hvor 2 < p 1 < p 2 < < p k, er G s orden φ(n) = (p 1 1)p e 1 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "hvor 2 < p 1 < p 2 < < p k, er G s orden φ(n) = (p 1 1)p e 1 1"

Transkript

1 1 FTERMTH LØSNINGER Opgaverne er fra International Mathematical Olympiads, 1990,3, 1987,2, 1986,1, 1986,5, 1986,6, 1988,5, 1993,2, 1988,2. Nogle af opgaverne er løst af Ebbe Thue Poulsen. Heltalligt estem alle hele tal, n > 1, for hvile 2n +1 n 2 er et helt tal. (1). et er lart, at tallet n = 3 har egensaben (1). Jeg påstår, at det er det eneste tal n > 1 med denne egensab. eviset består af følgende trin: item(i) Hvis n har egensaben (1), er n ulige. item(ii) Hvis n har egensaben (1), har n også egensaben ((2)) n 2 n + 1 item(iii) Hvis n har egensaben (2), og p er den største primtalsdivisor i n, gælder n 2 n/p + 1. item(iv) Hvis n har egensaben (2), og p er den største primtalsdivisor i n, har tallet n/p egensaben (2). item(v) Hvis n har egensaben (2), er n delelig med 3, og hvis n > 3, er n deleligt med 3 2. item(vi) Hvis n er delelig med 3 2, har n ie egensaben (1). Påstanden følger let af (i) (vi). evis for (i):. a 2 n + 1 er ulige, må n være ulige. evis for (ii):. lart. 1 evis for (iii):. etragt den multipliative gruppe G bestående af de restlasser modulo n, som er primise med n. Hvis n har primfatoropløsningen n = p e 1 2 pe, hvor 2 < p 1 < p 2 < < p, er G s orden φ(n) = (p 1 1)p e (p 2 1)p e (p 1)p e 1, og altså har vi 2 φ(n) = 1 i G. Ifølge (2) er 2 n = 1 i G, og altså 2 2n = 1 i G. Lad o betegne ordenen af 2 s restlasse i gruppen G. Så er o divisor i såvel φ(n) som 2n. a p un foreommer i potensen e 1, foreommer p højst i potensen e 1 i o s primfatoropløsning, og da o er divisor i 2n, er o divisor i 2p e 1 2 pe 1. a p er ulige, følger heraf, at o er divisor i p e 1 er 2 pe 1, og altså at a 2 pe 1 2 pe 1 (p 1) = 1 i G. n/p = p e 1 2 pe 1, = n p e 1 2 pe 1 (p 1) 2 n/p = 2 n 2 pe 1 2 pe 1 (p 1) = 1 i G, som påstået. evis for (iv):. En umiddelbar følge af (iii).

2 2 evis for (v):. Ved brug af (iv) an vi successivt fjerne primfatorer i n, indtil vi ender med en divisor d af formen d = p(= p 1 ), og med egensaben (2). Ved at bruge (iii) med n erstattet af p fås p 2 p/p + 1 = 3, og altså p = 3. Hvis n > 3, udfører vi den samme proces (at fjerne primfatorer), men nu standser vi, når der er to primfatorer i d, altså ved en divisor d i n af formen 3d, og med egensaben (2). Nu bruger vi (iii) med n erstattet af d, og får 3p 2 3p/p + 1 = 9, Her er alle led undtagen leddet svarende til j = 1 delelige med 3 2, men så er 2 n + 1 ie deleligt med 3 2, og derfor heller ie med n 2. Treantet I en spidsvinlet treant særer vinelhalveringslinien fra siden i puntet L og den omsrevne cirel i puntet N. Fra puntet L nedfældes de vinelrette på og, fodpunterne aldes hhv. og M. Vis, at firanten NM har samme areal som treanten. og altså d = 3 2. evis for (vi):. Vi viser først, at der for ethvert positivt helt tal gælder, at an srives = (3m + 1)3 +1, hvor m er et helt tal. eviset føres ved indution. Påstanden er opfyldt for = 1 med m = 0, så lad os antage, at den er opfyldt for, og lad os se på P L N M Q = ((3m + 1)3 +1 1) 3 + 1, som udregnes til ((3m + 1)3 +1 ) 3 3((3m + 1)3 +1 ) 2 + 3(3m + 1)3 +1, der har den ønsede form. Lad nu n være et ulige tal, som er deleligt med 3 2 (tilfældet n lige er uinteressant ifølge (i)), og lad os srive n på formen n = 3 u, hvor 2 og u er et ulige tal, som ie er deleligt med 3. Så er 2 n + 1 = ((3m + 1)3 +1 1) u + 1 u ( ) u = ( 1) u j ((3m + 1)3 +1 ) j. j j=1 2 Længden af et linjestye, fx N, betegnes N og arealet af en polygon, fx NM, betegnes N M. a N = N, er N = N, og altså N = N. Fra puntet N nedfældes de vinelrette på og ; fodpunterne aldes hhv. P og Q. f symmetrigrunde er L = LM og PN = NQ. I de retvinlede treanter P N og QN er PN = QN og N = N, og altså har vi også P = Q. I de to treanter LP og LQ er grundlinierne P og Q lige lange, og da højderne L og LM også er lige lange, er LP = LQ. a linjerne L og PN er parallelle er PL = NL, og analogt er LQM = LNM

3 3 (iøvrigt er treanterne PL og MQL ongruente, og det samme gælder NL og MNL, men det får vi ie brug for). f antagelsen om, at er spidsvinlet, følger let, at punterne og M ligger i det indre af siderne og. For bestemtheds syld antages det, at > (tilfældet = er let). a N = N + = 2 + > = π 2, ligger fodpuntet P på s forlængelse, og på den anden side ses Q at ligge på liniestyet mellem M og. Vi har så = L + L + LM + LM = L + PL PL + LM + LQM LQ = L + NL + LM + LNM = NM QE. Retvinlet er retvinlet med den rette vinel i. Lad være fodpuntet for højden fra. Linien gennem centrene for de indsrevne cirler i treanterne og særer siderne og i hhv. og L. Vis at arealet af L er højst halvt så meget som arealet af. E = F H Q Lad FE være billedet af ved spejlingen i halveringslinjen for, og lad HG f symmetrigrunde er den indsrevne cirel for også indsrevet i FE, og den indsrevne cirel for også indsrevet i HG. a E = G, er E og G sider i et vadrat EQG, hvis fjerde vinelspids Q er særingspuntet mellem de to linjer, der indeholder linjestyerne EF og GH. a diagonalen EG halverer vinlerne EF og GH, ligger centrene for begge de betragtede indsrevne cirler på EG, og altså er E = og G = L. a vadratet EQG er indeholdt i polygonen EFHG, er = EF + GH EQG = 2 EG, som påstået. et ses, lighedstegnet gælder, hvis og un hvis =. egge dele Lad være et punt inden i en spidsvinlet treant,, sådan at = +90 o og = (a) eregn værdien af forholdet (b) Vis, at tangenterne fra til de omsrevne cirler for treanterne og står vinelret på hinanden. Lad være et vilårligt punt på linien udenfor. Vinlerne ved opfylder, at = + og = +. Lægger vi dem sammen, får vi = + +. Sammen med første betingelse i opgaven giver det G = L (1) + = enne ligning er nøglen til opgavens løsning.

4 4 E X E (a) er tegnes en retvinlet treant, E, med E udenfor, så E. Så er (2) = E, = E og (3) = E, = E en anden ligning i (2) medfører, at = E; dette, ombineret med den anden ligning i (3) viser, at treanten er ensvinlet med E, og derfor, at (4) = E, en første ligning i (2) sammen med formel (1) giver E = + E = + = Endelig følger af første ligning i (3) og den anden betingelse i opgaven ( = ), at = E. erfor er E en ligebenet retvinlet treant, og altså er E = 2. Indsættes dette i formel (4), får vi resultatet i (a): = 2. 4 Y (b) etragt de omsrevne cirler om treanterne og. Lad X være tangenten til den første cirel i og lad Y være tangenten til den anden cirel i (X og Y er punter på tangenterne). Så er X = og Y =. erfor er ifølge (1) X + Y = Og da ligger inden for vinlen dannet af X og Y, slutter vi, at de to tangenter står vinelret på hinanden. Elementært Lad n være et positivt helt tal og lad 1, 2,..., 2n+1 være delmængder af en mængde,. ntag, at (a) hver mængde i har netop 2n elementer, (b) hver fællesmængde i j, i j, har præcis ét element, (c) hvert element i ligger i mindst to af mængderne i. For hvile værdier af n an man give hvert element i en værdi, 0 eller 1, sådan at hver mængde i har nøjagtig n elementer af værdi 0? Vi viser først, at betingelsen (c) an særpes til følgende: (d) hvert element i ligger i netop to af mængderne i. ntag, at et element, x 0 ligger i de tre mængder,, l og m. Fjern m fra mængden {1, 2,, 2n + 1}; tilbage er en mængde M af 2n elementer. Til hveret j M tilegnes det element i m, der tillige ligger i j ; der er un et sådant element ifølge (b). Lad os alde det g(j); så er specielt g() = x 0 og g(l) = x 0.

5 et følger nu af (c) at funtionen g afbilder M på m, der jo også har netop 2n elementer, (a). erfor er g bijetiv, en modstrid. Vi an tælle det samlede antal elementer af værdi 0 ved successivt at gennemløbe de 2n+1 mængder, i, og i hver af dem registrere de elementer af værdi 0, som vi støder på. et giver ialt (2n + 1)n elementer af værdi 0, men da hvert af dem ligger i 2 af mængderne i, bliver hvert af dem talt med 2 gange, og altså må antallet (2n+1)n være lige, dvs n må være lige. Jeg vil omvendt vise, at hvis n er lige, så er det muligt at give elementerne i værdierne 0 og 1 sådan, at hver mængde i indeholder n elementer af værdi 0. ertil definerer vi en afstand d på mængden {1, 2,, 2n + 1} ved d(i, j) = min{ i j, 2n + 1 i j } (det er let at se, men i realiteten uvigtigt, at d fatis er en metri). Lad nu b være givet, og lad i og j i være bestemt således, at b i j. Så tilsriver vi b værdien 0, hvis og un hvis d(i, j) n/2. enne fordeling opfylder, at hver mængde, i har netop n elementer af værdi 0. et er lettest at oversue, hvis problemstillingen ansueliggøres ved hjælp af en regulær (2n + 1) ant M med vinelspidser P i, i = 1, 2,, 2n+ 1, og identificeres med mængden af sider og diagonaler i M, medens i betegner mængden af sider og diagonaler med P i som det ene endepunt. en foreslåede tilsrivning af værdierne 0 og 1 svarer til, at elementer i i, der får værdien 0, er de n orteste linjer, der udgår fra P i. NYE OPGVER 1. er et retangel, hvori siden = a og siden = 2a. P er et punt på siden. Linien gennem P parallel med diagonalen særer siden i puntet Q. irlen 5 med som centrum og P som radius særer cirlen over som diameter i punterne H og. S er særingspuntet mellem linien H og linien gennem Q parallel med. estem det geometrise sted for S, når P gennemløber siden. ngiv art og beliggenhed af det fundne geometrise sted. 2. Undersøg og tegn urven y = sin 2x + 2 cosx (0 x 2π) eregn arealet af den luede figur, der begrænses af urven og x asen. eregn desuden rumfanget af det omdrejningslegeme, der fremommer, når den omtalte figur drejes om x asen. 3.I terningen , hvor anterne 1, 1, 1 og 1 er parallelle, er antlængden 2. Midtpunterne af anterne 1 1, 1, og aldes henholdsvis M, N og P. eregn siderne i treant M N samt treantens areal. eregn toplansvinlen mellem planerne M N og. eregn rumfanget af pyramiden NMP. 4.I et trapez er vinelen = = 60 0, og dets omreds er 56. estem siderne i trapezet, således at det areal bliver så stort som muligt. bestem dernæst siderne i trapezet, således at rumfanget af det legeme, der fremommer ved en drejning af trapezet om siden, bliver så stort som muligt. 5. p, q og R er givne liniestyer og v en given spidst vinel. onstruer en firant, hvori diagonalen halverer vinelen, vinelen = v, : = p : q, og således at firanten an indsrives i en cirel med radius R. isussion ræves. eregn firantens vinler og sider, når p = 4, q = 5, R = 3 og v = 70 0, 78. 5

Opgave Firkantet E F. Opgave Trekantet

Opgave Firkantet E F. Opgave Trekantet 1 Opgave Firantet E F Lad være et vilårligt punt på liniestyet mellem og, og tegn halvcirler til samme side over diametrene, og. Lad være det punt på halvcirlen, der har vinelret på, og lad EF være fællestangenten

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på bagsiden).

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori Grafteori, Kirsten Rosenkilde, september 007 1 1 Grafteori Grafteori Dette er en kort introduktion til de vigtigste begreber i grafteori samt eksempler på opgavetyper inden for emnet. 1.1 Definition af

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger

Læs mere

Løsning af præmie- og ekstraopgave

Løsning af præmie- og ekstraopgave 52 Læserbidrag Løsning af præmie- og ekstraopgave 23. årgang, nr. 1 Martin Wedel Jacobsen Både præmieopgaven og ekstraopgaven er specialtilfælde af en mere generel opgave: Hvor mange stykker kan en n-dimensionel

Læs mere

Forslag til løsning af Opgaver til ligningsløsning (side172)

Forslag til løsning af Opgaver til ligningsløsning (side172) Forslag til løsning af Opgaver til ligningsløsning (side17) Opgave 1 Hvis sønnens alder er x år, så er faderens alder x år. Der går x år, før sønnen når op på x år. Om x år har faderen en alder på: x x

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Sorø 2004. Opgaver, geometri

Sorø 2004. Opgaver, geometri Opgaver, geometri 1. [Balkan olympiade 1999]. For en given trekant ABC skærer den omskrevne cirkel BC s midtnormal i punkterne D og E, og F og G er spejlbillederne af D og E i BC. Vis at midtpunkterne

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Frank Villa. 15. juni 2012

Frank Villa. 15. juni 2012 2 er irrationel Frank Villa 15. juni 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som aonnerer på MatBog.dk. Se yderligere etingelser for rug her. Indhold 1 Introduktion

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F ISBN: 978-87-92488-06-0 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1 Analyse 1, Prøve 4 25. juni 29 Alle henvisninger til CB er henvisninger til Metriske Rum (1997, Christian Berg), alle henvisninger til TL er til Kalkulus (26, Tom Lindstrøm), og alle henvisninger til Opgaver

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2011 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2011 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 20 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor Rumfang af en cylinder På illustrationen til øjre er indtegnet en lineær funktion indenfor et afgrænset interval, vor 0;. Funktionen () kan skrives på formen: = (vor a er en konstant) Det markerede grå

Læs mere

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...

Læs mere

DesignMat Egenværdier og Egenvektorer

DesignMat Egenværdier og Egenvektorer DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).

Læs mere

Opg. 1. Cylinder. Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen

Opg. 1. Cylinder. Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen Opg. 1 a) Bestem de funktioner h(t), der beskriver vandhøjden i beholderen,

Læs mere

Lektion 6 Logaritmefunktioner

Lektion 6 Logaritmefunktioner Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi

Læs mere

Matematik Eksamensprojekt

Matematik Eksamensprojekt Matematik Eksamensprojekt Casper Wandrup Andresen, 2.F I dette projekt arbejdes der bl.a. med parabler, vektorer, funktioner, sinus, cosinus, tangens, differentialregning, integralregning samt de øvrige/resterende

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45 Bogstavregning Formler... 6 Reduktion... 7 Ligninger... 8 Bogstavregning Side I bogstavregning skal du kunne regne med bogstaver og skifte bogstaver ud med tal. Formler En formel er en slags regne-opskrift,

Læs mere

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1 Pendulbevægelse Jacob Nielsen 1 Figuren viser svingningstiden af et pendul i sekunder som funktion af udsvinget i grader. For udsving mindre end 20 grader er svingningstiden med god tilnærmelse konstant.

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

Inverse funktioner. John V Petersen

Inverse funktioner. John V Petersen Inverse funktioner John V Petersen Indhold Indledning: Indledende eksempel. Grafen for en funktion. Og grafen for den inverse funktion.... 3 Afbildning, funktion og inverse funktion: forklaringer og definitioner...

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Det skal I vide, når I planlægger jeres barsel

Det skal I vide, når I planlægger jeres barsel 1 Det skal I vide, når I planlægger jeres barsel Indhold Når I får barn...2 Betingelser for orlov...3 Løn under orloven...4 Hvor meget kan jeg få?...4 Sammensæt jeres forældreorlov...5 Del forældreorloven

Læs mere

Vejledende Matematik B

Vejledende Matematik B Vejledende Matematik B Prøvens varighed er 4 timer. Alle hjælpemidler er tilladt. Af opgaverne 8A, 8B, 8C og 8D skal kun to afleveres til bedømmelse. Hvis flere end to opgaver afleveres, bedømmes kun besvarelsen

Læs mere

Lille Georgs julekalender 08. 1. december

Lille Georgs julekalender 08. 1. december 1. december Et digitalur viser 20:08. Hvor lang tid går der før de samme fire cifre vises igen (gerne i en anden rækkefølge)? Svar: 4 timer og 20 minutter Forklaring: Næste gang cifrene vises, er klokken

Læs mere

Miniprojekt 3: Fejlkorligerende køder Fejlkorrigerende koder

Miniprojekt 3: Fejlkorligerende køder Fejlkorrigerende koder Miniprojekt 3: Fejlkorligerende køder Fejlkorrigerende koder Denne note er skrevet med udgangspunkt i [, p 24-243, 249] Et videre studium kan eksempelvis tage udgangspunkt i [2] Eventuelle kommentarer

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Projekt 4.8. Kerners henfald (Excel)

Projekt 4.8. Kerners henfald (Excel) Projekt.8. Kerners henfald (Excel) Når radioaktive kerner henfalder under udsendelse af stråling, sker henfaldet I følge kvantemekanikken helt spontant, dvs. rent tilfældigt uden nogen påviselig årsag.

Læs mere

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x).

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x). Uden hjælpemidler Opgave 8.00 Funktionen f(x) er bestemt ved skitse af grafen for f(x). f ( x) = x 3 4x. På figuren ses en Grafen skærer førsteaksen i punkterne P(,0), O(0,0) og Q(,0). Sammen med førsteaksen

Læs mere

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af ligninger og formler... 39 To ligninger med to ubekendte... 44 Formler, ligninger, funktioner og grafer Side 38 Omskrivning af ligninger og formler

Læs mere

UGESEDDEL 7 LØSNINGER. Opgave 7.2.1

UGESEDDEL 7 LØSNINGER. Opgave 7.2.1 UGESEDDEL 7 LØSNINGER Opgave 7.2.1 Definition 1. En følge {x } in R n onvergerer mod puntet x, dersom der, for ethvert ɛ > 0, findes et N N sådan at x x < ɛ for alle N. Her definerer vi 1) x x 2 = x 1)

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Rumlige figurer. SO-projekt Matematik og Programmering klasse 3.4 Vejledere: Karl og Jørn. Af: Asger, Christian og Kalle

Rumlige figurer. SO-projekt Matematik og Programmering klasse 3.4 Vejledere: Karl og Jørn. Af: Asger, Christian og Kalle Rumlige figurer SO-projekt Matematik og Programmering klasse 3.4 Vejledere: Karl og Jørn. Af: Asger, Christian og Kalle Udleveret: 10.09.12 Afleveres: 08.10.12 0. Indholdsfortegnelse 0. INDHOLDSFORTEGNELSE...

Læs mere

Matematil projekt Bærbar

Matematil projekt Bærbar Maemaik Kursusopgave Bærbar -6-26 Maemail projek Bærbar Opgave A. For a finde ligningen for planen så skal jeg bruge e punk på planen, og normalvekoren for planen. Punke på planen, kan jeg finde fordi

Læs mere

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift:

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift: Matematik projekt 4 Eksponentiel udvikling Casper Wandrup Andresen 2.F 16-01-2009 Underskrift: Teorien bag eksponentiel udvikling er som sådan meget enkel. Den har forskriften: B er vores begndelsesværdi

Læs mere

UGESEDDEL 7 LØSNINGER. ) og ɛ > 0 N N : (1 + konvergerer ikke, thi følgen x 1 + = ( 1)k

UGESEDDEL 7 LØSNINGER. ) og ɛ > 0 N N : (1 + konvergerer ikke, thi følgen x 1 + = ( 1)k UGESEDDEL 7 LØSNINGER Opgave 7.2. Definition. En følge {x } in R n onvergerer mod puntet x, dersom der, for ethvert ɛ > 0, findes et N N sådan at x x < ɛ for alle N. Her definerer vi ) x x 2 = x ) x )

Læs mere

A. Appendix: Løse ender.

A. Appendix: Løse ender. Løse ender A.1 A. Appendix: Løse ender. (A.1). I dette appendix giver vi et bevis for Bertrand s Postulat, nævnt i Kapitel 1. Som nævnt følger Postulatet af en tilstræelig nøjagtig vurdering af primtalsfuntionen

Læs mere

Om hvordan Google ordner websider

Om hvordan Google ordner websider Om hvordan Google ordner websider Hans Anton Salomonsen March 14, 2008 Man oplever ofte at man efter at have givet Google et par søgeord lynhurtigt får oplysning om at der er fundet et stort antal - måske

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10 Bernoullis differentialligning v/ Bjørn Grøn Side af 0 Bernoullis differentialligning Den logistise differentialligning er et esempel på en ie-lineær differentialligning Den logistise differentialligning

Læs mere

Differential- regning

Differential- regning Differential- regning 1 del () (1) 006 Karsten Juul Indhold 1 Funktionsværdi, graf og tilvækst1 Differentialkvotient og tangent8 3 Formler for differentialkvotient16 4 Opgaver med tangent 5 Væksthastighed5

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag [1] Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag 2009 Alinea København Kopiering af denne bog er kun tilladt ifølge aftale med COPY-DAN Forlagsredaktion: Heidi Freiberg

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Sølvkorn 11 Eksponentialfunktioner og logaritmer

Sølvkorn 11 Eksponentialfunktioner og logaritmer Eksponentialfunktioner og logaritmer Rasmus Sylvester Bryder Findes der for b, y > 0 et x R, så b x = y? Svaret er ja undtagen for b = 1, y 1), og det er alment kendt, at logaritmefunktionen gør et godt

Læs mere

fordi de to sider ligger over for vinkler af samme størrelse (vist på tegningen med dobbeltbue.)

fordi de to sider ligger over for vinkler af samme størrelse (vist på tegningen med dobbeltbue.) Opgave Da treanterne ABC og DEF er ensvinlede, er de også ligedannede. Forstørrelsesfatoren findes med formlen DE = AB fordi de to sider ligger over for vinler af samme størrelse (vist på tegningen med

Læs mere

Tilstandsligningen for ideale gasser

Tilstandsligningen for ideale gasser ilstandsligningen for ideale gasser /8 ilstandsligningen for ideale gasser Indhold. Udledning af tilstandsligningen.... Konsekvenser af tilstandsligningen...4 3. Eksempler og opgaver...5 4. Daltons lov...6

Læs mere

Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv A som en tællelig forening af afsluttede mængder.

Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv A som en tællelig forening af afsluttede mængder. Analyse Øvelser Rasmus Sylvester Bryder 10. og 13. september 013 Supplerende opgave 4 Betragt mængden A = {(x, y) R x + y 1, x < y}. Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

News & Updates Arbejds- og Ansættelsesret. Vikarer ikke omfattet af brugervirksomheds overenskomst

News & Updates Arbejds- og Ansættelsesret. Vikarer ikke omfattet af brugervirksomheds overenskomst Vikarer ikke omfattet af brugervirksomheds overenskomst - februar 2016 Vikarer ikke omfattet af brugervirksomheds overenskomst Vikarbureauansatte vikarer var ikke omfattet af en brugervirksomheds kollektive

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock July 27, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C nivea uden en præcis definiion. Funkionerne

Læs mere

Fermat, ABC og alt det jazz...

Fermat, ABC og alt det jazz... Fermat, ABC og alt det jazz... Matematiklærerdag 2013 Simon Kristensen Institut for Matematik Aarhus Universitet 22. marts 2013 Oversigt 1 Hvad er ABC-formodningen? Oversigt 1 Hvad er ABC-formodningen?

Læs mere

Brøkregning. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 24 Ekstra: 5 Point:

Brøkregning. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 24 Ekstra: 5 Point: Navn: Klasse: Matematik Opgave Kompendium Brøkregning Følgende gennemgås: Brøk typer Forlængning Forkortning Addition Subtraktion Blandede tal Multiplikation Division Heltal & Brøk Brøk & decimal & Procent

Læs mere

Andengradspolynomier

Andengradspolynomier Andengradspolynomier Teori og opgaver (hf tilvalg) Forskydning af grafer...... 2 Andengradspolynomiets graf (parablen)..... 5 Andengradsligninger. 10 Andengradsuligheder 13 Nyttige formler, beviser og

Læs mere

APV og trivsel 2015. APV og trivsel 2015 1

APV og trivsel 2015. APV og trivsel 2015 1 APV og trivsel 2015 APV og trivsel 2015 1 APV og trivsel 2015 I efteråret 2015 skal alle arbejdspladser i Frederiksberg Kommune udarbejde en ny grundlæggende APV og gennemføre en trivselsundersøgelse.

Læs mere

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf Digitalt prøvesæt Dette er et opgavesæt, som jeg har forsøgt at forestille mig, det kan se ud, hvis det skal leve op til ordene i det der er initiativ 3 i rækken af initiativer til videreudvikling af folkeskolens

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh121-mat/b-04062012 Mandag den 4. juni 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

a ortogonal med b <=> ( ) 4p q

a ortogonal med b <=> ( ) 4p q STX Mat A.maj 9 KP NB: i opg -5, som er uden hjælpemidler, benytter jeg her un Mathcad som srivemasine og bruger derfor onsevent det logise (fede) lighedstegn, da det ie har regnemæssige følger. Opg. a

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Projekt 5.3 De reelle tal og 2. hovedsætning om kontinuitet

Projekt 5.3 De reelle tal og 2. hovedsætning om kontinuitet Projet 53 De reelle tal og 2 hovedsætning om ontinuitet Mens den 1 hovedsætning om ontinuerte funtioner om forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2 hovedsætning betydeligt vanseligere

Læs mere

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R =

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R = Plnintegrlet Preben Alsholm 5. mj 8 Plnintegrlet. Integrlet f en funktion f én vribel et bestemte integrl efinition Ld f være en funktion defineret på intervllet [ b]. Ld = x x... x n = b være en inddeling

Læs mere

XII Vektorer i planen

XII Vektorer i planen Side 1 0101 Afsæt i et koordinatsystem vinklerne 135º og 20º og deres retningspunkter. 0102 Tegn i et koordinatsystem 4 forskellige repræsentanter for vektoren v = 5 3. 0103 Afsæt vektorerne p = 2, q =

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

Polynomier et introforløb til TII

Polynomier et introforløb til TII Polynomier et introforløb til TII Formål At introducere polynomier af grad 0, 1, 2 samt højere, herunder grafer og rødder At behandle andengradspolynomiet og dets graf, parablen, med fokus på bl.a. toppunkt,

Læs mere

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen 36 Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen En artikel om induktion, hvordan er det overhovedet muligt? Det er jo trivielt! Bevis ved induktion er en af de ældste matematiske

Læs mere

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden.

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden. Opgave Heltalligt Bestem alle hele tal, n >, for hvilke n + n er et helt tal. Opgave Trekantet I en spidsvinklet trekant ABC skærer vinkelhalveringslinien fra A siden BC i punktet L og den omskrevne cirkel

Læs mere

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag.

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag. VEKTOR I RUMMET PROJEKT 1 Fag Matematik A & Programmering C Tema Avedøre-værket Jacob Weng & Jeppe Boese Roskilde Tekniske Gymnasium 3.4 07-10-2010 1 Vektor i rummet INDLEDNING Projektet omhandler et af

Læs mere

Taxageometri og metriske rum

Taxageometri og metriske rum Taxageometri og metriske rum Douglas LaFontain og Troels Bak Andersen 8. oktober 2011 Målet med denne kursusdag er at introducere en ny geometri, der er forskellig fra vores sædvanlige Euklidiske plangeometri.

Læs mere

1 Trekantens linjer. Indhold

1 Trekantens linjer. Indhold Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Læsevejledning til resultater på regionsplan

Læsevejledning til resultater på regionsplan Læsevejledning til resultater på regionsplan Indhold 1. Overblik... 2 2. Sammenligninger... 2 3. Hvad viser figuren?... 3 4. Hvad viser tabellerne?... 5 5. Eksempler på typiske spørgsmål til tabellerne...

Læs mere

LinAlg Skriftlig prøve 20. januar 2009, 9 12 Vejledende besvarelse

LinAlg Skriftlig prøve 20. januar 2009, 9 12 Vejledende besvarelse LinAlg Skriftlig prøve. januar 9, 9 Vejledende besvarelse Dette eksamenssæt løber over 5 sider, denne side inklusive. Sættet stilles til løsning over 3 timer med alle sædvanlige hjælpemidler, bortset fra

Læs mere

Lektion 9 Statistik enkeltobservationer

Lektion 9 Statistik enkeltobservationer Lektion 9 Statistik enkeltobservationer Middelværdi med mere Hyppigheds- og frekvens-tabeller Diagrammer Hvilket diagram er bedst? Boxplot Lektion 9 Side 1 Når man skal holde styr på mange oplysninger,

Læs mere

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier: Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med

Læs mere

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner

Læs mere