Matematikken bag perspektivet I
|
|
|
- Jonathan Christensen
- 10 år siden
- Visninger:
Transkript
1 Supperende mterie ti erspektiv med GeoMeter Mtemtikken bg perspektivet I Som udgngspunkt for t diskutere de vigtigste mtemtiske sætninger bg perspektivtegninger vi vi benytte noge eementære egenskber for punkter, injer og pner i rumgeometri. R m Gennem to forskeige punkter og går der netop én ret inje. Gennem tre forskeige punkter, og R, der ikke igger på den smme rette inje, går der netop én pn. Gennem et punkt og en ret inje, der ikke indehoder punktet, går der netop én pn. Gennem ét punkt, der ikke igger på en ret inje, går der netop én ret inje m, som er pre med. reen m igger i pnen frembrgt f punktet og den rette inje. b b Gennem et punkt og en pn, der ikke indehoder, går der netop en pn b, der er pre med. To forskeige pner og b er enten indbyrdes pree eer de skærer hinnden i en ret inje. En perspektivtegning fremkommer som en centrprojektion fr et f en rumig ind på en p. Det er d underforstået t den rumige og et igger på hver sin side f en p.
2 Supperende mterie ti erspektiv med GeoMeter ' ' Biedet f et genstndspunkt fremkommer ved t mn forbinder med et med en ret inje, synsstråen. Denne kn ikke være pre med en, d et og genstndspunktet igger på hver sin side f en p. Der hvor synsstråen skærer en tegnes biedpunktet '. Hvis fere punkter fbides i det smme biedpunkt er det kun det forreste der tegnes det forreste punkt skygger for de ndre. Hovedkonkusionen er tså t punkter fbides i punkter (skæringspunkter i skæringspunkter osv.). frontinje k' k ' m'=s m dybdeinje S dybdeinje m, der går gennem et Vi ser dernæst på biedet f en inje hørende ti den rumige. Hvis injen er pre med en kdes den en frontinje og eers en dybdeinje. For dybdeinjer gæder det, t dee f injen igger på igttgerens side f en. Dybdeinjer skærer en i et punkt, der kdes injens spor.
3 Supperende mterie ti erspektiv med GeoMeter Hvis en dybdeinje m går gennem et fbides e injens punkter i det smme biedpunkt, nemig injens spor S m i en. En dybdeinje gennem et fbides tså i et enket punkt. I e ndre tifæde, vi injen smmen med et udspænde en pn, synsstråepnen. Denne kn ikke være pre med en, d den indehoder punkter på hver sin side f en. Den skærer derfor en i en ret inje '. Ethvert punkt på injen fbides derfor i et punkt på injen ', hvorfor denne kdes biedinjen. I mindeighed fbides en ret inje tså i en ret inje. Hvis den rette inje k er en frontinje, dvs. pre med en, vi biedinjen k' være pre med k. Afbidningen fr k ti k' er d en igednnethed (mutipiktion) med øjet som mutipiktionscentrum. 0 F ' Synsstråepn ' ' 0 dybdeinje 0 S Hvis den rette inje er en dybdeinje vi biedinjen ' indehode sporet S i en, d dette fbides i sig sev. Vi kn d trække en inje 0 pre med gennem et. Den skærer en i punktet F som kdes forsvindingspunktet for dybdeinjen. Hvis dybdeinjen ikke indehoder et vi forsvindingspunktet F være forskeigt fr sporet S. Dette vi vi ntge i det føgende. Synsstråepnen frembrgt f et og injen vi d også indehode preen 0. Men synsstråepnen skærer netop en i biedinjen. Denne går derfor også gennem forsvindingspunktet F. Vi hr dermed vist perspektiværens hovedsætning: Biedet f en dybdeinje som ikke går gennem et er den rette inje, der forbinder injens spor S med injens forsvindingspunkt F. Biedet f en dybdeinje, der går gennem et er injens spor i en. Biedet f en frontinje er en dermed pre inje i en. Vi ser ydermere t injestykket fr S ti F netop er biedpunkterne for den sceniske hvinje, der udgår fr sporet og igger på den modstte side f en. Rykker mn et punkt på injen ængere og ængere væk fr en vi biedpunktet tisvrende rykke tættere og tættere på forsvindingspunktet. Mn siger t forsvindingspunktet er biedpunktet for injens uendeigt fjerne punkt.
4 Supperende mterie ti erspektiv med GeoMeter D forsvindingspunktet for en ret inje kun fhænger f injens retning vi enhver nden dermed pre inje frembringe det smme forsvindingspunkt. Herf føger: ree injer i rummet fbides i injer, der går gennem det smme forsvindingspunkt. En gnske særig roe spier ens normer, dvs. de rette injer, der står vinkeret på en. Deres forsvindingspunkt svrer ti projektionen f et ind på en, det såkdte hovedforsvindingspunkt H. Enhver ret inje, der står vinkeret på en vi enten fbides i hovedforsvindingspunktet H (hvis den rette inje indehoder et ) eer i en ret inje gennem hovedforsvindingspunktet. Den vndrette pn gennem et, kdet horisontpnen, skærer en i en ret inje kdet horisonten. Hvis speciet en står odret vi de to pner, den vndrette pn gennem et og den odrette, stå vinkeret på hinnden og horisonten vi d indehode hovedforsvindingspunktet H. Ae vndrette dybdeinjer vi hve deres forsvindingspunkt iggende på horisonten. Når mn sk nysere perspektiviske bieder sk mn dog huske på t en ikke tid står odret. Fx vi mn ofte kunne finde oftsmerier, som forestier himen ovenover betrgteren. Her vi en være vndret. Når mn fbider en figur perspektivisk ved hjæp f en centrprojektion vi den ofte fremstå forvrænget: Rette vinker i virkeigheden fremstår ikke som rette vinker på tegningen, injestykker der er ige store i virkeigheden fremstår ikke som ige store injestykker på tegningen osv. ' ' Frontfigur Der er dog en meget vigtig undtgese: Hvis en simpe pn figur (poygon, cirke osv.) igger i en frontpn, dvs. en pn pre med en vi biedet være en dermed
5 Supperende mterie ti erspektiv med GeoMeter igednnet figur, der fremkommer ved en rumig mutipiktion meem frontpnen og en med et som mutipiktionscentrum og forhodet meem fstndene ti de to pner som mutipiktionsfktor. Hvis punkterne og er to punkter på figuren vi treknterne og '' nemig være igednnede treknter og forhodet meem siderne og '' vi være det smme som ethvert ndet forhod meem korresponderende sider i treknterne. Speciet vi det være det smme som forhodet meem højderne for et i de to treknter. Men det er netop det smme som forhodet meem fstndene fr et ti de to pner. Dette gør det speciet nemt t tegne figurer fr frontpner, fordi formen er præcis den smme: Ae vinker er bevret og e deingsforhod er bevret, så midtpunkter går i midtpunkter osv. Het nderedes forhoder det sig med pne figurer i dybdepner (dvs. pner som ikke er pree med en). Her vi der kunne være store forvrængninger f figuren. Vi kn derfor ikke umiddebrt se på tegningen, hvd den snde form er for en treknt eer en firknt. Der gæder den føgende overrskende sætning: Enhver firknt på tegningen, som ikke er et preogrm, vi i et pssende vgt perspektiv kunne være tegningen f et kvdrt. D' H A' C' B' Denne sætning vi vi dog ikke bevise i dette dokument. 1 1 Sætning vi bive vist i et ndet dokument på GeoMeters hjemmeside
Forblad. Nogle Pladeformler. K.W. Johansen. Tidsskrifter. BSM 4 1 Bygningsstatiske Meddelelser
Forbd Noge Pdeformer K.W. Johnsen Tidsskrifter BSM 4 1 Bygningssttiske Meddeeser 1932 NOGLE PLADEFORMLER AF K. W.JOHANSEN Som Eksemper p den prktiske Anvendese f Brudinieteorien og i Særdeeshed p Arbejdsigningen
Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c
Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole
Trigonometri. Matematik A niveau
Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den
Analysens Fundamentalsætning
Anlysens Fundmentlsætning Frnk Nsser 11. juli 2011 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
3. Vilkårlige trekanter
3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke
TAL OG BOGSTAVREGNING
TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,
Matematik B-A. Trigonometri og Geometri. Niels Junge
Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke
Matematikkens sprog INTRO
Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.
1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).
Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter
Elementær Matematik. Vektorer i planen
Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning
Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1
Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt
Lektion 6 Bogstavregning
Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning
Tegn fra tre synsvinkler
egning egn fr tre synsvinkler Nr. 50 Forfr Fr siden Fr oven Forfr Fr siden Fr oven Forfr Fr siden Fr oven - egn hver fugleksse forfr, fr siden og fr oven. Kopirk til elevog side 48 egning egn isometrisk
Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul
Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.
Noget om Riemann integralet. Noter til Matematik 2
Noget om Riemnn integrlet. Noter til Mtemtik 2 Arne Jensen Afdeling for Mtemtik og Dtlogi Institut for Elektroniske Systemer Alborg Universitetscenter Fredrik Bjers Vej 7 9220 Alborg Ø 4. pril 1991 Revideret
Lektion 7s Funktioner - supplerende eksempler
Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side
Fra arbejdstegning til isometrisk tegning og omvendt
Nr. 5 Fr rejdstegning til isometrisk tegning og omvendt Forfr Fr siden Fr oven Forfr Fr siden Fr oven Klssektivitet. yg en figur med -7 centikuer, og tegn en rejdstegning. Gem figuren. yt tegning med en
Elementær Matematik. Analytisk geometri
Elementær Mtemtik Anltisk geometri Ole Witt-Hnsen 0 Indhold. koordintsstemet.... Afstndsformlen.... Liniens ligning...4 4. Ortogonle linier...7 5. Liniers skæring. To ligninger med to uekendte....7 6.
Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.
Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:
Sikkerhedsvejledning ved anlæg af golfbaner
DANSK GOLF UNION Sikkerhedsvejedning sikkerhedszoner topografi og ayout Afstande MULIGE LØSNINGER Indhod 3 Hensynet ti sikkerheden Ingen 100 procents garanti 4 Gofbanens afgrænsning Sikkerhedszoner Hvor
Kort om Potenssammenhænge
Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning
Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion)
Mere end lot lektiehjælp Få topkrkter i din SRP 12: Hovedfsnittene i din SRP (Redegørelse, nlyse, diskussion) Hjælp til SRP-opgven Sidste år hjlp vi 3.600 gymnsieelever med en edre krkter i deres SRP-opgve.
Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:
Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.
ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,
INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner
Elementær Matematik. Plangeometri
Elementær Mtemtik Plngeometri Ole Witt-Hnsen Køge Gymnsium 006 Kp Indhold. Plngeometriens Aksiomer.... Vinkler.... Et pr simple geometriske sætninger...3 Kp. Trekntskonstruktion...5. Kongruenssætningerne...5.
Det dobbelttydige trekantstilfælde
Det dobbelttydige trekntstilfælde Heine Strømdhl, Københvns Kommunes Ungdomsskoler Formålet med denne rtikel er t formulere en meget simpel grfisk løsningsmetode til det dobbelttydige trekntstilfælde med
ADFÆRDS- PROBLEMER I SKOLEN
ADFÆRDS- PROBLEMER I SKOLEN Bo Hejskov Evén Studiemateriae Det gæder mig, at du/i har æst min bog, Adfærdsprobemer i skoen, og er interesseret i at fordybe dig/jer i den viden, den bygger på. Da min forrige
Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum
Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3
Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.
Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk
Geometriske egenskaber & sammenhæng - Fase 3
Nvn: Klsse: Geometriske egensker smmenhæng - Fse 3 Vurdering fr 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer eviser og forslg til foredring 1. Jeg kender til og kn ruge Pythgors lærersætning. 2. Jeg
... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner
POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt
Projekt 6.5 Vektorers beskrivelseskraft
Hvd er mtemtik? ISBN 978877066879 Projekt 65 Vektorers eskrivelseskrft Indhold Vektorer i gymnsiet Linjestykker og prllelogrmmer Bevis inden for den klssiske geometri Bevis med nvendelse f vektorer 3 Digonlerne
Projekt 10.3 Terningens fordobling
Hvd er mtemtik? Projekter: Kpitel 0 Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deducere sig til og konstruere sig til ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige,
Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2 og 3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum
Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2
Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE...
MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: FERUAR 04 Michel Mndi (00) Side f 35 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... EN TREKANTS VINKELSUM... 3 PYTHAGORAS
ADVARSEL Læs dette materiale, før du samler og anvender trampolinen
Brugervejedning ti rektanguær trampoin Størrese: 3,05 m x 4,57 m x 80 fjedre 3,05 m x 4,88 m x 86 fjedre 3,05 m x 5,18 m x 92 fjedre 3,05 m x 5,49 m x 98 fjedre Vejedning ti saming, instaation, peje, vedigehodese
Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.
Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål
MATEMATIK NOTAT 04 - LIGNINGER AF: CAND. POLYT. MICHEL MANDIX
MATEMATIK NOTAT 04 - LIGNINGER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: AUGUST 07 Miche Mandi (07) Enheder Side af 9 Indhodsfortegnese: INDHOLDSFORTEGNELSE:... LIGNINGER... 3 HVAD ER EN LIGNING?...
1. Eksperimenterende geometri og måling
. Eksperimenterende geometri og måling Undersøgelse Undersøgelsen drejer sig om det såkldte Firfrveproblem. For mere end 00 år siden fndt mn ved sådnne undersøgelser frem til, t fire frver er nok til t
Diverse. Ib Michelsen
Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent
Lukkede flader med konstant krumning
Lukkede flder med konstnt krumning Hns Anton Slomonsen Arhus Universitet Mrch 13, 2015 En flde i rummet B A giver nledning til to mål for fstnden mellem to punkter A og B på flden: - længden f den rette
Hermed fremsendes vores indsigelse vedr. benyttelsen af ejendommen beliggende Holmenevej 31, 3140 Ålsgårde. Sagsfremstilling
Hesingør kommune Teknik og mijø Mørdrupvej 15 3060 Espergærde Att. Hanne Wagnkide Åsgårde, den 13-01-2013 Overbragt Landzonemyndigheden og mijø myndigheden i Hesingør Kommune Hermed fremsendes vores indsigese
Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten.
Perspektiv tegning Hjælp til perspektivtegning. Illustrationerne er købt fra Perspektivtegning - Matematik i Billedkunst, billedkunst i matematik. - en kopimappe som er lavet af Jørgen Skourup og Ole Stærkjær.
Matematisk modellering og numeriske metoder. Lektion 17
Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil
Spil- og beslutningsteori
Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst
Eksamensspørgsmål: Potens-funktioner
Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for
Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner
Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....
GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y
GEOMETRI Generelt om inkler Nottion for inkler: u, A, BAC Topinkler er lige store, x y Komplementinkler er inkler, der tilsmmen er 90 u + 90 Supplementinkler er inkler, der tilsmmen er 180 (I stedet for
UGESEDDEL 52. . Dette gøres nedenfor: > a LC
UGESEDDE 52 Opgve 1 Denne opgve er et mtemtisk eksempel på Ricrdo s én-fktor model, der præsenteres i Krugmn & Obstfeld kpitel 2 side 12-19. Denne model beskriver hndel som et udslg f komprtive fordele
gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper
gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution
Lektion 6 Bogstavregning
Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret
Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont
Rumlig afbildning For at illustrere en bygning eller et Rum, i et sprog der er til at forstå, for ikke byggefolk, kan det være en fordel at lave en gengivelse af virkeligheden. Perspektiv At illustrerer
FORMELSAMLING. Indholdsfortegnelse
FOMELSAMLNG ndholdsfortegnelse ndholdsfortegnelse... EL-LÆE...3 Ohm s lov:...3 Effekt lov:...3 egler ved måling:...3 egler ved serieforbindelser:...3 egler ved prllelforbindelser:...4 egler ved blndede
Thomas Wong. Chef sikkerhedskonsulent ved FortConsult Forfatter af forskellige artikler om ITsikkerhed
Mobi Sikkerhed Thomas Wong Chef sikkerhedskonsuent ved FortConsut Forfatter af forskeige artiker om ITsikkerhed Foredragshoder om sikkerheds reaterede emner Metodik ansvarig for vores app testing Baggrund
Formelsamling Mat. C & B
Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8
Projekt 7.8 To ligninger med to ubekendte
Projekt 78 To ligninger med to uekendte Den opgve t skulle løse to ligninger med to uekendte er vi stødt på i en række speciltilfælde under ehndlingen f vækstmodellerne: Funktionstype Ligningssystem Lineær
Elementær Matematik. Trigonometri
Elementær Mtemtik Trigonometri Ole Witt-Hnsen 11 Indhold 1. Vinkler...1. Sinus, osinus og tngens...3.1 Overgngsformler...4 3. Den retvinklede treknt...6 4. Den lmindelige treknt. Sinus og osinus reltionerne...8
TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.
TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn
Matematik - introduktion. Martin Lauesen February 23, 2011
Mtemtik - introduktion Mrtin Luesen Februry 23, 2011 1 Contents 1 Aritmetik og elementær lgebr 3 1.1 Symboler............................... 3 1.1.1 ligheder............................ 4 1.1.2 uligheder...........................
114 Matematiske Horisonter
114 Mtemtiske Horisonter Mtemtik i medicinudvikling Af Ph.d-studerende Ann Helg Jónsdóttir, Ph.d-studerende Søren Klim, Ph.d-studerende Stig Mortensen og Professor Henrik Mdsen, DTU Informtik Hovedpinen
Integralregning. 2. del. 2006 Karsten Juul
Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion
Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2
geometri exempler 4 m 3 m rel: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m 5 m 5 m rel: 5 5 = 25 m 2 omkreds: 5+5+5+5 = 20 m 8 dm 5 dm rel: 8 5 = 40 dm 2 8 dm 5 mm 4 mm 1 2 rel: 4 (5+9) = 28 mm 2 9 mm 7 km rel:
FUGT OG ERRÆNDÆK. i.,~j.j~ox' ~1~ tflif'9// SI TENS BYG6EFO SKNIN6SINSTITUT. FUc*- - - Der kan imidlertid også konstateres flere
.58/-Ø2tbi: FUc*- - - 6 UDK 69.025.' : 699.82 FUGT OG ERRÆNDÆK STATENS BYGGEFORSKNNGSNSTTUT København 1974 kommission hos Teknisk Forag Hvorfor terrændæk? Det er igennem mere end femten år stadig bevet
Beregning af middellevetid
Beregning af middeevetid Hvad er middeevetid? Ta for middeevetiden for -årige drenge og piger anvendes hyppigt ti beysning af befokningens sundhedsmæssige tistand. Taet angiver det gennemsnitige anta år,
MATEMATIK NOTAT MATEMATISKE BEVISER AF: CAND. POLYT. MICHEL MANDIX
MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: AUGUST 07 Michel Mndi (07) Indholdsfortegnelse Side f 4 Indholdsfortegnelse: Indholdsfortegnelse:... 0 - En treknts vinkelsum...
Implicit differentiation Med eksempler
Implicit fferentition Implicit fferentition Indhold. Implicit fferentition.... Tngent til ellipse og hperel... 3. Prisme i hovedstillingen...3 3. Teoretisk rgument for hovedstillingen...4 Ole Witt-Hnsen
Hvad ved du om mobning?
TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt
Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).
Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på
Elementær Matematik. Vektorer i planen
Elementær Mtemtik Vektorer i plnen Ole Witt-Hnsen 0 Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer.... Multipliktion f vektor med et tl... 4. Opløsning f en vektor efter
( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN
Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes
gudmandsen.net Geometri C & B
gudmndsen.net Geometri C & B Indholdsfortegnelse 1 Geometri & trigonometri...2 1.1 Område...2 2 Ensvinklede treknter...3 2.1.1 Skleringsfktoren...4 3 Retvinklede treknter...5 3.1 Pythgors lærersætning...5
Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.
Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer
Trigonometri FORHÅNDSVIDEN
Trigonometri I dette kpitel skl du rejde med trigonometri. Ordet trigonometri stmmer fr græsk og etyder trekntsmåling. Den mtemtik, der ligger g trigonometrien, hr du llerede rejdet med. Det drejer sig
Formelsamling Matematik C Indhold
Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...
Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:
Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt
Integralregning. Version juni Mike Vandal Auerbach
Integrlregning Version.0 27. juni 209 y f x Mike Vndl Auerch www.mthemticus.dk Integrlregning Version.0, 209 Disse noter er skrevet til mtemtikundervisningen på stx A- og B-niveu efter gymnsiereformen
Regneregler for brøker og potenser
Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit
MINDJUICE ACADEMY. Dine handlinger forandrer verden. ICF-godkendt Coach Uddannelse. Grunduddannelsen. Coachuddannelsen
MINDJUICE ACADEMY Dine handinger forandrer verden ICF-godkendt Coach Uddannese Grunduddannesen Coachuddannesen Mindjuice s Coachuddannese Mindjuice s Coachuddannese er opstået ud af mange års erfaring
