Oversigt S].,.,.3 Inddelinger i to retninger S]. oule integrls over retngles Nøgleord og egreer oelt integrl Figur Fuinis sætning Generelle områder Tpe I Tpe II Regneregler Nem ulighed d ( ij, ij ) Inddelt

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning: Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt

Læs mere

Integrationsteknikker

Integrationsteknikker Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1

Læs mere

2 Erik Vestergaard

2 Erik Vestergaard Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd www.mtemtikfysik.dk 3 Definition 1 En funktion på formen f ( x) = b x, x R +, hvor b R + og R er konstnter, kldes for en potensudvikling eller en potensiel

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010 Mtemtikprojekt om Integrlregning Lvet f Arendse Morsing Gunill Olesen Julie Slvensky Michel Hnsen 15 Oktober 21 Indhold I Del 1................................ 3 I Generelt om stmfunktioner og integrler........

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx = Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (

Læs mere

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000.

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000. Tldiktt Nr. Timillioner 0.000.000 Millioner.000.000 Hundredetusinder.000 Tlhus Titusinder 0.000 Tusinder.000 Hundreder Tiere 0 Enere Prktivitet. Træk - kort i skjul fr et lmindeligt kortspil. Læg dem på

Læs mere

Integralregning. for A-niveau i stx, udgave Karsten Juul

Integralregning. for A-niveau i stx, udgave Karsten Juul Integrlregning or A-niveu i st, udgve 7 Krsten Juul Stmunktion (uestemt integrl) Hvd er en stmunktion? UndersÄg om g( er stmunktion til ( GÄr rede or t g( er stmunktion til ( En unktion hr mnge stmunktioner

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Integralregning. for A-niveau i stx, udgave Karsten Juul

Integralregning. for A-niveau i stx, udgave Karsten Juul Integrlregning or A-niveu i st, udgve 5 Krsten Juul Stmunktion (uestemt integrl) Hvd er en stmunktion? UndersÄg om g( er stmunktion til ( GÄr rede or t g( er stmunktion til ( En unktion hr mnge stmunktioner

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Andengradspolynomier

Andengradspolynomier Andengradspolynomier Teori og opgaver (hf tilvalg) Forskydning af grafer...... 2 Andengradspolynomiets graf (parablen)..... 5 Andengradsligninger. 10 Andengradsuligheder 13 Nyttige formler, beviser og

Læs mere

Elementær Matematik. Analytisk geometri

Elementær Matematik. Analytisk geometri Elementær Mtemtik Anltisk geometri Ole Witt-Hnsen 0 Indhold. koordintsstemet.... Afstndsformlen.... Liniens ligning...4 4. Ortogonle linier...7 5. Liniers skæring. To ligninger med to uekendte....7 6.

Læs mere

Implicit differentiation

Implicit differentiation Implicit differentition Implicit differentition Indhold. Implicit differentition.... Tngent til ellipse og hyperel... 3. Prisme i hovedstillingen...3 3. Teoretisk rgument for hovedstillingen...4 Ole Witt-Hnsen

Læs mere

Lukkede flader med konstant krumning

Lukkede flader med konstant krumning Lukkede flder med konstnt krumning Hns Anton Slomonsen Arhus Universitet Mrch 13, 2015 En flde i rummet B A giver nledning til to mål for fstnden mellem to punkter A og B på flden: - længden f den rette

Læs mere

ANALYSE 1, 2015, Uge 2

ANALYSE 1, 2015, Uge 2 ANALYSE 1, 2015, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

Polynomier et introforløb til TII

Polynomier et introforløb til TII Polynomier et introforløb til TII Formål At introducere polynomier af grad 0, 1, 2 samt højere, herunder grafer og rødder At behandle andengradspolynomiet og dets graf, parablen, med fokus på bl.a. toppunkt,

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 23. novemer 20 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

Gymnasie-Matematik. Søren Toftegaard Olsen

Gymnasie-Matematik. Søren Toftegaard Olsen Gmnsie-Mtemtik Søren Toftegrd Olsen Søren Toftegrd Olsen Skovvænget 6-B 7080 Børkop Gmnsie-Mtemtik. udgve, revision 0 ISBN 978-87-99996-0-0 VIGTIGT: Denne og må ikke sælges eller ændres; men kn frit kopieres.

Læs mere

VIA læreruddannelsen Silkeborg. WordMat kompendium

VIA læreruddannelsen Silkeborg. WordMat kompendium VIA læreruddannelsen Silkeborg WordMat kompendium Bolette Fisker Olesen 25-11-2015 Indholdsfortegnelse Ligning... 2 Løs ligning... 2 WordMat som lommeregner... 4 Geometri... 4 Trekanter... 4 Funktioner...

Læs mere

Linjer på skift. Figurer. Format 5. Nr. 15. a a Tegn AB, BC, AE, CD og CF, GH, GI. b Tegn de to parallelle linjestykker, der kan tegnes til GH.

Linjer på skift. Figurer. Format 5. Nr. 15. a a Tegn AB, BC, AE, CD og CF, GH, GI. b Tegn de to parallelle linjestykker, der kan tegnes til GH. Linjer på skift Nr. 15 Tegn B, BC, E, CD og CF, GH, GI. Tegn de to prllelle linjestykker, der kn tegnes til GH. c Hvd hedder de to linjestykker? d Tegn det vinkelrette linjestykke til GH, der endnu ikke

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Tilmeldingsvejledning Hærvejsløbets Cykelløb 2014

Tilmeldingsvejledning Hærvejsløbets Cykelløb 2014 Tilmeldingsvejledning Hærvejsløbets Cykelløb 2014 Når du skal tilmelde dig, har du flere valgmuligheder. Du kan enten: Tilmelde dig som holdkaptajn og oprette et hold Tilmelde dig som individuel rytter

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Picasa Web. En ressource i SkoleIntra. Version: August 2012

Picasa Web. En ressource i SkoleIntra. Version: August 2012 Picasa Web En ressource i SkoleIntra Version: August 2012 Indholdsfortegnelse Hvad er PicasaWeb?...4 Kom på!...5 Google-konto...5 Når du er logget ind: Indstillinger...5 Når du er logget ind: Upload...6

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion)

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion) Mere end lot lektiehjælp Få topkrkter i din SRP 12: Hovedfsnittene i din SRP (Redegørelse, nlyse, diskussion) Hjælp til SRP-opgven Sidste år hjlp vi 3.600 gymnsieelever med en edre krkter i deres SRP-opgve.

Læs mere

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden. Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Givet D [a, b] [c, d] og f : D R en funktion. 1

Givet D [a, b] [c, d] og f : D R en funktion. 1 Oversigt S].,.,.3 Inelinger i to retninger S]. oule integrls over retngles Nøgleor og egreer oelt integrl Fuinis sætning Generelle områer Tpe I Tpe II egneregler Nem ulighe ( ij, ij ) Inelt rektngel, ],

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave Teknisk Mtemtik Formler Teknisk Mtemtik Formler Preen Mdsen 8. udge Teknisk mtemtik Formler er et prktisk opslgsærk, der gier et hurtigt oerlik oer lle formler fr læreogens enkelte kpitler. Ud oer formlerne

Læs mere

Projekt 7.8 To ligninger med to ubekendte

Projekt 7.8 To ligninger med to ubekendte Projekt 78 To ligninger med to uekendte Den opgve t skulle løse to ligninger med to uekendte er vi stødt på i en række speciltilfælde under ehndlingen f vækstmodellerne: Funktionstype Ligningssystem Lineær

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10 Oversigt [LA] 9 Nem vej til rel Nøgleord og begreber Helt simple determinnter Determinnt defineret Effektive regneregler Genkend determinnt nul determinnt nul Produktreglen Inversreglen inversregel og

Læs mere

Matematik A. Højere teknisk eksamen. Formelsamling til delprøve 1

Matematik A. Højere teknisk eksamen. Formelsamling til delprøve 1 Mtemtik A Højere teknisk eksmen Formelsmling til delprøve Mtemtik A Højere teknisk eksmen Formelsmling til delprøve Forfttere: Jytte Melin og Ole Dlsgrd April 209 ISBN: 978-87-603-3238-8 (web udgve) Denne

Læs mere

Elementær Matematik. Vektorer i planen

Elementær Matematik. Vektorer i planen Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning

Læs mere

For så kan de to additionsformler samles i én formel, der kan ses som et specialtilfælde af den komplekse eksponentialfunktions funktionalligning,

For så kan de to additionsformler samles i én formel, der kan ses som et specialtilfælde af den komplekse eksponentialfunktions funktionalligning, 15.1. Komplekse integrler 293 læse, og hvordn gør mn det i prksis? Men den virkelige motivtion bg begrebet bliver udst til fsnit 18.5, hvor vi viser t foldning f sndsynlighedsmål lder sig udtrykke meget

Læs mere