1 Sætninger om hovedidealområder (PID) og faktorielle

Størrelse: px
Starte visningen fra side:

Download "1 Sætninger om hovedidealområder (PID) og faktorielle"

Transkript

1 1 Sætninger om hovedidealområder (PID) og faktorielle ringe (UFD) 1. Introducér ideal, hovedideal 2. I kommutativt integritetsområde R introduceres primelement, irreducibelt element, association 3. Begrebet PID (hovedidealområder) introduceres. I forbindelse med dette nævnes eksempler på hovedidealområder: Z, L[X], og den numeriske betingelse for PID nævnes (euklidisk ring) 4. I PID er irreducible elementer primelementer (nævn, at det er nemt at vise, at primelementer er irreducible i komm. int. omr.) 5. Introducér primopløsninger og irreducible opløsninger (en fremstilling med faktorer i R, hvor faktorer er enten primelementer el. irreducible elementer) 6. Nævn, at primopløsninger er entydige (hvis to produkter af primelementer a 1 a s og b 1 b t er associerede, er s = t og hver faktor a i er associeret med b i efter permutation af faktorer, i = 1,..., s) 7. Bevis hovedsætning 1: I komm. int. omr. R er følgende betingelser ækvivalente: (a) Irred. opløsninger eksisterer for alle elt. 0, enhed og disse er entydige. (b) Irred. opløsninger eksisterer for alle elt. 0, enhed og alle irred. elt. er primelt. (c) Primopløsninger eksisterer for alle elt. 0, enhed. Vis (b) (c), (b) (a), (c) (b) og (a) (b). Hvis følgende betingelser (dvs. én af dem) er opfyldt i en ring R, kaldes R UFD (faktoriel ring) 8. Nævn, at hvis der ikke eksisterer irred. opl. for alle elementer i et komm. int. omr., findes en uendelig følge af elementer i R a 1, a 2,..., hvor a i+1 er en ikke-triviel divisor i a i 9. Hovedsætning 2: Et PID er et UFD. 10. Småting: I UFD kan laves repræsentantsystem af primelementer, hvorpå ethvert element kan skrives som produkt af enhed og primelementpotenser. Er R faktoriel, er R[X] også faktoriel (Gauss sætning). Gauss talring er PID, dermed UFD, og der findes kun 9 imaginære faktorielle kvadratiske talringe. 1

2 2 Kvadratiske talringe, fortrinsvist om irreducible opløsninger, primelementer og faktorielle, kvadratiske talringe 1. Introducér kvadratiske talringe Z[ξ] (normeret andengradspolynomium med heltalskoefficienter, kvadratfri diskriminant, (irrationale) rødder ξ, kvadratisk tal x + yξ, mængden af disse Z[ξ]) 2. Norm (multiplikativ, heltallig etc.), irreducibelt element og primelement 3. Nævn ε enhed i Z[ξ] N(ε) = ±1 og δ α N(δ) N(α), δ triviel divisor i α N(δ) triviel divisor i N(α) 4. Vis lemma 6.14: lad π = x + yξ Z[ξ], hvor (x, y) = 1. Da gælder π primelement i Z[ξ] N(π) = ±p, p primtal π irreducibel i Z[ξ]. Betingelserne er ækvivalente, hvis Z[ξ] er UFD 5. I en kvadratisk talring eksisterer irreducible opløsninger for alle elementer; de er bare ikke altid entydige (vælg eksempel Z[ 5] med 6 = 2 3 = (1 + 5)(1 5)) (ikke alle kvadr. talringe er UFD) 6. Vis, at hvis p er et sædvanligt primtal i Z og et primelement i Z[ξ], så har kongruensen z 2 bz + c 0 (mod p) ingen løsninger i Z (6.19) 7. Skitser beviset for, at Z[i] er et UFD (foregår ved at vise, at Z[i] er en euklidisk ring) - rund af med lidt om forgrening og løsning på diofantisk ligning x 2 + y 2 = p, hvor p enten er et primtal eller ej 2

3 3 Kvadratiske talringe, fortrinsvist om forgrening i kvadratiske talringe 1. Introducér kvadratiske talringe Z[ξ] (normeret andengradspolynomium med heltalskoefficienter, kvadratfri diskriminant, (irrationale) rødder ξ, kvadratisk tal x + yξ, mængden af disse Z[ξ]) 2. Fortæl meget lidt om UFD og egenskaber (at irred. opløsninger eksisterer for alle elt. og er entydige, fx). Led over i, at nogle kvadratiske talringe kan ses ikke at være UFD ved ikke at opfylde ovenstående, men nogle er UFD, da de er PID 3. Sætning 6.20: Forgrening i faktorielle kvadratiske talringe - overvej hvorfor der er nødt til at blive gjort forskel på type 2 og speciel type. Led derfor videre til et eksempel, nemlig Gauss talring 4. Sætning 6.21: Forgrening i Gauss talring (som er UFD - forklar at dette kan vises, ved at vise at den er euklidisk). 5. Forklar slutteligt hvorfor ligningen x 2 + y 2 = p hvor p = 2 eller p 1 (mod 4) altid har heltalsløsninger (x, y) Z Z 6. Led eventuelt ind på hvordan mere komplicerede diofantiske ligninger kan løses ved brug af forgreningsegenskaben og nævn fordelen UFD giver (repræsentantsystem af primelementer) 3

4 4 Forgrening i Gauss talring og anvendelser på diofantiske ligninger 1. Introducér kvadratiske talringe Z[ξ] (normeret andengradspolynomium med heltalskoefficienter, kvadratfri diskriminant, (irrationale) rødder ξ, kvadratisk tal x + yξ, mængden af disse Z[ξ]) 2. Idet Z[ξ] α kan ses som talpar (x, y) Z Z, er der en bijektiv korrespondance mellem α, hvor N(α) = k og talpar der opfylder x 2 bxy + cy 2 = k - led lidt videre til Pells ligning (k = ±1) (enheder i Z[ξ]) og ligninger som x 2 2y 2 = 1, der kan vises at have uendelig mange løsninger 3. Mange gode egenskaber ved at betragte faktorielle, kvadratiske talringe. Sætning 6.16: Vis, at Z[i] er et UFD (ved at vise, at den er euklidisk) 4. I faktorielle kvadr. talringe kan man tale om forgrening 5. Sætning 6.21: Forgrening i Gauss talring (som er UFD - forklar at dette kan vises, ved at vise at den er euklidisk) : Den diofantiske ligning x 2 + y 2 = k (forklar, hvornår og hvorfor denne har løsninger, hvis k = 2 l q m1 1 qs ms p n1 1 pnr r ; q j 3, p i 1 modulo 4; m j skal være lige!) 4

5 5 Cirkeldelingspolynomier 1. Introducér begrebet (primitiv) n te enhedsrod i et legeme L og specielt i legemet C - komplekse n te enhedsrødder (setup er altså præcis som i 3.1) 2. Definition på det n te cirkeldelingspolynomium - normeret og af grad ϕ(n) (antal elementer af orden n i C n ) 3. Vis meget hurtigt sætning X n 1 = d n Φ d - fortæl, at den har koefficienter i Z 4. Cirkeldelingspolynomierne er irreducible over Q[X] - vis EVT. (forklar idéen) at de p te er irreducible vha. Eisensteins irreducibilitetskriterium (betragt Φ p (X + 1), vis, at dette er irreducibelt idet p p, men p 2 p) 5. Da legeme L enten har karakteristik 0 eller p (primtal), kan Z eller Zp opfattes som delring af legeme L, ved isomorfisætningen - af dette følger Freshman s Dream 6. Hovedsætning: Lad p være karakteristikken af legemet L. Da gælder for ξ L og n N, at ξ har orden n i L, hvis og kun hvis Φ n (ξ) = 0 og p n 7. Perspektiver til konstruktion af endelige legemer (irreducible divisorer i φ n, polynomiumskvotient F p [X]/(f)) 5

6 6 Endelige legemer (eksistens og entydighed) Alt det første skal gå meget hurtigt her, da eksistens og entydighed kommer til at tage noget tid. 1. Formål: vil konstruere legeme ud fra legeme L hvor L er dellegeme, og hvor normeret og irreducibelt f L[X] har rod ξ 2. Tal om struktur af polynomiumskvotient R[X]/(f), hvor f er et normeret polynomium i R[X] af positiv grad n (a) Enhver ækvivalensklasse har entydig fremstilling α = b 0 + b 1 ξ + + b n 1 ξ n 1, hvor ξ = [X] (f) og X R[X] (b) Ud fra denne konstruktion kan for eksempel C konstrueres, hvor vi benytter X i R[X] (c) Ud fra hovedidealsætning, er L[X] PID, hvis L legeme (d) Lemma før 5.9: f irred. i L[X] (eks. F p [X]). L[X]/(f) legeme (f irred. (f) maks.id.) 3. Husk sætning 3.6: Lad p være karakteristikken af legemet L. Da gælder for ξ L og n N, at ξ har orden n i L, hvis og kun hvis Φ n (ξ) = 0 og p n Godset er: 1. Sætning (lemma): Lad p være et primtal, primisk med n N (p n). Betragt nu Φ n F p [X] og en irreducibel divisor f i Φ n F p [X]. Sæt r := deg(f). K := F p [X]/(f) er et legeme med p r elementer, og ξ := [X] (f) er en primitiv n te enhedsrod i K. Endvidere er r = [p] n i (Z/n). Husk her, at K er et legeme ud fra valg af ξ og deg(f), hvorpå #K = p r. Vis, at Φ n (ξ) = 0. Vis, at hvis s N med [p] s = 1 i (Z/n), da er s r. Se på fremstilling af α p, hvor α K, og dermed α ps i sammenhæng med rødder i pol. X ps X. 2. Eksistens: Lad p være primtal, r N. Der findes et endeligt legeme med p r elementer, nemlig K := F p [X]/(f), hvor f er irreducibel faktor i Φ pr 1, opfattet som polynomium i F p [X]. Hvis L er et legeme med p s elementer, findes en inj. homomorfi K L hviss r s. Vis, at f har grad r. Benyt foregående sætning. Lad L være et sådant legeme, L vektorrum over K, endelig basis med d vektorer i L. Ved antagelse af r s, vis da f X ps 1 i F p [X]. Injektiv homomorfi F p [X] L[X] (da F p L). Alle α L er rødder i X ps 1 1. f har rod alpha i L som polynomium i L[X]. Få inj. homomorfi K L. 3. Entydighed: Der er en isomorfi mellem alle legemer med p r elementer. 6

Minilex Mat 2AL. .. Henrik Dahl hdahl@tdc-broadband.dḳ. Mangler 3.10-3.16

Minilex Mat 2AL. .. Henrik Dahl hdahl@tdc-broadband.dḳ. Mangler 3.10-3.16 Minilex Mat 2AL.. Henrik Dahl hdahl@tdc-broadband.dḳ.. Mangler 3.10-3.16 Resumé ADVARSEL - dette er et total underground-dokument!. Det er livsfarligt at bruge ukritisk. Der er næsten sikkert graverende

Læs mere

Matematik 2AL, vinteren

Matematik 2AL, vinteren EO 1 Matematik 2AL, vinteren 2002 03 Det er tilladt at skrive med blyant og benytte viskelæder, så længe skriften er læselig, og udviskninger foretages grundigt. Overstregning trækker ikke ned og anbefales

Læs mere

10. Nogle diofantiske ligninger.

10. Nogle diofantiske ligninger. Diofantiske ligninger 10.1 10. Nogle diofantiske ligninger. (10.1). I dette kapitel betragtes nogle diofantiske ligninger, specielt nogle af de ligninger, der kan behandles via kvadratiske talringe. Ligningerne

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

MM05 - Kogt ned. kokken. Jacob Aae Mikkelsen. 23. januar 2007

MM05 - Kogt ned. kokken. Jacob Aae Mikkelsen. 23. januar 2007 MM05 - Kogt ned Jacob Aae Mikkelsen kokken 23. januar 2007 1 INDHOLD 1 ARITMETIK I Z Indhold 1 Aritmetik i Z 2 2 Kongruens i Z 4 3 Ringe 6 4 Aritmetik i F[x] 9 5 Kongruens i F[x] og kongruensklasse aritmetik

Læs mere

2. Gruppen af primiske restklasser.

2. Gruppen af primiske restklasser. Primiske restklasser 2.1 2. Gruppen af primiske restklasser. (2.1) Setup. I det følgende betegner n et naturligt tal større end 1. Den additive gruppe af restklasser modulo n betegnes Z/n, og den multiplikative

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe. 0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polynomier, Kirsten Rosenkilde, Marts 2006 1 Polynomier Disse noter giver en kort introduktion til polynomier, og de fleste sætninger nævnes uden bevis. Undervejs er der forholdsvis nemme opgaver,

Læs mere

Facitliste 1 MAT 2AL. 5. f (x) er irreducibel i Z 5 [X].

Facitliste 1 MAT 2AL. 5. f (x) er irreducibel i Z 5 [X]. Facitliste 1 Facitliste til eksamensopgaver Facit til de første 14 opgavesæt er blevet til paa basis af Jonas B. Rasmusssens facitliste. Han regnede størstedelen af opgaverne, medens han fulgte kurset,

Læs mere

Polynomier med sælsomme egenskaber modulo p Bo Vagner Hansen

Polynomier med sælsomme egenskaber modulo p Bo Vagner Hansen Artikel 17 Polynomier med sælsomme egenskaber modulo p Bo Vagner Hansen Reduceres koefficienterne i et normeret heltalspolynomium modulo et primtal, opstår et nyt polynomium over restklasseringen. Både

Læs mere

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe. Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger

Læs mere

Ringe og Primfaktorisering

Ringe og Primfaktorisering Ringe og Primfaktorisering Michael Knudsen 16. marts 2005 1 Ringe Lad Z betegne mængden af de hele tal, Z = {..., 2, 1,0,1,2,...}. På Z har to regneoperationer, + (plus) og (gange), der til to hele tal

Læs mere

Anders Thorup. Elementær talteori. Algebra og talteori, F2001

Anders Thorup. Elementær talteori. Algebra og talteori, F2001 Anders Thorup Elementær talteori Algebra og talteori, F2001 1. Primtallene... 1 2. Gruppen af primiske restklasser... 15 3. Cirkeldelingspolynomier. Endelige legemer... 21 4. Reciprocitetssætningen...

Læs mere

Komplekse tal og polynomier

Komplekse tal og polynomier Komplekse tal og polynomier John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal, polynomier og legemsudvidelser. Noterne er beregnet til at blive brugt sammen med

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

Facitliste til nyere eksamensopgaver

Facitliste til nyere eksamensopgaver Facitliste Facitliste til nyere eksamensopgaver Listen indeholder facit (eller vink) til eksamensopgaverne (i MatAL, Alg og ) fra sommeren 003 og fremefter. Bemærk, at de facitter, der står på listen,

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

Jeg foretager her en kort indføring af polynomier over såvel de reelle som

Jeg foretager her en kort indføring af polynomier over såvel de reelle som Polynomier, rødder og division Sebastian Ørsted 20. november 2016 Jeg foretager her en kort indføring af polynomier over såvel de reelle som de komplekse tal, hvor fokus er på at opbygge værktøjer til

Læs mere

En algebra opsamling INDLEDNING. Indhold. Jens Kusk Block Jacobsen 13. januar 2008

En algebra opsamling INDLEDNING. Indhold. Jens Kusk Block Jacobsen 13. januar 2008 En algebra osamling Jens Kusk Block Jacobsen 13. januar 2008 INDLEDNING Her har jeg samlet forskellige ting, der relaterer til algebra. Dokumentet er en osamling til Concrete Abstract Algebra (1) af Niels

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

Algebra2 Obligatorisk opgave

Algebra2 Obligatorisk opgave Algebra2 Obligatorisk opgave Anders Bongo Bjerg Pedersen, 070183 Eksamensnummer 45 23. maj 2005 Opgave 1 Vi har: σ = σ 6 5 = (σ 3 ) 2 (σ 5 ) 1 = (1 3 5 2 4)(8 7 6). b) Ordnen af en p-cykel er (jfr. 2.18)

Læs mere

Foredrag i Eulers Venner 30. nov. 2004

Foredrag i Eulers Venner 30. nov. 2004 BSD-prosper.tex Birch og Swinnerton-Dyer formodningen Johan P. Hansen 26/11/2004 13:34 p. 1/20 Birch og Swinnerton-Dyer formodningen Foredrag i Eulers Venner 30. nov. 2004 Johan P. Hansen matjph@imf.au.dk

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Diofantiske ligninger

Diofantiske ligninger Anders Thorup Diofantiske ligninger Algebra og talteori, 999 Kvadratiske ligninger KVADR 0. Den lineære ligning Udkast. Pell s ligning 2. Ækvivalens af løsninger 3. Klassetallet 4. Kædebrøksmetoden 5.

Læs mere

Kommutativ algebra, 2005

Kommutativ algebra, 2005 Kommutativ algebra, 2005 Anders Thorup Matematisk Afdeling Københavns Universitet Anders Thorup, e-mail: thorup@math.ku.dk Kommutativ algebra, 2005 Matematisk Afdeling Universitetsparken 5 2100 København

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

Noter til Matematik 3AG Algebra og geometri

Noter til Matematik 3AG Algebra og geometri Pakke Mat 3AG 1994 Noter til Matematik 3AG Algebra og geometri Anders Thorup 1 Noter til Matematik 3AG, 1994 Om ringe og moduler. 1. Nogle grundbegreber, s. 1 8 2. Kerne og kokerne. Exakte følger, s. 1

Læs mere

Mordell s Sætning. Henrik Christensen og Michael Pedersen. 17. december 2003

Mordell s Sætning. Henrik Christensen og Michael Pedersen. 17. december 2003 Mordell s Sætning Henrik Christensen og Michael Pedersen 17. december 2003 Mordells sætning siger at gruppen C(Q) af rationale punkter over en ellipse C er en endeligt frembragt abelsk gruppe. Elliptiske

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Hyperelliptisk kurve kryptografi

Hyperelliptisk kurve kryptografi Christian Robenhagen Ravnshøj NKS November 2007 Elliptiske kurver Gruppelov på elliptisk kurve R P Q P Q R = 0. Elliptiske kurver Elliptisk kurve kryptografi Gruppelov giver krypto baseret på elliptisk

Læs mere

A L G E B R A I S K T A L T E O R I Forår 1998 Forelæsninger ved Asmus L. Schmidt

A L G E B R A I S K T A L T E O R I Forår 1998 Forelæsninger ved Asmus L. Schmidt A L G E B R A I S K T A L T E O R I Forår 1998 Forelæsninger ved Asmus L. Schmidt KØBENHAVNS UNIVERSITET MATEMATISK AFDELING Januar 1998 Asmus Schmidt, Algebraisk talteori, 2. oplag, marts 2004. Indhold

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Integer Factorization

Integer Factorization Integer Factorization Per Leslie Jensen DIKU 2/12-2005 kl. 10:15 Overblik 1 Faktorisering for dummies Primtal og aritmetikkens fundamentalsætning Lille øvelse 2 Hvorfor er det interessant? RSA 3 Metoder

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Oversigt over gruppeteori: definitioner og sætninger

Oversigt over gruppeteori: definitioner og sætninger Oversigt over gruppeteori: definitioner og sætninger (G, ) kaldesengruppe, når følgende aksiomer er opfyldt: 0) (G, ) er en organiseret (stabil) mængde: a, b G a b G 1) Den associative lov gælder, dvs.

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3 University of Copenhagen Faculty of Science Written Exam - 3. April 2009 Algebra 3 This exam contains 5 exercises which are to be solved in 3 hours. The exercises are posed in an English and in a Danish

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

Geom2-dispositioner (reeksamen)

Geom2-dispositioner (reeksamen) Geom2-dispositioner (reeksamen) Rasmus Sylvester Bryder 20. april 2012 1 Mangfoldigheder i R n 1. Introducér begreberne parametriseret mangfoldighed, regularitet, indlejret parametriseret mangfoldighed

Læs mere

Fejlkorligerende køder Fejlkorrigerende koder

Fejlkorligerende køder Fejlkorrigerende koder Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget

Læs mere

Matematik 3AG Forår Algebraisk Geometri KURVER OG MODULER. Hans Bjørn Foxby

Matematik 3AG Forår Algebraisk Geometri KURVER OG MODULER. Hans Bjørn Foxby Matematik 3AG Forår 2003 Algebraisk Geometri KURVER OG MODULER Hans Bjørn Foxby 0 (A/hA) mp (A/ghA) mp (A/gA) mp 0 2 Mat 3AG I&S 1 Indhold & Stikord Indhold I&S PAK 0. PAK 1. PAK 2. PAK 3. PAK 4. PAK 5.

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Secret sharing - om at dele en hemmelighed Matematiklærerdag 2017

Secret sharing - om at dele en hemmelighed Matematiklærerdag 2017 Matematiklærerdag 2017 Institut for Matematik, Aarhus universitet 24. marts 2017 Resumé Secret sharing henviser til metoder til fordeling af en hemmelighed blandt en gruppe af deltagere, som hver især

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

DM72 Diskret matematik med anvendelser

DM72 Diskret matematik med anvendelser DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

F.1. Mat 2AL. n Z n a Z n = gcd = ±gcd = lcm = ±lcm d l sinα)+(cosβ sinα)(cosβ N N {id}

F.1. Mat 2AL. n Z n a Z n = gcd = ±gcd = lcm = ±lcm d l sinα)+(cosβ sinα)(cosβ N N {id} F. Fejl i bogen. F.1 Herunder flger en liste over nogen af de mere meningsforstyrrende fejl i [J]. 18 2 partition equivalence class 18 3 class relation 18 4 partition equivalence class 28 8 r t [Erstat

Læs mere

Fejlkorrigerende koder, secret sharing (og kryptografi)

Fejlkorrigerende koder, secret sharing (og kryptografi) Fejlkorrigerende koder, secret sharing (og kryptografi) Olav Geil Afdeling for Matematiske Fag Aalborg Universitet Møde for Matematiklærere i Viborg og Ringkøbing amter 7. november, 2006 Oversigt Fejlkorrigerende

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

Talteori: Euklids algoritmer, modulær aritmetik

Talteori: Euklids algoritmer, modulær aritmetik Talteori: r, modulær aritmetik Videregående algoritmik Cormen et al. 31.1 31.4 Tirsdag den 6. januar 2009 1 1 2 Restklasseringene modulo n Grupper og undergrupper Modulær division Divisorer De hele tal

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Endeligdimensionale vektorrum

Endeligdimensionale vektorrum Endeligdimensionale vektorrum I det følgende betegner X, Y og Z endeligdimensionale vektorrum Gerne udstyret med en norm, evt et indre produkt Eksempel: En skævt beliggende plan i rummet, X = {v R 3 v,

Læs mere

Matematisk Metode Notesamling

Matematisk Metode Notesamling Matematisk Metode Notesamling Anders Bongo Bjerg Pedersen Stud.Scient, Matematisk Institut, KU 21. november 2005 Bemærkninger til noterne: Hosliggende noter er fra faget Matematisk Metode, afholdt i blok

Læs mere

6. RSA, og andre public key systemer.

6. RSA, og andre public key systemer. RSA 6.1 6. RSA, og andre public key systemer. (6.1). A skal sende en meddelelse til B. Denne situation forekommer naturligvis utallige gange i vores dagligdag: vi kommunikerer, vi signalerer, vi meddeler

Læs mere

Reed-Solomon og N T P-koder

Reed-Solomon og N T P-koder Reed-Solomon og N T P-koder - deres egenskaber og dekodning af Maria Sondrup Iversen Jane Gravgård Knudsen Juni 2004 INSTITUT FOR MATEMATISKE FAG Aalborg Universitet Fredrik Bajers vej 7G 9220 Aalborg

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb.

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. lemma: Hvis a, b og c er heltal så gcd(a, b) = 1 og a bc da vil a c. lemma: Hvis p er et primtal og p a 1 a 2 a n hvor hvert

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

TALTEORI Ligninger og det der ligner.

TALTEORI Ligninger og det der ligner. Ligninger og det der ligner, december 006, Kirsten Rosenkilde 1 TALTEORI Ligninger og det der ligner. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Endeligdimensionale vektorrum

Endeligdimensionale vektorrum Endeligdimensionale vektorrum I det følgende betegner X, Y og Z endeligdimensionale vektorrum Gerne udstyret med en norm, evt et indre produkt Eksempel: En skævt beliggende plan i rummet, X = {v R 3 v,

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Johan P. Hansen 18. april 2013 Indhold 1 Indbyrdes primiske hele tal 1 2 Regning med rester 3 3 Kryptering

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Matematisk modellering og numeriske metoder. Lektion 4

Matematisk modellering og numeriske metoder. Lektion 4 Matematisk modellering og numeriske metoder Lektion 4 Morten Grud Rasmussen 17. september, 013 1 Homogene andenordens lineære ODE er [Bogens afsnit.1] 1.1 Linearitetsprincippet Vi så sidste gang, at førsteordens

Læs mere

4.1 Lineære Transformationer

4.1 Lineære Transformationer SEKTION 41 LINEÆRE TRANSFORMATIONER 41 Lineære Transformationer Definition 411 ([L], s 175) Lad V, W være F-vektorrum En lineær transformation L : V W er en afbildning, som respekterer lineær struktur,

Læs mere

Archimedes Princip. Frank Nasser. 12. april 2011

Archimedes Princip. Frank Nasser. 12. april 2011 Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

DesignMat Uge 1 Repetition af forårets stof

DesignMat Uge 1 Repetition af forårets stof DesignMat Uge 1 Repetition af forårets stof Preben Alsholm Efterår 008 01 Lineært ligningssystem Lineært ligningssystem Et lineært ligningssystem: a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + +

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi)

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) 1. Klassiske krypteringsmetoder 1.1 Terminologi klartekst kryptotekst kryptering dekryptering 1.2 Monoalfabetiske kryptosystemer 1.3 Additive

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 4 1 enote 4 Taylor s approksimationsformler for funktioner af én variabel I enote 19 og enote 21 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier i

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Ligningssystemer - nogle konklusioner efter miniprojektet

Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere