Hvad er et tal? Dan Saattrup Nielsen

Størrelse: px
Starte visningen fra side:

Download "Hvad er et tal? Dan Saattrup Nielsen"

Transkript

1 12 Det filosofiske hjørne Hvad er et tal? Dan Saattrup Nielsen Det virker måske som et spøjst spørgsmål, men ved nærmere eftertanke virker det som om, at alle vores definitioner af tal refererer til andre matematiske begreber. F.eks. kunne man måske sige, at tallet 1 var det objekt, der repræsenterede antallet af næser, du har (hvis vi antager, at du er et nogenlunde normalt menneske); eller hvis man er til mængdelære, ville man måske definere 1 som { }. Men begge disse metoder beskriver blot tallet 1 med hhv. kardinaliteter og mængder. Er det ikke muligt, at definere hvad et tal er uafhængigt af anden matematik? Dette er, hvad matematikeren og filosoffen Gottlob Frege ( ) ville prøve at give sig i kast med. Nærmere betegnet ville han gerne kunne definere alle de naturlige tal udelukkende ved brug af logik 3. Han fik opbygget en yderst elegant og intuitiv teori, som dog senere hen blev angrebet og endte ud i, at han opgav teorien fuldstændigt - dette ledte dog andre filosoffer, såvel som matematikere, til at videreudvikle hans idéer. Vi vil her vise, hvordan hans teori så ud, og hvad der fik hele fundamentet til at smuldre. Først og fremmest skal vi lige have et par småting på plads for at kunne forstå definitionerne. Et begreb er ment som en grundlæggende tanke omkring beskrivelsen af objekter - f.eks. er at være rød et begreb, da dette kan bruges til at beskrive røde objekter. Derudover siger vi, at et objekt falder ind under et begreb, hvis objektet bliver beskrevet af begrebet - med ovenstående eksempel kan vi så sige, at jordbær falder ind under begrebet at være rød. 3 Egentlig havde han til mål at dække al matematik, men han startede nu engang beskedent ud med tal.

2 Dan Saattrup Nielsen 13 Frege definerer så, at tallet 0 dækker over et begreb, hvis det, lige meget hvad a er, altid holder, at a ikke falder ind under begrebet. Altså hvis begrebet eksempelvis er menneske uden hjerne, så for at et objekt kan falde under et sådan begreb, kræver det, at objektet er et menneske og ikke har en hjerne. Men da et sådant objekt ikke eksisterer (håber jeg stærkt på), vil det derfor gælde, at tallet 0 dækker over menneske uden hjerne. Bemærk, at vi ikke har defineret hvad tallet 0 er, men kun hvad dette mystiske objekt dækker over. Herfra definerer han så rekursivt, at tallet (n + 1) dækker over et begreb F, hvis der findes et objekt a, som falder ind under F, og at tallet n dækker over begrebet falder ind under F, men er ikke identisk 4 med a - for at forstå dette en smule bedre vil vi forsøge at definere 1. Lad os starte med begrebet F som værende er eiffeltårnet i Paris. For at 1 kan dække over dette begreb, skal der først og fremmest findes et objekt, som falder ind under det; det overlades som en øvelse til læseren. Dernæst skal tallet 0 dække over begrebet falder ind under F men er ikke identisk med eiffeltårnet i Paris, som, ved at indsætte begrebet F, bliver til falder ind under er eiffeltårnet i Paris, men er ikke identisk med eiffeltårnet i Paris. Da der ikke findes nogen objekter, som falder ind under dette begreb, dækker 0 per definition over det; altså dækker 1 over F. For at have en definition af tallene selv og ikke bare hvad de dækker over, definerer han, at n er et tal, hvis og kun hvis at der findes et begreb, som n dækker over. Altså er tallene defineret! Der er blot et lille problem. Disse definitioner lægger op til, at der findes mange forskellige former for 0, 1 osv. Da dette bliver 4 Frege bruger identisk, som værende at man kan udskifte de to med hinanden uden at ændre sandhedsværdien. 23. årgang, nr. 1

3 14 Hvad er et tal? noget bøvl, vælger Frege at definere 0 som tallet, der dækker over begrebet ikke lig med sig selv og (n + 1) til at være tallet, som dækker over begrebet lig med n. Tjek at denne definition faktisk er et specialtilfælde af den foregående! Nu kunne man komme til at tro, at vi var færdige. Men alt, hvad vi har gjort, er at definere en hulens masse. Jovist, vi har retfærdiggjort en eksistens af disse objekter, som vi tillader os at kalde for tal. Men for at det virkelig er tal, så kræver det, at de opfører sig, som vi forventer, at tal nu engang gør. Men hvordan kan vi overhovedet sige, hvornår at et tal er lig med et andet tal? Hvordan ved vi at 1 er større end 0? Hvad er 1 + 1? Han lagde ud med at besvare identitetsspørgsmålet, ved at tillade Humes princip som et logisk aksiom: Definition 1 (Humes princip) For alle begreber F, G, gælder det, at tallet, der dækker over F, er identisk med tallet, der dækker over G, hvis og kun hvis der er en en-til-en korrespondance imellem objekterne, som falder under F og G. Dette viste sig dog at skabe komplikationer, for dette princip skabte, hvad der bliver kaldt for Cæsar-problemet - som egentlig blot er, at princippet ikke kan svare på, om tallet, dækkende over et begreb F, er identisk med Julius Cæsar. Et fjollet spørgsmål kunne man måske tænke, men humlen ligger i, at princippet ikke kan sammenligne tal, der dækker over et begreb og andre objekter, der ikke nødvendigvis falder indenfor denne kategori. Frege var ikke tilfreds. Hans løsning var at erstatte Humes princip med noget bedre, som, han besluttede, skulle handle om udvidelser af begreber. En udvidelse af et begreb skal ses som et objekt, der indeholder alle de objekter, der falder under begrebet. Altså kan man vælge

4 Dan Saattrup Nielsen 15 at se det som en slags mængde af objekter, uden at det direkte har noget med mængdelære at gøre. Hans formulering af hans erstatning blev kaldt det originale navn Basic Law V : Definition 2 (Basic Law V) For alle begreber F, G, gælder det, at udvidelsen af F er identisk med udvidelsen af G, hvis og kun hvis det for alle objekter a gælder, at a falder under F, hvis og kun hvis a falder under G. For at dette havde relevans til tal, redefinerede han hans definition af tal, til at et tal dækker over et begreb F, hvis og kun hvis tallet er en udvidelse af begrebet har en en-til-en korrespondance med begrebet F. Igen er n et tal, hvis og kun hvis der er et begreb, som n dækker over. Dette er hvad, der senere hen skabte problemer for Frege - men inden vi blot frastøder hans idéer, så kan vi lige se, hvordan han brugte dette til at vise, at der var uendelig mange naturlige tal. Med identitetsproblemet fikset ville Frege nu finde en logisk måde at repræsentere tallenes orden; han besluttede at benytte følger. Han definerede, at n direkte følger m i følgen af naturlige tal, hvis og kun hvis der er et begreb F og et objekt x faldende under F, så tallet, som dækker over begrebet F, er n, og at tallet, som dækker over begrebet falder under F men er ikke identisk med x, er m. Det er en lille mundfuld, men det fanger dog den intuitive fornemmelse af dét at direkte følge efter noget andet. Fra dette kunne han så let bevise at Dermed kunne han definere n + 1 som værende det tal, som direkte følger n i følgen af naturlige tal, hvilket medfører at = 2, da tallet 2 dækker over begrebet lig med 1. 5 Altså at 0 < 1 og intet naturligt tal findes imellem de to. 23. årgang, nr. 1

5 16 Hvad er et tal? Hans sidste udfordring var at definere, at der findes uendelig mange naturlige tal. Selvfølgelig havde han ikke induktion til rådighed, da han arbejder nede på det grundlæggende niveau, så han måtte komme på andre idéer. Han formulerede sætningen som Sætning 3 Tallet, der dækker over begrebet tilhører følgen af naturlige tal, sluttende med n, følger n direkte i følgen af naturlige tal. Beviset giver han kun en kort skitse af, da det ellers would take us too far afield. Et af lemmaerne, der skal bruges til beviset, er Lemma 4 Hvis a direkte følger d i følgen af naturlige tal, og hvis tallet, der dækker over begrebet tilhører følgen af naturlige tal sluttende med d, direkte følger d i følgen af naturlige tal, så gælder det, at tallet, som dækker over begrebet tilhører følgen af naturlige tal sluttende med a, direkte følger a i følgen af naturlige tal. Til at bevise dette skal det bl.a. vises, at a er tallet, der dækker over begrebet tilhører følgen af naturlige tal, men er ikke lig med a, og for at bevise dette skal det vises, at dette begreb har den samme udvidelse som begrebet tilhører følgen af naturlige tal sluttende med d. Til at vise dette skal det først bevises, at intet endeligt 6 objekt kan følge sig selv i følgen af naturlige tal. Ja, det samlede bevis bliver ret langhåret. Efter alt dette kunne han dog definere det første uendelige tal ℵ 0 7 som tallet, der dækker over begrebet er et endeligt tal. 6 Han definerer endelige tal som tal, der tilhører følgen af naturlige tal begyndende med 0. 7 Han brugte notationen 1, men her er brugt den moderne notation.

6 Dan Saattrup Nielsen 17 Frege kom igennem hele det ovenstående bevis og fik bevist, at der er uendeligt mange tal og vigtigere, at tallene kunne defineres logisk (han mente også, at Basic Law V var selvindlysende logisk). Ni år senere, i år 1902, fik Frege et brev fra Bertrand Russell. I dét fremlagde Russell et paradoks, som han lige havde opdaget - et paradoks, som nu kaldes Russells paradoks: Lad R være begrebet, der dækker over et objekt x, hvis og kun hvis der er et begreb F, sådan at x er udvidelsen af F, og at x ikke falder under F. Lad nu r være udvidelsen af R og antag at r falder under R. Da findes der et begreb F, så r er udvidelsen af F, og r ikke falder under F. Jf. Basic Law V falder r heller ikke under R, modstrid. Altså må r ikke falde under R. Dermed findes der et begreb F (nemlig R), så r er udvidelsen af F, og r ikke falder under F. Men per definition af R betyder dette, at r falder under R, modstrid. Dermed er Basic Law V inkonsistent. Frege sendte et høfligt brev tilbage til Russell, hvori han nævnte, at Russells opdagelse var ekstraordinær, og vil betyde en masse fremskridt indenfor logikken, men at det desværre også gjorde, at hele Freges arbejde gik til grunde. Efter dette forsøgte Frege at redde, hvad han kunne, men han endte med at opgive hele projektet. Russell tog dog faklen op og konstruerede hans egen teori fra bunden, kaldet typeteori, hvor han undgik disse problemer. Der forskes stadig i typeteori den dag i dag som et fundament for al matematik. Hans teori bruger dog aksiomer, som ikke kan retfærdiggøres ud fra logik alene, så Freges forsøg på at opbygge al matematik ud fra logik er i stedet blevet genoptaget af nylogicismen, som går tilbage og begynder fra Humes princip igen. Disse nylogicister 23. årgang, nr. 1

7 18 Hvad er et tal? findes stadig i dag - så hele ånden i at logikken må ligge som et grundfundament lever stadig. Litteratur [1] Frege, Gottlob. Die Grundlagen der Arithmetik. Breslau, Oversat af Michael S. Mahoney. [2] Shapiro, Stewart. Thinking about mathematics: the philosophy of mathematics. Oxford University Press, 2000.

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931

Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Kommentar til 1 Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Denne afhandling af den 24-årige Kurt Gödel er blevet en klassiker. Det er vist den eneste

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Quaternioner blev første gang beskrevet

Quaternioner blev første gang beskrevet vise sig indirekte, i forandret form, som f.eks. neurotiske symptomer eller fejlhandlinger. Det ubevidste er imidlertid ikke bare en art skjult bevidsthed, men er knyttet til træk ved mennesket, der er

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Meditation over Midterbinomialkoefficienten

Meditation over Midterbinomialkoefficienten 18 Juleeventyr Meditation over Midterbinomialkoefficienten En rusrejse fra en fjern juletid Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen Ved juletid for ikke så længe siden faldt tre russer

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Eksempel 2: Forløb med inddragelse af argumentation

Eksempel 2: Forløb med inddragelse af argumentation Eksempel 2: Forløb med inddragelse af Læringsmål i forhold til Analyse af (dansk, engelsk, kult) 1. Hvad er (evt. udgangspunkt i model) 2. Argumenter kommer i bølger 3. Evt. argumenttyper 4. God Kobling:

Læs mere

Portræt af matematikeren Bertrand Russell

Portræt af matematikeren Bertrand Russell www.matema10k.dk Portræt af matematikeren Bertrand Russell skrevet af Flemming Chr. Nielsen bragt i DSB s magasin Ud & Se august 2007 (artiklen bringes her på siden efter aftale med Flemming Chr. Nielsen

Læs mere

Matematik i AT (til elever)

Matematik i AT (til elever) 1 Matematik i AT (til elever) Matematik i AT (til elever) INDHOLD 1. MATEMATIK I AT 2 2. METODER I MATEMATIK OG MATEMATIKKENS VIDENSKABSTEORI 2 3. AFSLUTTENDE AT-EKSAMEN 3 4. SYNOPSIS MED MATEMATIK 4 5.

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Limitations in Formal Systems and Languages

Limitations in Formal Systems and Languages Limitations in Formal Systems and Languages Abstract This thesis has two major aims. The first is to demonstrate the centrality of Cantor s diagonal argument in the proofs of the classical limitation results

Læs mere

Dette er ikke titlen på dette tema

Dette er ikke titlen på dette tema Dette er ikke titlen på dette tema Evgenia Sendova 1 Paradokser her, der, allevegne Jeg beklager dybt skrev den franske matematiker og filosof Blaise Pascal til en ven men jeg har ikke tid til at skrive

Læs mere

Svar nummer 2: Meningen med livet skaber du selv 27. Svar nummer 3: Meningen med livet er at føre slægten videre 41

Svar nummer 2: Meningen med livet skaber du selv 27. Svar nummer 3: Meningen med livet er at føre slægten videre 41 Indhold Hvorfor? Om hvorfor det giver mening at skrive en bog om livets mening 7 Svar nummer 1: Meningen med livet er nydelse 13 Svar nummer 2: Meningen med livet skaber du selv 27 Svar nummer 3: Meningen

Læs mere

matematikhistorie og dynamisk geometri

matematikhistorie og dynamisk geometri Pythagoras matematikhistorie og dynamisk geometri med TI-Nspire Indholdsfortegnelse Øvelse 1: Hvem var Pythagoras?... 2 Pythagoras læresætning... 2 Geometrisk konstruktion af Pythagoræisk tripel... 3 Øvelse

Læs mere

Hvad er tal? Af Terese M. O. Nielsen

Hvad er tal? Af Terese M. O. Nielsen Hvad er tal? Af Terese M. O. Nielsen Hvad er tal?... 5 Indledning... 5 Emner - 1g... 6 Regning - tal og repræsentationer af tal... 6 Litteratur... 6 Potenstal - definitioner og beviste sandheder... 6 Oversigt

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Tallet π er irrationalt Jens Siegstad

Tallet π er irrationalt Jens Siegstad 32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser

Læs mere

Fra At lære en håndbog i studiekompetence, Samfundslitteratur 2003. Kapitel 6, s. 75-87.

Fra At lære en håndbog i studiekompetence, Samfundslitteratur 2003. Kapitel 6, s. 75-87. Side 1 af 10 Fra At lære en håndbog i studiekompetence, Samfundslitteratur 2003. Kapitel 6, s. 75-87. At skrive At skrive er en væsentlig del af både din uddannelse og eksamen. Når du har bestået din eksamen,

Læs mere

BOSK F2011, 1. del: Induktion

BOSK F2011, 1. del: Induktion P(0) ( n N. P(n) P(n + 1) ) = ( n N. P(n) ) February 15, 2011 Summa summarum Vi får et tip om at følgende kunne finde på at holde for n N: n N. n i = n(n + 1). 2 Vi husker at summation læses meget som

Læs mere

Hjemmesiden - gillelejeferieby.dk

Hjemmesiden - gillelejeferieby.dk Hjemmesiden - gillelejeferieby.dk Dig, dit hus og hjemmesiden Dit brugernavn er allerede sat op og kan ikke ændres. Brugernavnet er hus000 hvor 000 er dit husnummer. F.eks. er vores husnummer 118 så vores

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Lærer på et handelsgymnasium Kristian Peter Poulsen

Lærer på et handelsgymnasium Kristian Peter Poulsen Jobopslag og tanker om jobbet 13 Lærer på et handelsgymnasium Kristian Peter Poulsen Når sommerferien står får døren, kan jeg se tilbage på et ualmindeligt lærerigt år som gymnasielærer. Et år, hvor jeg

Læs mere

Fra problem til fortælling Narrative samtaler. www.dispuk.dk anetteholmgren@dispuk.dk

Fra problem til fortælling Narrative samtaler. www.dispuk.dk anetteholmgren@dispuk.dk Fra problem til fortælling Narrative samtaler www.dispuk.dk anetteholmgren@dispuk.dk Denne dag er ambitiøs Forskellene (post-strukturalistisk filosofi) Fortællingen (Narrativ teori) Traumet (Hukommelse

Læs mere

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33 Indhold Bind 1 del I: Eksperimenterende geometri og måling 1 Eksperimentel geometri 3 Hvorfor eksperimenterende undersøgelse? 4 Eksperimentel undersøgelse: På opdagelse med sømbrættet 6 Geometriske konstruktioner

Læs mere

Kapitel 13. 6. december Planen

Kapitel 13. 6. december Planen Kapitel 13. 6. december Planen På et advokatkontor i København Vi gik alle sammen indenfor i advokatens kontor. Her var også de to advokater, som havde været med under afhøringerne af Sven og jeg. Elverkongen

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Metoder og erkendelsesteori

Metoder og erkendelsesteori Metoder og erkendelsesteori Af Ole Bjerg Inden for folkesundhedsvidenskabelig forskning finder vi to forskellige metodiske tilgange: det kvantitative og det kvalitative. Ser vi på disse, kan vi konstatere

Læs mere

Guide til lektielæsning

Guide til lektielæsning Guide til lektielæsning Gefions lærere har udarbejdet denne guide om lektielæsning. Den henvender sig til alle Gefions elever og er relevant for alle fag. Faglig læsning (=lektielæsning) 5- trinsmodellen

Læs mere

Eva Krarup Steensens tale til studenterne ved translokationen 27.juni 2015

Eva Krarup Steensens tale til studenterne ved translokationen 27.juni 2015 Kære studenter For godt en måneds tid siden holdt vi jeres sidste skoledag. I holdt middag for jeres lærere med taler, quiz og billeder fra jeres tre år på GG. Jeg var rundt i alle klasser og det var skønt

Læs mere

Stil ind på et foto af en afdød

Stil ind på et foto af en afdød Kapitel Stil ind på et foto af en afdød Du er på besøg hjemme hos en af dine venner, og går forbi et billede, der hænger i entréen. På billedet ses en nydelig dame og lige da du passerer billedet, tænker

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Bilag 1a. Cpr.nr. Ikke. Samlet indstilling uddannelsesparat. uddannelsesparat

Bilag 1a. Cpr.nr. Ikke. Samlet indstilling uddannelsesparat. uddannelsesparat 1 Bilag 1a Dansk: den obligatoriske optagelsesprøve Prøvegrundlag: en tekst af max 1 normalsides omfang. Teksttyperne kan være prosa, lyrik eller sagprosa. Læse sikkert og hurtigt med forståelse og indlevelse

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Kend dine brugere. Om brugertest. 2 sem., feb. 2010 Multimediedesigner, København nord

Kend dine brugere. Om brugertest. 2 sem., feb. 2010 Multimediedesigner, København nord Kend dine brugere Om brugertest 2 sem., feb. 2010 Multimediedesigner, København nord Andreas Frandsen, Ninette Nielsen Agnete Gnistrup, Senia Lundberg Side 1 af 7 Indholdsfortegnelse Indledning s. 2 Valg

Læs mere

Vedr.: Re: Vedr.: Re: Vedr. Åbenhedstinget

Vedr.: Re: Vedr.: Re: Vedr. Åbenhedstinget Vedr.: Re: Vedr.: Re: Vedr. Åbenhedstinget Jens Otto Kjær Hansen 9:07 AM (17/3-2015) to, Thomas Kære Jeg overlader det 100 % hvad du mener der skal skrives og indestår på ingen måde for hvad du skriver,

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Indledende bemærkninger til genreoversigten

Indledende bemærkninger til genreoversigten Indledende bemærkninger til genreoversigten Følgende genreoversigt kan fungere som en tjekliste, når eleverne skal træne de skriftlige genrer til studentereksamenen i skriftlig fransk, spansk eller italiensk.

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Paradigmer. Hvilket paradigme holder dig fast? Hvilke nye paradigmer er du på vej hen mod?

Paradigmer. Hvilket paradigme holder dig fast? Hvilke nye paradigmer er du på vej hen mod? Paradigmer Fastlåst eller innovativ? Hvem er lyst til det første? Vi vil vel alle gerne være innovative? Alligevel kan vi opleve, at vi også selv sidder fast i nogle mønstre og har svært ved at komme ud

Læs mere

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne.

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne. o Til censor Fagkonsulent Matematik, htx Vedr.: Skriftlig censur i matematik på htx Velkommen som skriftlig censor i matematik på htx. Marit Hvalsøe Schou Oehlenschlægersvej 55 5230 Odense M Tlf: 2565

Læs mere

Computeren repræsenterer en teknologi, som er tæt knyttet til den naturvidenskabelige tilgang.

Computeren repræsenterer en teknologi, som er tæt knyttet til den naturvidenskabelige tilgang. Den tekniske platform Af redaktionen Computeren repræsenterer en teknologi, som er tæt knyttet til den naturvidenskabelige tilgang. Teknologisk udvikling går således hånd i hånd med videnskabelig udvikling.

Læs mere

Kursus i IT Sikkerhed

Kursus i IT Sikkerhed Kursus i IT Sikkerhed Ivan Damgård, Daimi, Århus Universitet Praktiske ting Kursushjemmeside www.daimi.au.dk/dsik Her findes noter, links til materiale, opgaver, m.v. Der bruges et sæt noter, der findes

Læs mere

Intuition og inspiration

Intuition og inspiration Intuition og inspiration Jeg havde en følelse af skæbne, at selv om jeg var blevet tildelt livet af skæbnen, så havde jeg noget, jeg skulle opfylde. Det gav mig en indre sikkerhed. Ofte havde jeg den følelse,

Læs mere

Et katalog over paradokser

Et katalog over paradokser Et katalog over paradokser Hans Hüttel Oktober 2009 Øen i søen har kun én barber Til gengæld så klipper han alt hvad han ser Han klipper sin fætter, sin hund og sit får Han klipper billetter, når færgerne

Læs mere

OM BEVISER. Poul Printz

OM BEVISER. Poul Printz OM BEVISER Poul Printz Enhver, der har stiftet bekendtskab med matematik selv å et relativt beskedent niveau, er klar over, at matematiske beviser udgør et meget væsentligt element af matematikken. De

Læs mere

UGESEDDEL 4 MAKROØKONOMI 1, 2003. Henrik Jensen Københavns Universitets Økonomiske Institut Hjemmeside: www.econ.ku.dk/personal/henrikj/makro1-e2003/

UGESEDDEL 4 MAKROØKONOMI 1, 2003. Henrik Jensen Københavns Universitets Økonomiske Institut Hjemmeside: www.econ.ku.dk/personal/henrikj/makro1-e2003/ UGESEDDEL 4 MAKROØKONOMI 1, 2003 M -Ø Henrik Jensen Københavns Universitets Økonomiske Institut Hjemmeside: www.econ.ku.dk/personal/henrikj/makro1-e2003/ I uge 39 (23/9 og 26/9) har vi gennemgået: I.b.

Læs mere

1 Sætninger om hovedidealområder (PID) og faktorielle

1 Sætninger om hovedidealområder (PID) og faktorielle 1 Sætninger om hovedidealområder (PID) og faktorielle ringe (UFD) 1. Introducér ideal, hovedideal 2. I kommutativt integritetsområde R introduceres primelement, irreducibelt element, association 3. Begrebet

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Coaching. - at støtte og udvikle dine medarbejdere og kolleger

Coaching. - at støtte og udvikle dine medarbejdere og kolleger Coaching - at støtte og udvikle dine medarbejdere og kolleger At coache er en færdighed som at cykle. Når først du har fået det lært, er det meget let og det vil kunne gøre det uden at tænke over det.

Læs mere

Filosofien og matematikken bag Google

Filosofien og matematikken bag Google 40 Baggrundsartikel Filosofien og matematikken bag Google Med fokus på PageRank Jakob Lindblad Blaavand, Oxford University Indledning En internetsøgemaskine er god, hvis den først og fremmest kan søge

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

OPLÆG TIL STUDIERETNINGSPROJEKT I MATEMATIK-HISTORIE OM CUBA-KRISEN OG MATEMATISKE SPIL

OPLÆG TIL STUDIERETNINGSPROJEKT I MATEMATIK-HISTORIE OM CUBA-KRISEN OG MATEMATISKE SPIL OPLÆG TIL STUDIERETNINGSPROJEKT I MATEMATIK-HISTORIE OM CUBA-KRISEN OG MATEMATISKE SPIL Indledning Den kolde krig er betegnelsen for perioden 1948 til 1989, hvor USA og USSR i kølvandet på anden verdenskrig

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Spil Rapport. Spil lavet i GameMaker. Kevin, Mads og Thor 03-02-2011

Spil Rapport. Spil lavet i GameMaker. Kevin, Mads og Thor 03-02-2011 Spil Rapport Spil lavet i GameMaker Kevin, Mads og Thor 03-02-2011 Indholdsfortegnelse Indledning... 2 HCI... 2 Planlægning / Elementær systemudvikling... 2 Kravspecifikationer... 4 Spil beskrivelse...

Læs mere

Bilag H: Transskription af interview d. 14. december 2011

Bilag H: Transskription af interview d. 14. december 2011 : Transskription af interview d. 14. december 2011 Interviewer (I) 5 Respondent (R) Bemærk: de tre elever benævnes i interviewet som respondent 1 (R1), respondent 2 (R2) og respondent 3 (R3). I 1: jeg

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard Mandags Chancen En optimal spilstrategi Erik Vestergaard Spilleregler denne note skal vi studere en optimal spilstrategi i det spil, som i fjernsynet går under navnet Mandags Chancen. Spillets regler er

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Innovation i Almen Studieforberedelse 2015 Elevudgave

Innovation i Almen Studieforberedelse 2015 Elevudgave Innovation i Almen Studieforberedelse 2015 Elevudgave Udover den klassiske opgave kan der til eksamen i AT indgå en opgave med innovation. Dette dokument beskriver arbejdet med innovation i AT og indeholder:

Læs mere

Manuskriptvejledning pr. 2015 Bachelorprisen

Manuskriptvejledning pr. 2015 Bachelorprisen Manuskriptvejledning pr. 2015 Bachelorprisen Fremsendelse af artikel Artikler skrevet på baggrund af bachelorprojekter, der er afleveret og bestået på det annoncerede tidspunkt, kan deltage i konkurrencen

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse

Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse 1 Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien

Læs mere

Matematikkens elementære videnskabsteori

Matematikkens elementære videnskabsteori Matematikkens elementære videnskabsteori Forord Nærværende artikelsamling er udarbejdet af en arbejdsgruppe nedsat under Matematiklærerforeningen med støtte fra Undervisningsministeriet. Forsvindende få

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Kvadratrodsberegning ved hjælp af de fire regningsarter

Kvadratrodsberegning ved hjælp af de fire regningsarter Kvadratrodsberegning ved hjælp af de fire regningsarter Tidligt i historien opstod et behov for at beregne kvadratrødder med stor nøjagtighed. Kvadratrødder optræder i forbindelse med retvinklede trekanter,

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Kursusforløb 6-8. klasse. Fagplan for Den Vide Verden og Demokrati

Kursusforløb 6-8. klasse. Fagplan for Den Vide Verden og Demokrati FAABORGEGNENS FRISKOLE PRICES HAVEVEJ 13, 5600 FAABORG TLF.: 6261 1270 FAX: 6261 1271 Kursusforløb 6-8. klasse ENGHAVESKOLEN D. 07-01-2009 Sideløbende med historieundervisningen i 6.-9.kl. er der i 6.

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1.

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1. Læringsprogram Talkonvertering Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen Klasse 2.4 1. marts 2011 Fag: Vejleder: Skole: Informationsteknologi B Karl G. Bjarnason Roskilde

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Skriftlig fremstilling

Skriftlig fremstilling Skriftlig fremstilling Det at skulle formulere noget skriftligt kan være meget svært. Især hvis det er noget, man ikke gør ret tit. Hvordan skal man dog komme i gang, hvordan skal det struktureres, og

Læs mere

Gør vi det rigtige med praksisnær undervisning? Vibe Aarkrog Danmars Pædagogiske Universitetsskole 22.8.07

Gør vi det rigtige med praksisnær undervisning? Vibe Aarkrog Danmars Pædagogiske Universitetsskole 22.8.07 Gør vi det rigtige med praksisnær undervisning? Vibe Aarkrog Danmars Pædagogiske Universitetsskole 22.8.07 Formål og indhold Formålet er, at I finder inspiration til at diskutere og især videreudvikle

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Arne Stephansen, Banevej 27, 4180 Sorø.

Arne Stephansen, Banevej 27, 4180 Sorø. Arne Stephansen, Banevej 27, 4180 Sorø. 1 af 6 Østre Landsret Bredgade 59 1260 Kbh. K. Tlf. 57 83 22 78 arne@unilink.dk Sagsnr. BS 99-82/2011 ANKESTÆVNING Jeg anker hermed dommen af 13. august 2012 til

Læs mere

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN.

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN. MODUL 8 Differensligninger Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN Modulet er baseret på noter af Peter BEELEN. 26. august 2014 2 Indhold 1 Introduktion 5 1.1 Rekursioner og differensligninger.........................

Læs mere

Projektarbejde. Kombinatorik

Projektarbejde. Kombinatorik Projektarbejde Matematik A Teknisk Gymnasium Århus Side 1 Indledning: Besvarelsen bør indeholde følgende hovedafsnit: Opgaveanalyse: En kort beskrivelse af, hvad opgaven går ud på, samt hvilke oplysninger,

Læs mere

En teori om leg og fantasi. 1

En teori om leg og fantasi. 1 Gregory Bateson En teori om leg og fantasi. 1 1. Sproglig kommunikation kan foregå på mange abstraktionsniveauer, som rækker i to retninger fra det tilsyneladende simple betydningsgivende (denotative)

Læs mere

Om at forstå ting, der er vanskelige at forstå

Om at forstå ting, der er vanskelige at forstå Om at forstå ting, der er vanskelige at forstå (under udgivelse i Døvblindenyt (Dk), aprilnummeret) Flemming Ask Larsen 2004, kognitiv semiotiker MA, rådgiver ved Skådalen Kompetansesenter, Oslo. e-mail:

Læs mere

Vejledning i valg af coachuddannelse

Vejledning i valg af coachuddannelse Vejledning i valg af coachuddannelse Coaching er et gråt marked Vi taler med mange forskellige mennesker, der ønsker en uddannelse som coach. De to hyppigste spørgsmål vi får fra potentielle kunder er:

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Jeg er vejen, sandheden og livet

Jeg er vejen, sandheden og livet Jeg er vejen, sandheden og livet Sang PULS nr. 170 Læs Johannesevangeliet 14,1-11 Jeg er vejen, sandheden og livet. Sådan siger Jesus i Johannes-evangeliet. Men hvad betyder det egentlig? Hvad mener han?

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Følgetekst til menukurset: Kredsens udviklingsplan Del 1. Visionen

Følgetekst til menukurset: Kredsens udviklingsplan Del 1. Visionen Følgetekst til menukurset: Kredsens udviklingsplan Del 1. Visionen Du er den heldige oplægsholder på Kredsens udviklingsplan Del 1. Visionen. Læs alle slides grundigt igennem, og ligeså dette papir. Du

Læs mere

Om at læse! en videnskabelig artikel! som diplomstudiestarter"

Om at læse! en videnskabelig artikel! som diplomstudiestarter Om at læse! en videnskabelig artikel! som diplomstudiestarter" Anker Helms Jørgensen! IT Universitetet i København! DUN Konferencen Maj 2010! Om at læse en artikel! 1! Baggrund: It-verdenen møder akademia!

Læs mere

Matematik, der afgør spil

Matematik, der afgør spil Artikeltype 47 Matematik, der afgør spil Sandsynlighedsregning vinder ofte. Kombinatorisk spilteori sejrer hver gang Mads Thrane Hvis du er træt af at tabe opvasketjansen i Sten Saks Papir eller Terning,

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

DE SEKS TÆNKEHATTE BETRAGT DIN BESLUTNING FRA ALLE MULIGE SYNSVINKLER

DE SEKS TÆNKEHATTE BETRAGT DIN BESLUTNING FRA ALLE MULIGE SYNSVINKLER DE SEKS TÆNKEHATTE BETRAGT DIN BESLUTNING FRA ALLE MULIGE SYNSVINKLER De Seks tænkehatte er en nyttig teknik, som kan hjælpe dig med at sikre, at du får betragtet en vigtig beslutning fra alle synsvinkler

Læs mere

Excel tutorial om indekstal og samfundsfag 2008

Excel tutorial om indekstal og samfundsfag 2008 Excel tutorial om indekstal og samfundsfag 2008 I denne note skal vi behandle data fra CD-rommen Samfundsstatistik 2008, som indeholder en mængde data, som er relevant i samfundsfag. Vi skal specielt analysere

Læs mere

Italien spørgeskema til sproglærere dataanalyse

Italien spørgeskema til sproglærere dataanalyse Italien spørgeskema til sproglærere dataanalyse Dig selv 1. 32 sproglærere har besvaret spørgeskemaet, 15 underviser på mellemtrinnet, 17 på ældste trin. 2. 23 underviser i engelsk, 6 i fransk, 3 i tysk,

Læs mere

Metoden er meget anvendt i praksis, og er særdeles velegnet, hvis du ønsker at undersøge holdninger hos et større antal af mennesker.

Metoden er meget anvendt i praksis, og er særdeles velegnet, hvis du ønsker at undersøge holdninger hos et større antal af mennesker. Spørgeskemaer Metoden er meget anvendt i praksis, og er særdeles velegnet, hvis du ønsker at undersøge holdninger hos et større antal af mennesker. Hvad er et spørgeskema? Et spørgeskema består i sin bredeste

Læs mere