Kort om Potenssammenhænge

Størrelse: px
Starte visningen fra side:

Download "Kort om Potenssammenhænge"

Transkript

1 Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul

2 Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning og grf for potenssmmenhænge Dobbeltlogritmisk koordintsystem Potensligning Sådn vokser potenssmmenhænge Udregn og b i y = b ud fr to punkter på grfen Potensregression Proportionle vrible Omvendt proportionle vrible Når vrible fr virkeligheden er omvendt proportionle Øvelser til hæftet "Kort om potenssmmenhænge" 2011 Krsten Juul Dette hæfte kn downlodes fr Hæftet må benyttes i undervisningen hvis læreren med det smme sender en e-mil til [email protected] som dels oplyser t dette hæfte benyttes, dels oplyser om hold, lærer og skole.

3 Øvelse 1.1 På lommeregner eller computer (med mtemtikprogrm) kn vi tste en potens ved hjælp f eller potensskbelon. 2 2,1 0,5 1 3,1 = 2 = 9 = 4 = ^ Øvelse 1.2 Hver f følgende smmenhænge kn vi få ved t sætte tl ind for og b i ligningen Angiv i hvert tilfælde hvd der skl indsættes for og b. 3 (1) y = 4 (2) = 4 0,4 y 3 (3) y = (4) y = 3. y = b. Øvelse 1.3 1,5 2 1,5 4,8 3 Vi kn udregne rumfnget f en ksse ved t bruge reglen rumfng = længde bredde højde For kssen til højre er () rumfng = = For kssen til venstre er (b) rumfng = = 4 Vi hr nogle ksser hvor grundflden er et kvdrt. Højden er 4 gnge siden i grundflden. (c) Når siden i grundflden er 2, er rumfng = = (d) Når siden i grundflden er 5, er rumfng = = (e) Når siden i grundflden er, er rumfng = = (f ) Udfyld tbellen: En bestemt type orm vokser sådn t når tykkelsen er 1, er rumfnget 4. Hvis denne orm bevrer sin fcon når den vokser, så vil der gælde: når tykkelsen er, så er rumfnget 4 3, men det viser sig t ormen efterhånden får en mere flng fcon. Mn hr målt følgende længder og rumfng (med en pssende enhed): længde rumfng (g) Prøv dig frem med ndre eksponenter end 3, og find en eksponent som psser med de målte tl (tllene er frundet til hele tl). Eksponenten skl være. (h) Når = tykkelse og y = rumfng, er y = b hvor = og b =. Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

4 Øvelse 1.4 Vi hr 600 kr. til t købe bær. () Hvis prisen pr. kg er 24 kr., så kn vi købe (b) Hvis prisen pr. kg er 30 kr., så kn vi købe (c) Hvis prisen pr. kg er kr., så kn vi købe (d) Udfyld tbellen: kg. kg. kg , (e) Udfyld tbellen: , (f ) Når = kg-pris og y = ntl kg vi kn købe, er y = b hvor = og b =. Øvelse 1.5 Et rektngel på en skærm hr den egenskb t når vi ændrer dets størrelse, så vedbliver bredden t være 4 gnge højden. Rektnglet kn ltså deles op i 4 kvdrter hvis side er højden i rektnglet. () Når rektnglets relet er 4, så er højden. (b) Når rektnglets relet er 16, så er højden. (c) Når rektnglets relet er 36, så er højden. (d) Når = 4, så er 0,5 =. (e) Når = 16, så er 0,5 =. (f) Når = 36, så er 0,5 =. 0,5 (g) Der gælder y = 0.5 hvor = rektnglets og y = rektnglets. (h) y = b hvor = og b =. Øvelse 1.6 () Smmenhængen (b) Smmenhængen (c) Smmenhængen (d) Smmenhængen (e) Smmenhængen 0,5 0,5 2 0,5 y = 15 er voksende d eksponenten 2 er positiv. 0,2 y = 3 er d. y = er d ,11 y = er d. 8 y = 0,1 er d. Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

5 Øvelse 2.1 () Udfyld tbellen: ,16 (b) Tegn grfen for smmenhængen y = i begge koordintsystemerne nedenfor. 5 1,16 Øvelse 2.2 Grfen viser smmenhængen mellem to vrible og y. Der er tle om en potenssmmenhæng. I et sædvnligt koordintsystem ville grfen være en krum kurve. () Når = 1, er y =. (b) Når = 2, er y =. (c) Når ændres fr 1 til 2, så vil y blive enheder større. (d) Når ændres fr 2 til 3, så vil y blive enheder større. (e) Når ændres fr 3 til 4, så vil y blive enheder større. Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

6 Øvelse = () Løs ligningen 4 36 for > 0 ved hjælp f formel 3.2 i teorihæftet. 3 = (b) Løs ligningen 5 40 for > 0 ved t omskrive ligningen. 0,71 (c) Løs ligningen 12 = 95 for > 0 ved hjælp f elektronisk ligningsløser. Øvelse 3.2 For nogle dyr gælder y = 0,24 2,8 hvor y er vægten, målt i grm, og er længden, målt i cm. () Hvd er vægten f et dyr hvis længde er 3 cm? (b) Hvd er længden f et dyr hvis vægt er 0,5 g? Øvelse 3.3 Antllet f dyr i en indhegning fhænger f dyrenes længde. Der gælder 2,3 y = 5800 hvor y er ntl dyr i indhegningen, og er dyrenes længde, målt i cm. () Hvor mnge dyr er der i indhegningen, hvis dyrenes længde er 6 cm? (b) Hvd er dyrenes længde når der er 19 dyr i indhegningen? Øvelse 3.4 Smmenhængen mellem tykkelse og længde for visse stængler kn beskrives ved ligningen y = 13 0,72 hvor y er længden i cm, og er tykkelsen i mm. Hvor tyk er en 100 cm lng stængel? Øvelse 3.5 Prisen for nogle figurer er fstlgt ved y = 20 3,5 hvor y er prisen i kr. og er højden i cm. En gul figur er 3 cm høj, en rød figur er 5 cm høj, og en blå figur er 7 cm høj. () Hvor mnge kroner er den røde dyrere end den gule? (b) Hvor mnge kroner er den blå dyrere end den røde? (c) Hvor mnge procent er den røde dyrere end den gule? (d) Hvor mnge procent er den blå dyrere end den røde? Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

7 Øvelse 4.1 Et dyr vokser sådn t 2,4 y = 5,8 hvor y er vægten i grm, og er længden i cm. () Brug metode 1 fr rmme 4 i teorihæftet til t udregne hvor mnge procent vægten bliver større når længden bliver 50 % større. (b) Brug metode 2 fr rmme 4 i teorihæftet til t udregne hvor mnge procent vægten bliver større når længden bliver 50 % større. Øvelse 4.2 For en cylinder hvor højden er lig dimeteren, gælder y = 3 4 π hvor y er rumfnget og er dimeteren. () Hvd sker der med rumfnget f sådn en cylinder når vi fordobler dimeteren? (b) Hvor mnge procent større bliver rumfnget når vi gør dimeteren 20 % større? Øvelse 4.3 Hvis vi sætter en vres pris op, så sælger vi mindre f den. For en bestemt vre gælder 2,11 y = , hvor y er det beløb vi sælger for på én dg, og er prisen pr. pkke. (Enheden for og y er kr.). () Hvor mnge procent flder det beløb vi sælger for på én dg, hvis vi sætter prisen 20 % op? (b) Hvor mnge procent flder det beløb vi sælger for på én dg, hvis vi sætter prisen 40 % op? (c) Hvor mnge procent flder det beløb vi sælger for på én dg, hvis vi sætter prisen op fr 10 kr. til 20 kr.? Øvelse 4.4 Om nogle ksser gælder t højden er 2 gnge bredden, og længden er 3 gnge bredden. () Hvis bredden er 5, hvd er så kssens overflde? (b) Skriv en ligning der viser smmenhængen mellem overflden y og bredden. (c) Hvd sker der med overflden når bredden fordobles? Øvelse 4.5 For en bestemt bolig kn vi udregne det årlige vrmetb gennem loftet ved hjælp f ligningen y = ,75 hvor y er vrmetbet i kwh og er tykkelsen i cm f isoleringen. Nu er tykkelsen 10 cm. Hvor mnge procent vil vrmetbet nedsættes hvis tykkelsen øges med 85 %? Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

8 Øvelse 5.1 Punkterne (, y) = (2, 4) og (, y) = (6, 108) ligger på grfen for smmenhængen y = b. () Udregn tllene og b ved t sætte ind i formler for og b (metode 1 fr rmme 5 i teorihæftet). (b) Udregn tllene og b ved t løse ligningssystem med elektronisk ligningsløser (metode 2 fr rmme 5 i teorihæftet). (c) Udregn tllene og b ved t løse ligningssystem uden elektronisk ligningsløser (metode 3 fr rmme 5 i teorihæftet). (d) Udregn tllene og b ved potensregression (metode 4 fr rmme 5 i teorihæftet). Øvelse 5.2 For en lyskilde gælder t (1) y = b hvor y er lysstyrken (målt i W/m 2 ) og er fstnden til lyskilden (målt i cm). Vi måler t 4 cm fr lyskilden er lysstyrken 0,075 W/m 2 10 cm fr lyskilden er lysstyrken 0,012 W/m 2. () Hvilke f disse fire målte tl er -værdier, og hvilke er y-værdier? (b) Disse målte tl viser t grfen for smmenhængen (1) går gennem punkterne (, ) og (, ). (c) Udregn tllene og b i (1). Øvelse 5.3 Et bløddyr vokser sådn t y = b hvor y er overflden (målt i mm 2 ) og er tykkelsen (målt i mm). Overflden er 54 mm 2 når tykkelsen er 2,1 mm. Overflden er 890 mm 2 når tykkelsen er 7,1 mm. () Udregn tllene og b. (b) Hvd er tykkelsen når overflden er 200 mm 2? (c) Hvd er overflden når tykkelsen er 10 mm? (d) Hvor mnge procent større bliver overflden større når tykkelsen bliver dobbelt så stor? Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

9 Øvelse 6.1 En bestemt fisk vokser sådn t der med god tilnærmelse gælder y = b hvor er længden i cm, og y er vægten i grm. Mn hr målt følgende: Længde i cm 11,2 12,7 14,4 17,5 20,8 Vægt i grm 16,3 23,2 32,9 56,5 91,3 () Bestem og b så ligningen psser bedst muligt med de målte tl. (b) Brug ligningen til t udregne hvor mnge procent tungere fisken bliver når den bliver 20 % længere. Øvelse 6.2 Mn regner med t der under bestemte forhold gælder t y = b hvor er ntl enheder kosttilskud pr. dyr og y er ntl dyr der dør. Mn hr målt følgende: Antl enheder kosttilskud Antl dyr der dør () Bestem og b så ligningen psser bedst muligt med de målte tl. (b) Brug ligningen til t udregne hvor mnge procent ntllet f døde dyr flder når mængden f kosttilskud firedobles. Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

10 Øvelse 7.1 I koordintsystemet er tegnet nogle hvide og grå stolper. er højden f en hvid stolpe y er højden f en grå stolpe. er IKKE tllene på den vndrette kse. () I 2002 er = og y = (b) Dette betyder t i år er prisen på A lig og prisen på B lig (c) Vi udregner hvd vi i 2002 skl gnge A's pris med for t få B's pris: : =. (d) 20 ( fcit fr (c) ) =. (e) I 2002 er y = (f) I 2003 er y = (g) I 2004 er y = (h) I 2005 er y = ( i ) I 2006 er y = Her skl stå det tl vi skl gnge med for t få y. ( j) Læs definitionen øverst i rmme 7 i teorihæftet om potenssmmenhænge, og fgør om prisen på B er proportionl med prisen på A. (k) Smmenhængen mellem y og kn beskrives med ligningen y =. Øvelse 7.2 () I 2002 er = (b) I 2002 er y = (c) I 2002 er y = (d) I 2003 er y = (e) I 2004 er y = (f) I 2005 er y = (g) I 2006 er y = ( h) Læs definitionen øverst i rmme 7 i teorihæftet om potenssmmenhænge, og fgør om prisen på D er proportionl med prisen på C. Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

11 Øvelse 7.3 En vre fås i pkker f forskellig størrelse. Figuren viser priserne. 1 kg 2 kg 5 kg 12 kg 30 kr. 60 kr. 150 kr. 360 kr. () Undersøg om prisen er proportionl med mængden. (b) Skriv en ligning der viser smmenhængen mellem pris og mængde. Husk t ligningen ikke giver nogen mening hvis du glemmer t skrive nogle ord om hvd y og står for. Øvelse 7.4 Se besvrelsen i rmme 7 i teorihæftet om potenssmmenhænge. Her kn du se hvordn vi kn udregne svrene i denne øvelse. De vrible og y er proportionle y Vis hvordn mn kn udregne de mnglende tl i tbellen. Øvelse 7.5 Om to proportionle vrible og y er oplyst t når er 12, så er y lig 719,40. () Hvd er y når er 19? (b) Hvd er når y er 1858,48? Øvelse 7.6 Figuren viser en stor og en lille firknt Hvis kn være enhver f siderne i den lille firknt, og y betegner den tilsvrende side i den store firknt, så er og y proportionle. Gør rede for dette, og skriv en ligning der viser smmenhængen mellem og y. Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

12 Øvelse 8.1 Vi hr 24 mønter til t købe te for. y = ntl enheder vi kn købe. () Hvis prisen pr. enhed er 2 mønter, er y = =. Skriv hvd der skl stå over og under brøkstregen. (b) Hvis prisen pr. enhed er 3 mønter, er y = =. (c) Hvis prisen pr. enhed er 8 mønter, er y = =. (d) Hvis prisen pr. enhed er mønter, er y =. Øvelse 8.2 Vi kn ændre et rektngel, men relet bliver ved med t være 8. = rektnglets bredde y = rektnglets højde () Når = 4, er y = =. (b) Når = 2, er y = =. (c) Når = 1, er y = =. (d) Når = 0, 5, er y = =. Øvelse 8.3 Se besvrelsen i rmme 8 i teorihæftet om potenssmmenhænge. Her kn du se hvordn vi kn udregne svrene i denne øvelse. To vrible og y er omvendt proportionle. Når = 30 er y = 20. (1) Hvd er y når = 48? (2) Hvd er når y = 50? Øvelse 8.4 De vrible og y er omvendt proportionle y 45 Find ud f hvd der skl stå på de tomme pldser. Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

13 Øvelse 8.5 En bestemt type flise fås i følgende fire udgver: 576 mm mm mm mm 2 48 mm 36 mm 32 mm 24 mm Vi ser på følgende to vrible: = bredde (i mm) y = højde (i mm) () For lle fliserne gælder t y = og y = Brøkstreg (b) Hvis vi vælger en mindre bredde, så får vi en højde y. (c) Udfyld tbellen: y Øvelse 8.6 () Hvilke f følgende smmenhænge hr smme y-tbel? 1 1 (1) y = 20 (2) y = (3) y = 0, 05 (4) y = (b) I hvilke f disse smmenhænge gælder: y er omvendt proportionl med, og i hvilke f smmenhængene gælder: y er proportionl med? (5) 20 y =. Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

14 Øvelse 9.1 Når vi kører fr A til B, er rejsetiden omvendt proportionl med frten. Rejsetiden er 6,8 timer når frten er 50 km pr. time. Vi klder rejsetiden for Vi klder frten for (vælg et bogstv). (vælg et bogstv). D er omvendt proportionl med er der et tl k så der gælder (*) = (På højre side f = står en brøk) D = 6, 8 når = 50 må = (Vi hr indst i ligningen (*) ) Vi løser denne ligning mht. k og får k =. Dette tl indsætter vi i (*) og får følgende ligning (** ) = Dette er ligningen der viser smmenhængen mellem rejsetid og frt. Vi vil finde rejsetiden når frten er 40 km pr. time. Vi indsætter i (**) : = Herf får vi = Konklusion: Øvelse 9.2 Om et bestemt rbejde gælder t vrigheden er omvendt proportionl med ntllet f rbejdere. Vrigheden er 15 dge når der er 8 rbejdere. Hvd er vrigheden når der er 10 rbejdere? Øvelser til hæftet "Kort om potenssmmenhænge" Krsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

Grundlæggende funktioner

Grundlæggende funktioner Grundlæggende funktioner for A-niveu i st Udgve 5 018 Krsten Juul Grundlæggende funktioner for A-niveu i st Procent 1. Procenter på en ny måde... 1. Vækstrte... 3. Gennemsnitlig procent... Lineær vækst

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Simple udtryk og ligninger

Simple udtryk og ligninger Simple udtryk og ligninger for gymnsiet og hf 0 Krsten Juul Indhold Rækkefølge f + og... Smle led f smme type... Gnge ind i prentes. del... Rækkefølge f og smt f + og... Gnge ind i prentes. del... Hæve

Læs mere

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Analysens Fundamentalsætning

Analysens Fundamentalsætning Anlysens Fundmentlsætning Frnk Nsser 11. juli 2011 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden. Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: [email protected] Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a.

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a. 5. FORSKRIFT FOR EN POTENSFUNKTION Vi hr i vores gennemgng f de forskellige funktionstper llerede være inde på udtrk, som indeholder forskellige potenser f I dette kpitel skl vi se på forskellige tper

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER STUDENTEREKSAMEN NOVEMBER-DECEMBER 007 007-8-V MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Tirsdg den 18 december 007 kl 900-1000 BESVARELSEN AFLEVERES KL 1000 Der

Læs mere

Projekt 8.5 Linearisering og anvendelsen af logaritmiske koordinatsystemer

Projekt 8.5 Linearisering og anvendelsen af logaritmiske koordinatsystemer Projekt 8.5 Linerisering og nvendelsen f logritmiske koordintsystemer (Dette projekt forudsætter, t mn hr rbejdet med logritmefunktionerne, f i kpitel 3 eller i projekt 8.4, så mn er fortrolig med logritmereglerne)

Læs mere

1. Honningpriser. Skemaet viser vregt og priser pi dansk og udenlandsk honning. Dansk honning

1. Honningpriser. Skemaet viser vregt og priser pi dansk og udenlandsk honning. Dansk honning , i 1. Honningpriser Skemet viser vregt og priser pi dnsk og udenlndsk honning. o Hvor stor er prisen i lt for 2 brgre lynghonning og 3 bregre okologisk honning. o Hvor stor er forskellen i pris pi den

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Projekt 7.8 To ligninger med to ubekendte

Projekt 7.8 To ligninger med to ubekendte Projekt 78 To ligninger med to uekendte Den opgve t skulle løse to ligninger med to uekendte er vi stødt på i en række speciltilfælde under ehndlingen f vækstmodellerne: Funktionstype Ligningssystem Lineær

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul Bogstvregning for gymnsiet og hf 010 (01) Krsten Juul Til eleven Brug lynt og viskeläder når du skriver og tegner i häftet, så du får et häfte der er egenet til jävnligt t slå op i under dit videre rejde

Læs mere

Eksamensspørgsmål: Potens-funktioner

Eksamensspørgsmål: Potens-funktioner Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeborg 09-0-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Udrbejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger fejl i

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i st Udgve 016 Krsten Juul GrundlÄggende funktioner for B-niveu i st Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst. LineÄr

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul Bogstvregning En indledning for st og f. del 008 Krsten Juul ) )( ( ) ( ) ( Indold 0. Gnge to prenteser....,, osv... 7. Kvdrtsætninger... 0. Brøer. del... Bogstvregning. En indledning for st og f.. del.

Læs mere

1. Eksperimenterende geometri og måling

1. Eksperimenterende geometri og måling . Eksperimenterende geometri og måling Undersøgelse Undersøgelsen drejer sig om det såkldte Firfrveproblem. For mere end 00 år siden fndt mn ved sådnne undersøgelser frem til, t fire frver er nok til t

Læs mere

K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Matematik F Geometri

K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Matematik F Geometri K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN Mtemtik F Geometri www.if.dk Mtemtik F Geometri Forord Redktør Hgen Jørgensen År 2004 est. nr. Erhvervsskolernes Forlg Munkehtten 28 5220 Odense

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Eksponentielle funktioner for C-niveau i hf

Eksponentielle funktioner for C-niveau i hf Eksponentielle funktioner for C-niveau i hf 2017 Karsten Juul Procent 1. Procenter på en ny måde... 1 2. Bestem procentvis ændring... 2 3. Bestem begyndelsesværdi... 2 4. Bestem slutværdi... 3 5. Vækstrate...

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

Potensfunktioner samt proportional og omvent proportional. for hf Karsten Juul

Potensfunktioner samt proportional og omvent proportional. for hf Karsten Juul Potensfunktioner samt proportional og omvent proportional for hf 2018 Karsten Juul Potensfunktion 1. Oplæg til forskrift for potensfunktion...1 2. Forskrift for potensfunktion...2 3. Udregn x eller y i

Læs mere

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2.

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2. Differentil-kvotient Ld f være en funktion - f.eks. f (x) = 2x 2. Produkt og mrked - differentil og integrlregning Rsmus Wgepetersen Institut for Mtemtiske Fg Alborg Universitet Februry 14, 2014 Differentilkvotienten

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

UGESEDDEL 52. . Dette gøres nedenfor: > a LC

UGESEDDEL 52. . Dette gøres nedenfor: > a LC UGESEDDE 52 Opgve 1 Denne opgve er et mtemtisk eksempel på Ricrdo s én-fktor model, der præsenteres i Krugmn & Obstfeld kpitel 2 side 12-19. Denne model beskriver hndel som et udslg f komprtive fordele

Læs mere

Integralregning. Version juni Mike Vandal Auerbach

Integralregning. Version juni Mike Vandal Auerbach Integrlregning Version.0 27. juni 209 y f x Mike Vndl Auerch www.mthemticus.dk Integrlregning Version.0, 209 Disse noter er skrevet til mtemtikundervisningen på stx A- og B-niveu efter gymnsiereformen

Læs mere

Funktioner. 2. del Karsten Juul

Funktioner. 2. del Karsten Juul Funktioner 2. del 2018 Karsten Juul 18. Eksponentiel funktion forskrift 18.1 Oplæg nr. 1 til forskrift for eksponentiel funktion... 52 18.2 Oplæg nr. 2 til forskrift for eksponentiel funktion... 53 18.3.

Læs mere

Projekt 10.3 Terningens fordobling

Projekt 10.3 Terningens fordobling Hvd er mtemtik? Projekter: Kpitel 0 Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deducere sig til og konstruere sig til ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige,

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

Vektorer. koordinatgeometri

Vektorer. koordinatgeometri Vektorer og koordintgeometri for gymnsiet, dge 5 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors

Læs mere

Geometriske egenskaber & sammenhæng - Fase 3

Geometriske egenskaber & sammenhæng - Fase 3 Nvn: Klsse: Geometriske egensker smmenhæng - Fse 3 Vurdering fr 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer eviser og forslg til foredring 1. Jeg kender til og kn ruge Pythgors lærersætning. 2. Jeg

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske - 8 - Appendi : Logistisk vækst og integrlregning. I forbindelse med eksponentielle vækstfunktioner er der tle om en vækstform, hvor funktionens væksthstighed er proportionl med den ktuelle funktionsværdi,

Læs mere

Elementær Matematik. Analytisk geometri

Elementær Matematik. Analytisk geometri Elementær Mtemtik Anltisk geometri Ole Witt-Hnsen 0 Indhold. koordintsstemet.... Afstndsformlen.... Liniens ligning...4 4. Ortogonle linier...7 5. Liniers skæring. To ligninger med to uekendte....7 6.

Læs mere

Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2

Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2 geometri exempler 4 m 3 m rel: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m 5 m 5 m rel: 5 5 = 25 m 2 omkreds: 5+5+5+5 = 20 m 8 dm 5 dm rel: 8 5 = 40 dm 2 8 dm 5 mm 4 mm 1 2 rel: 4 (5+9) = 28 mm 2 9 mm 7 km rel:

Læs mere

Matematik - introduktion. Martin Lauesen February 23, 2011

Matematik - introduktion. Martin Lauesen February 23, 2011 Mtemtik - introduktion Mrtin Luesen Februry 23, 2011 1 Contents 1 Aritmetik og elementær lgebr 3 1.1 Symboler............................... 3 1.1.1 ligheder............................ 4 1.1.2 uligheder...........................

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2 og 3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2 og 3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

Stamfunktion & integral

Stamfunktion & integral PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn

Læs mere

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5

Læs mere

FUNKTIONER del 2 Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier Modeller Regression

FUNKTIONER del 2 Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier Modeller Regression FUNKTIONER del Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier Modeller Regression -klsserne Gmmel Hellerup Gymnsium Indhold EKSPONENTIELLE UDVIKLINGER... 3 Forskrift

Læs mere

Alternative metoder til køling af løg

Alternative metoder til køling af løg inspire demoprojekt Alterntive metoder til køling f løg Af Merete Edelenbos, Arhus Universitet Anne Drre-Østergrd og Bstin Junker, AgroTech November 2013 1 Energiforbruget ved lngtidslgring f løg er højt,

Læs mere

FORMELSAMLING. Indholdsfortegnelse

FORMELSAMLING. Indholdsfortegnelse FOMELSAMLNG ndholdsfortegnelse ndholdsfortegnelse... EL-LÆE...3 Ohm s lov:...3 Effekt lov:...3 egler ved måling:...3 egler ved serieforbindelser:...3 egler ved prllelforbindelser:...4 egler ved blndede

Læs mere

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning: Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes

Læs mere

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 Ligninger 1 3 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 2 c d e f 6 æg + 5 høns. 1 æle + 13 pærer. 5 myg + 1 flue. 6x + 5y + 13 3x + 5y 3 4 Gælder i nogle tilfælde. Gælder ltid. c Gælder

Læs mere