Side 1/6

Størrelse: px
Starte visningen fra side:

Download "http://www.skolekom.dk/~ole.andersen/ Side 1/6"

Transkript

1 Fortællingen som tilgang til matematik Spørger man manden på gaden, eller vore elever for den sags skyld, vil de typisk opfatte mennesket som et fornuftsvæsen, dvs. mene, at vi i bund og grund er styret af vor fornuft. Forstanden sidder som en øverste instans, nærmest som en direktør i en mindre virksomhed, og har overblik over alt, hvad der foregår i "virksomheden", som illustreret i denne figur: Forstand Tale og handling At undervise sådanne elever burde være ret enkelt. Der er een vej til indlæring, og den går gennem forstanden. Har man derfor fortalt eleverne noget nyt, og de kan gengive det, må man også forvente, at de både forstår det og kan bruge det i praksis. Man kalder også denne læringsteori for "beholdermodellen", fordi man opfatter eleverne som en slags beholder, som man kan hælde viden på, som man hælder vin på flaske. Hælder man stille og roligt, fyldes flaskerne også stille og roligt. Man skal som lærer blot have en god strategi, som man også skal, når man hælder vin på flaske. En anden meget udbredt læringsteori er konstruktivismen, som ikke på samme måde opfatter mennesket som et fornuftsvæsen. Til gengæld opfatter man eleven som en slags videnskabsmand, der selv konstruerer sin egen viden, men på baggrund af egne oplevelser. Derfor skal man heller ikke forelægge eleven færdige og finpussede forløb, som man skal ifølge ovenstående beholdermodel, men tværtimod planlægge nogle forløb, hvor elevens egenforståelse bliver udfordret. Man skal undervise "med udgangspunkt i eleven". Man skal altså væk fra den hårde lærerstyring over i undervisningsformer, hvor eleven selv kommer på banen, som man f.eks. gør i projektarbejde. Det er selvfølgelig to meget forskellige læringsteorier, som jeg her kort har præsenteret, men der er også ligheder. Først og fremmest har de begge en kerne, dvs. et urokkeligt synspunkt som bærer hele teorien. For beholdermodellen er det eksistensen af fornuften og i konstruktivismen er det opfattelsen af eleven som en lille konstruktør, der helt af sig selv konstruerer sin viden om verden. Sjovt nok er alle andre læringsteorier opbygget lidt på samme måde, nemlig med et eller flere centrale postulater, der fungerer som omdrejningspunkter for læringsteorien. Der er tale om urokkelige punkter, som hele teorien står og falder med. Et sådant punkt benævnes også et archimedisk punkt efter oldtidens store matematiker, fysiker og opfinder Archimedes. Blandt mange ting formulerede han vægtstangsprincippet, som vi alle kender fra vippen på legepladsen. Det er også det princip man benytter sig af, når man med en lang stang og et fast punkt flytter tunge genstande: For at illustrere, at man kan flytte tunge genstande, skulle Archimedes have sagt: Giv mig et fast punkt hvor jeg kan stå, og jeg skal bevæge jorden. Det har været en god illustration, thi det er sidenhen blevet en metafor for noget fast og uforanderligt i andre sammenhænge, som f.eks. i læringsteorier. Det er ikke kun læringsteorier, der er bygget op omkring sådanne archimediske punkter. Det samme kan man generelt sige om alle menneskesyn, men er der da problemer i det? Ja, det er der. Det giver Side 1/6

2 under alle omstændigheder nogle meget firkantede syn på mennesket, som næsten er så fastlåste, at de i praksis bliver uanvendelige som teoretisk grundlag. Og det er ikke så verdensfjern en problematik, som det umiddelbart lyder. Faktisk er det en problematik, som de fleste kender, f.eks. når man diskuterer arv og miljø. Spørgsmålet er her om det primært er vores arv eller det miljø, som man vokser op i, der er bestemmende for vores udvikling. Selvom det er to modstridende synspunkter, kan man alligevel fremføre gode argumenter og eksempler for begge synspunkter. Det er netop en sådan diskussion mellem to rigmænd, der ligger til grund for filmen "Bossen og Bumsen" med Eddie Murphy. Spørgsmålet ligger derfor lige for. Findes der i det hele taget et sådant archimedisk punkt for mennesket? Kan man en gang for alle fastslå noget uangribeligt om mennesket, som kunne ligge til grund for et menneskesyn eller for en læringsteori for den sags skyld? Eller for at sige det samme med andre ord: Findes der en essens for mennesket, som kan siges at være tilfældet til alle tider og i alle kulturer? Her vil jeg antage, at det gør der ikke. Men er det så slut med enhver form for teori om mennesket? Det er det selvfølgelig ikke, men det er klart, at det bliver med et helt andet indhold og med en helt anden opbygning end de traditionelle læringsteorier. For at gøre en lang historie kort, vil jeg her blot demonstrere, at man faktisk kan sige en hel del om at undervise i matematik ud fra følgende to antagelser: 1. Der findes ikke et sådant archimedisk punkt for mennesket. 2. Der findes flere uafhængige punkter, som ligger til grund for vore handlinger og vore tanker. Disse punkter er uafhængige, thi var der en afhængighed, ville man dermed have etableret en bagvedliggende sammenhæng, og derved netop have introduceret et nyt archimedisk punkt, og det ville jeg for alt i verden undgå. Tankegangen kan illustreres med følgende figur: Traditionel læringsteori archimedisk punkt Denne læringsteori Kort og godt har jeg med denne læringsteori dermed detroniseret enhver form archimedisk punkt og dermed fjernet ethvert grundlag for alle de traditionelle læringsteorier og didaktiske teorier. Der er dermed intet overordnet at henvise til f.eks. i forbindelse med planlægning af undervisning. Eksempelvis henviser vi i matematik ofte til logik og forstanden, men en sådan instans findes slet ikke ifølge ovenstående. Begynderundervisning i matematik Kan man så slet ikke sige noget om undervisning? Ja, man kan faktisk sige en hel del. Her vil jeg skitsere et forløb, som ikke direkte er en logisk konsekvens af ovenstående læringsteori, men som alligevel er inspireret af denne tankegang. Lad os se nærmere på, hvorledes man kunne starte op med nogle elever, som lige er begyndt i gymnasiet. Vi starter ud med nogle små opgaver, som disse: 1) 2 3 2) 2 3 3) 2 3 4) 2 3 Side 2/6

3 5) Det går fint med de første opgaver. Ofte skal man lige repetere, hvordan det nu er med plus gange minus og minus gange minus, men ellers går det normalt fint med at regne opgaver, som 1) 4). Helt anderledes stiller det sig med 5) Her går mange elever galt i byen, særligt hvis man skriver 2 3 4, så der er større afstand imellem 3 og end mellem og 3 Og hvad gør vi så ved det? Der er intet overordnet at henvise til, dvs. ingen almengyldige regneregler, ingen fornuft eller logik, som kunne bibringe eleverne en forklaring. Men i mange tilfælde har jeg haft held med, hvad man kunne benævne for kvalitative metoder, som ikke er nogen særlig præcis betegnelse, men som under et betegner metoder, der ikke direkte henviser til logik og fornuft. Det kan f.eks. være historier, analogier, tegninger, metaforer, huskeregler eller lignende. I denne artikel fokuserer jeg på fortællinger som introduktion til de svære emner i matematik. Historier er et fantastisk virkemiddel. Mennesket bruger simpelthen historier til at organisere en ellers kompleks verden. Det lyder banalt men i synspunktet ligger der også en afstandtagen fra, at der findes et eller andet centralt i mennesket, som konstituere vore handlinger og vore tanker. Noget sådant findes ikke. Der er kun disse enheder, som altså også kan være dannet på baggrund af historier og fortællinger. Med disse ord vender vi så tilbage til matematikken og hvorledes vi kan begrunde, at vi skal gange før vi skal lægge sammen? Til dette bruger jeg ofte følgende historie: Spørgsmålet er om vi skal gange før vi skal lægge sammen eller omvendt. Ret beset er det lige meget om man gør det ene eller det andet, men for at få samme resultater skal vi alle gøre det samme, og her har man en gang for alle besluttet, at man ganger først. En matematikkens færdselsregel, der sikre, at vi altid får samme resultat, hvis man vel at mærke overholder "færdselsreglen". Faktisk henviser jeg også til en huskeregel her, nemlig følgende: prik før streg, for at angive at man ganger eller dividerer før vi lægger sammen eller trækker fra. Og så kan vi ellers fortsætte, f.eks. med følgende: 6) ) ) osv. Ja, hvad skete der så lige her? Ja, først og fremmest fik vi dannet et nyt punkt ved at fortælle historien. Efterfølgende fik vi det trænet, og sådan kan man ellers fortsætte med først at danne og derefter træne. Det, man danner, er selvfølgelig nogle af de føromtalte punkter og det, man træner, er de punkter, der blev dannet. Sådan kan man ellers fortsætte med disse faser med at danne punkter med efterfølgende træning af de dannede punkter, dvs. man benytter historier til at introducere eleverne for den svære matematik, som efterfølgende trænes og atter trænes. Og så kunne man ellers tro, at der var frit slag, men, men men. Her skal man være opmærksom på, at man ikke bare skal slå sig løs f.eks. i tilfældige historier. Det er vigtigt at vælge sig nogle historier, som så vidt muligt kan anvendes igen og igen, og som har et vist indhold, dvs. som måske ikke er formuleret så præcist, men som i en eller anden forstand alligevel rammer, så det bliver forståeligt og håndterbart for eleverne. Så kan formuleringen måske genbruges andre steder, og det er en stor fordel. Genbrug er velbrug. Det gør det simpelthen nemmere at danne nye punkter, når det minder om noget, man før har hørt. Vi går godt nok ud fra, at der ingen generel mekanisme findes for dannelsen af nye punkter, men alligevel kan man godt stimulere dannelsen af nye punkter. Det er nemlig meget nemt, thi det er oplagt nemmere at danne nye punkter, hvis man i forvejen har nogle punkter, der minder om de nye, der helst skal dannes. Her vil jeg give et par eksempler på kvalitative metoder, som jeg selv benytter, fordi de kan bruges igen og igen. Side 3/6

4 Opskriv formel, indsæt tal og beregn: I matematik C lærer man en række formler, som kan anvendes til forskellige beregninger. Selvom det stort set er det samme, man altid gør, er det alligevel uoverskueligt for mange at finde en bestemt størrelse ud fra en given formel. Jeg har nu efterhånden på mange hold haft held med følgende opstilling: 1. Noter oplysninger. 2. Opskriv formel. 3. Indsæt tal. 4. Løs ligning. Fordelen er at man altid kan følge dette skema. Desuden bliver eleven vha. skemaet hjulpet i gang: Noter først de givne oplysninger ect. Derved bliver en stor og lidt uoverskuelig opgave delt op i mindre delopgaver. De gode elever finder efterhånden ud af, at det faktisk er lettere at omskrive formlen inden man indsætter tal. Men det skal man lade dem selv opdage, thi det er først, når man har opnået en vis træning og øvelse med at løse ligninger, at man kan se fordelen i først at omskrive ligningen, inden der indsættes tal. Fra konkret eksempel til generel formel: Vi gennemregner først et konkret eksempel. I stedet for at fokusere på at få et resultat som et tal, fokuserer vi på at få skrevet resultatet, så vi kan genkende, hvorledes resultatet fremkommer. Her benytter vi altså igen, at mange elever har langt lettere ved at regne med tal end med bogstaver. Eks. Udled renteformlen: 500 kr indsættes i banken. Renten er 2% pr. år, dvs. r = 2% = 0,02 Fremskrivningsfaktoren: 1 + r = 1 + 0,02 = 1,02 Løbetid: n Indestående: Kn I fællesskab udfylder vi nu følgende skema. Vi er ikke fokuseret på slutresultatet, men er mere interesserede i, hvordan resultatet er fremkommet, så vi til sidst kan generalisere: n Kn ,02= ,02= 500 1,02 1,02=500 1,02 2 =520, ,20 1,02= 500 1,02 2 1,02=500 1,02 3 =530, ,60 1,02= 500 1,02 3 1,02=500 1,02 4 =541,22 n Generelt: 500 1,02 n K n =K 0 (1+r) n Et bevis: Mange beviser kan opfattes som en generel fremgangsmåde, som kan benyttes i alle tilfælde. Beviset består så i at gøre det en gang for alle. Side 4/6

5 Eks. Bevis, at a= y 2 y 1 x 2 x 1 Her kan man selvfølgelig benytte metoden "Fra konkret eksempel til formel", men man kan også gøre noget helt andet, nemlig regne sig frem til resultatet. Det kan man gøre ved først at tage et eksempel med to givne punkter, hvor vi skal finde ligningen for den rette linie, der går gennem de to punkter. Derefter tager vi endnu et eksempel. Og måske endnu et. Indtil næsten alle kan se, at det er samme fremgangsmåde, som vi bruger igen og igen. Evt. man nu gennemregne eksemplet med to vilkårlige punkter (x 1, y 1 ) og (x 2, y 2 ) Tilsvarende fremgangsmåde kan man benytte sig af f.eks. med sinus og cosinus i en retvinklet trekant. Efterhånden bliver de så fortrolig med fremgangsmåden, at man ikke behøves så mange eksempler mere. De ved efterhånden, hvad et bevis er. En anden fordel ved denne fremgangsmåde er, at man regner med konkrete tal. Det falder langt nemmere for mange at regne med tal end med bogstaver. I hvert fald i starten af forløbet. Efterhånden som eleverne bliver mere trænede, bliver det langt lettere for eleverne, at regne med bogstaver, og dermed kan vi også klare beviser uden først at skulle gennemregne mange eksempler. Ovenstående eksempler indikerer en meget lærerstyret undervisning, og det er det selvfølgelig også set fra en meget overordnet betragtning. Til gengæld kan man tilstræbe at aktivere eleverne så meget som muligt i den enkelte time. Det er "styret induktion" et eksempel på. Styret induktion: Eksempelvis startede vi på logaritmer her i sidste uge. Jeg introducerede 10-talslogaritmen, så de kunne finde logaritmen til nogle pæne tal uden lommeregner og også finde logaritmen vha. lommeregneren. Som enhver matematiker ved, er vi nu kommet til logaritmeregnereglerne. Traditionelt kunne jeg nu præsentere disse regneregler og hurtigt bevise dem, men i sidste uge gjorde jeg noget andet. De blev nemlig bedt om at udregne følgende: log 2 log 3 log 2 log 3 log 6 log 2 log 4 log 8 log 6 log 2 log 3 Derefter skulle de se på tallene og se om de kunne se nogen sammenhænge. Mange ser hurtigt at nogen af tallene er ens, og der er sikkert også nogen, der ser en sammenhæng. Er man rigtig heldig kan enkelte af eleverne også formulere nogle generelle regneregler. Den slags små eksperimentelle forløb virker rigtigt godt, fordi de svage elever får lidt ekstra træning i at bruge loggaritmefunktionen på lommeregneren, man får trænet et lidt mere kompliceret udtryk, som log 2 log 3 og de matematikstærke elever også bliver udfordret. Faktisk bliver de involveret i at forklare resten af klassen logaritmeregnereglerne, og det er fedt :) Alle i klassen bliver aktiveret på en helt anden måde end hvis man blot havde fortsat med at fortælle om logaritmereglerne. Og det er utroligt vigtigt at aktivere eleverne af den simple grund, at man langt nemmere danner og træner disse punkter ved selv at være aktiv. Kan man tilrettelægge undervisningen, så eleverne næsten selv opdager regneregler og matematiske sætninger, er det selvfølgelig uovertruffen. Det er i hvert fald sjovt og virker utrolig befordrende for Side 5/6

6 indlæringen og lysten til matematik. Tænker vi tilbage på denne lille læringsteori, er det måske ikke så underligt endda. Som tidligere nævnt er der ingen direkte tilgang til disse punkter, og dermed heller ikke en direkte tilgang til at danne punkter. Og det er hårdt at være elev og hele tiden skulle forholde sig til, hvad der bliver serveret for dem. Det er meget sjovere selv at lege matematiker og selv forsøge sig. Begrundelsen er som før: Man danner og træner disse punkter langt lettere ved selv at være aktiv. Ovenfor er præsenteret forskellige eksempler på kvalitative metoder, som kan bruges mange gange, men faktisk kan ovenstående læringsteori også inspirere til andre tiltag og overvejelser. Det skal vi lige se et par eksempler på her: Matematikken opdages forlæns, men præsenteres baglæns: I ovenstående eksempel med "styret induktion" får man foræret en fin fortælling om matematik, og det skal man benytte sig af. Det er nemlig vigtigt, at eleverne får en vis forståelse for matematikkens væsen, så de har en ide om, f.eks hvad definition og sætning er for noget. Men ovenstående eksempel kan bruges til at eksemplificere, hvorledes matematikere arbejder, f.eks. med følgende lille historie: Engang har store matematikere også siddet og leget, som vi nu har siddet og leget, som i ovenstående eksempel med logaritmer. De havde ikke helt de redskaber, som vi nu har til rådighed i form af lommeregnere, så det har været langsommeligt og meget tidskrævende at lege dengang. Pludselig har man set en sammenhæng. Efter at have leget og prøvet endnu mere har man måske fået formuleret en regneregel og endda fået den bevist. Når alt dette præsenteres i en matematikbog starter man sådan set lige omvendt, nemlig ved at præsentere det, som de gamle matematikere sidst fandt ud af, nemlig den præcise definition, sætningen og beviset. Med andre ord finder man frem til matematikken nærmest i den omvendte rækkefølge af den måde, matematikken introduceres i matematikbogen. Viden er kvantiseret: En umiddelbar konsekvens af tankegangen i denne artikel er, at viden ikke er noget man stille og roligt tilegner sig. Man tilegner sig viden i klumper, fordi der hele tiden skal dannes nye passende punkter. Derfor er det vigtigt at undgå store spring, dvs. man skal planlægge, så næste trin ligger tæt på forrige trin. Det er vigtigt at være opmærksom på, thi med mange store spring bliver matematikken let for uoverskuelig for eleverne, og så giver de op. Eksempelvis har mange elever svært ved bogstaver, som f.eks. at aflæse koefficienterne i forskriften for en lineær funktion. Men det kan man da heldigvis træne. Giv dem en 5-10 lineære funktioner, hvor det eneste man skal gøre er at aflæse koefficienterne. På den måde trænes at bruge bogstaver og man får brudt en stor udfordring op i mindre dele. Desuden tager en sådan opgave ikke lang tid, og man får aktiveret eleverne, hvilket er utroligt vigtigt :) God fornøjelse Ole Andersen August Side 6/6

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

User s guide til cosinus og sinusrelationen

User s guide til cosinus og sinusrelationen User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 23. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Matematik C Hvad kan folkeskoleeleven?

Matematik C Hvad kan folkeskoleeleven? Matematik C Matematik C er en spændende udfordring, fordi der her er så mange elever, der har svært ved matematik. Det følgende er dog ikke en redegørelse for, hvorledes man generelt takler sådanne elever.

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Implikationer og Negationer

Implikationer og Negationer Implikationer og Negationer Frank Villa 5. april 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Flere ligninger med flere ukendte

Flere ligninger med flere ukendte Flere ligninger med flere ukendte Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2014/2015, eksamen maj-juni 2015 Institution Kolding HF&VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Ny skriftlighed - Matematik

Ny skriftlighed - Matematik Ny skriftlighed - Matematik Indhold Andres tanker og ideer:... 2 Andre nyttige links:... 2 Kompetencer:... 2 Eksempler på opgaver der træner forskellige kompetencer... 3 Eksempel 1: Opgaveløsning med forskellige

Læs mere

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet Sikre Beregninger Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Introduktion I denne note skal vi kigge på hvordan man kan regne på data med maksimal sikkerhed, dvs. uden at kigge på de tal

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel.

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Gruppeteori Michael Knudsen 8. marts 2005 1 Motivation For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Eksempel 1.1. Lad Z betegne mængden af de hele tal, Z = {..., 2, 1, 0,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juni 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Hf Matematik C Lærer(e) Manisha de Montgomery Nørgård (MAN) og Daniel Christensen (DC) - barselsvikar.

Læs mere

Ordbog Biologi Samfundsfag Kemi: Se bilag 1 Matematik: Se bilag 2

Ordbog Biologi Samfundsfag Kemi: Se bilag 1 Matematik: Se bilag 2 Fremstillingsformer Fremstillingsformer Vurdere Konkludere Fortolke/tolke Diskutere Ordbog Biologi Samfundsfag Kemi: Se bilag 1 Matematik: Se bilag 2 Udtrykke eller Vurder: bestemme På baggrund af biologisk

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 - Juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC Hf Matematik

Læs mere

Eksempel på den aksiomatisk deduktive metode

Eksempel på den aksiomatisk deduktive metode Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Tema: Kvadrattal og matematiske mønstre:

Tema: Kvadrattal og matematiske mønstre: 2 Indholdsfortegnelse: Tema: Kvadrattal og matematiske mønstre: Side 4: Side 5: Side 9: Side 10: Side 12: Side 14: Side 15: Side 16: Side 19: Side 20: Side 21: Side 23: Problemformulering. En nem tilgang

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2015/2016, eksamen maj-juni 2016 Institution Kolding HF&VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Eksempler på temaopgaver i matematik indenfor geometri

Eksempler på temaopgaver i matematik indenfor geometri Eksempler på temaopgaver i matematik indenfor geometri Med udgangspunkt i begrebsafklaringen fra dokumentet Matematik og den ny skriftlighed gives her fem eksempler på, hvordan de forskellige opgavetyper,

Læs mere

VisiRegn: En e-bro mellem regning og algebra

VisiRegn: En e-bro mellem regning og algebra Artikel i Matematik nr. 2 marts 2001 VisiRegn: En e-bro mellem regning og algebra Inge B. Larsen Siden midten af 80 erne har vi i INFA-projektet arbejdet med at udvikle regne(arks)programmer til skolens

Læs mere

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?.

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?. Hvor høj er skolens flagstang? Undersøgelsesbaseret matematik 8.a på Ankermedets Skole i Skagen Marts 2012 Klassen deltog for anden gang i Fibonacci Projektet, og der var afsat ca. 8 lektioner, fordelt

Læs mere

Guide til lektielæsning

Guide til lektielæsning Guide til lektielæsning Gefions lærere har udarbejdet denne guide om lektielæsning. Den henvender sig til alle Gefions elever og er relevant for alle fag. Faglig læsning (=lektielæsning) 5- trinsmodellen

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016, skoleåret (15/) 16 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC HF-E

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Mat C Trine Eliasen

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hf Mat C Viktor Kristensen

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Hvad er et tal? Dan Saattrup Nielsen

Hvad er et tal? Dan Saattrup Nielsen 12 Det filosofiske hjørne Hvad er et tal? Dan Saattrup Nielsen Det virker måske som et spøjst spørgsmål, men ved nærmere eftertanke virker det som om, at alle vores definitioner af tal refererer til andre

Læs mere

Analytisk plangeometri 1

Analytisk plangeometri 1 1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt

Læs mere

Lærervejledning Matematik 1-2-3 på Smartboard

Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning til Matematik 1-2-3 på Smartboard Materialet består af 33 færdige undervisningsforløb til brug i matematikundervisningen i overbygningen. Undervisningsforløbene

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 - Juni 2015 Institution Uddannelse Herning HF og VUC Hf Fag og niveau Matematik C Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse HF net-undervisning,

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009 Lysets hastighed Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.1.009 Indholdsfortegnelse 1. Opgaveanalyse... 3. Beregnelse af lysets hastighed... 4 3.

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2012-2014 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer(e) Stx Matematik B Katrine Oxenbøll Petersen Hold 1d mab 2012-2013, 2d mab 2013-2014 Oversigt over

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt brikkerne til regning & matematik tal og algebra F+E+D preben bernitt 1 brikkerne. Tal og algebra E+D 2. udgave som E-bog ISBN: 978-87-92488-35-0 2010 by bernitt-matematik.dk Kopiering af denne bog er

Læs mere

Regneark hvorfor nu det?

Regneark hvorfor nu det? Regneark hvorfor nu det? Af seminarielektor, cand. pæd. Arne Mogensen Et åbent program et værktøj... 2 Sådan ser det ud... 3 Type 1 Beregning... 3 Type 2 Præsentation... 4 Type 3 Gæt... 5 Type 4 Eksperiment...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December-januar 15/16 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Oversigt over undervisningsforløbe i matematik C 2014/2015

Oversigt over undervisningsforløbe i matematik C 2014/2015 Forløb Vinter 2014/ 2015 Institution VUC Albertslund Uddannelse Fag og niveau Lærer(e) HF Matematik C Maha M. Jassim Hold HF2-1.P 1 Regnearternes Hierarki og ligninger 2 Procent, renter 3 Geometri 4 Funktioner:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 13/14 Institution Vejle HF og VUC/Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 16/17 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2016, skoleåret 15/16 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik

Læs mere

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet Rentesregning 1 Forklar begrebet fremskrivningsfaktor. Forklar kapitalfremskrivningsformlen (renteformlen), og opstil/omskriv denne så du kan bestemme 1 af størrelserne, ud fra de 3 andre. Giv eksempler,

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

UNDERVISNING I PROBLEMLØSNING

UNDERVISNING I PROBLEMLØSNING UNDERVISNING I PROBLEMLØSNING Fra Pernille Pinds hjemmeside: www.pindogbjerre.dk Kapitel 1 af min bog "Gode grublere og sikre strategier" Bogen kan købes i min online-butik, i boghandlere og kan lånes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 & maj-juni 2017 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby Hf Matematik C Ashuak Jakob France

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Hvad er skriftlig samfundsfag. Redegør

Hvad er skriftlig samfundsfag. Redegør Hvad er skriftlig samfundsfag... 2 Redegør... 2 Angiv og argumenter... 2 Opstil hypoteser... 3 Opstil en model... 4 HV-ord, tabellæsning og beregninger... 5 Undersøg... 6 Sammenlign synspunkter... 7 Diskuter...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-juni, 2013 Institution VUC Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C HUNI 2HF TmaCK13j

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2014, skoleåret 13/14 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere