Arealet af en sfærisk trekant m.m.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Arealet af en sfærisk trekant m.m."

Transkript

1 ealet af en sfæisk tekant m.m. Tillæg til side i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt stocikel. To foskellige stocikle på kuglen afgænse en sfæisk tokant. Den sfæiske tokant ha to hjøne og, som e antipodiske i fohold til hinanden, dvs. og ligge diamentalt modsat på kuglen. e definition e hjønenes vinkle og lig med vinklen mellem de to plane, som indeholde omtalte stocikle. Hvis man tegne en ækvato ind på kuglen, dvs. en stocikel, så og blive nodpol og sdpol i fohold hetil, så e vinkel (= vinkel ) lig med vinklen mellem vektoene og, jævnfø figu 1 (vevej hvofo!). Vinkel e i øvigt også lig med vinklen mellem tangentene til stociklene i punktet : Se figu 2, hvo man kigge på kuglen fa en position lodet ove punkt så og se ud til at falde sammen. Tokanten e det skaveede omåde. Det e da et klat, at tokantens aeal må foholde sig til hele kuglens aeal som vinklen foholde sig til 360 gade. Hvis hele 2 kuglens aeal betegnes = 4π, hvo e ciklens adius, så må tokantens aeal væe lig med følgende: (1) a( ' ) = Sfæisk tekant Hvis man cutte en kugle med te plane, de alle passee igennem kuglens centum, så fembinges i alt 8 sfæiske tekante, som vi jævnfø figu 3 kan betegne: (2) C C C C C C C C Til høje fo hve sfæisk tekant i venste søjle stå den tilhøende antipodiske tekant : Hjønene i den antipodiske tekant til en given tekant fås ved at udskifte hvet hjøne i den opindelige tekant med det tilsvaende antipodiske punkt. ntipodiske tekante e i øvigt konguente, dvs specielt ha de samme aeal. emæk, at alle de sfæiske tekante i føste søjle alle ha som hjøne. Se på figu 3: De fie tekante udgå alle fa og danne tilsammen en halvkugle, nemlig alle tekantene ove den plan, som indeholde punktene, C, og C. Summen af aealene af tekantene i venste søjle e altså ½.

2 eal af sfæisk tekant Vi e inteesseet i at bestemme aealet af den sfæiske tekant C. Detil vise det sig fonuftigt føst at se på alle de sfæiske tokante, som indeholde tekant C. De e tale om følgende sfæiske tokante, jævnfø figu 3: C CC C Vinklene i de te tokante e henholdsvis C og. Tokantenes samlede aeal e defo ifølge (1) ovenfo: (3) a( ' C) + a( CC' ) + a( ' C) C = + + = ( + + C ) Vi skal finde et andet udtk fo det samme aeal. Hve tokant kan splittes op i to tekante. Tokant C kan fo eksempel splittes op i tekantene C og C (bemæk sstemet!). lt i alt kan de te tokante splittes op i følgende 6 tekante: C C C C C C o det føste e de te stk af tekant C. Denæst e de ét stk af alle de øvige tekante på den øve halvkugle (halvkugle ove stociklen C C ) undtagen tekant C. Til gengæld e de en anden tekant, nemlig C. Imidletid e C og C hinandens antipodiske, så de e konguente og ha samme aeal. Så vi kan uden videe udskifte tekant C med C uden at det ænde på det samlede aeal. Efte udskiftningen ha vi altså ét stk af hve af tekantene på den øve halvkugle samt to eksta dublette af tekant C. Da aealet af en halvkugle e ½, få vi nu et nt udtk fo tokantenes samlede aeal: 2 a( C) + ½. Sættes dette udtk lig med (3) få vi: 2 a( C) + ½ = ( + + C) a( C) = ( + + C 180 ) 720

3 igu 1 igu 2 Nod-sd-akse Ækvatoplanen Tangentvekto til den føste stocikel i Tangentvekto til den anden stocikel i igu 3 C C

4 Sfæiske koodinate til ektangulæe koodinate Tillæg til side 105 i matematik højniveau 1 fa TRI. unktet ligge lodet unde punktet i -planen. emæk, at ϕ e den vinkel, som e dejet i fohold til -aksen. Vinklen ϕ egnes i intevallet 180 ; 180 og egnes positiv ove mod -aksen og negativ den modsatte vej. Vinklen θ e den lodette vinkel, dvs. den vinkel, som ligge ove. Vinklen egnes i intevallet 90 ; 90 : positiv, nå ligge ove -planen og negativ, nå ligge unde planen. Vi skal nu se på omsætningen mellem sfæiske og ektangulæe koodinate: Helt pæcist skal vi givet et punkt med de sfæiske koodinate ( ϕ, θ ) finde hvad det svae til i ektangulæe koodinate (.,, ) etagt det tedimensionale billede af situationen på figu 1: unktet fås ved at pojicee ned i -planen. å figu 2 se jeg specielt på tekanten. Vi finde nemt længden af linjestkket : (2a) sin( θ) = = sin( θ) (2b) cos( θ) = = cos( θ) å tilsvaende måde fås af figu 3, hvo situationen e set oppefa: (3a) cos( ϕ) = = cos( ϕ) (3b) sin( ϕ) = = sin( ϕ) Indsættes (2b) i (3a) og (3b) fås (4) = cos( ϕ) = cos( θ) cos( ϕ ) (5) = sin( ϕ) = cos( θ) sin( ϕ ) Sammen med (2a) give (4) og (5) udtkkene fo de te koodinate,, og. I øvigt e adius givet ved 2 2 (6) =

5 igu 1 (,, ) θ ϕ igu 2 igu 3 opad θ ϕ

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen HTX Næstved Matematik A 8 2 Indholdsfotegnelse Indholdsfotegnelse... 2 Indledning... 3 Poblemstilling... 4 Teoi... 5 Vektoe i planet... 5 Vektobestemmelse... 5 Vinkel mellem to vektoe... 6 Vektokoodinate...

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Vektorer i planen. Fem opgavesæt. for gymnasiets standardforsøg i matematik. 2004 Karsten Juul

Vektorer i planen. Fem opgavesæt. for gymnasiets standardforsøg i matematik. 2004 Karsten Juul Vektoe i planen Fem opgavesæt fo gymnasiets standadfosøg i matematik 004 Kasten Juul Vektoe i planen Opgavesæt n 1 af 5 Dette opgavesæt deje sig om det gundlæggende om vektoe VP 1 I et koodinatsystem i

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

Appendiks B: Korrosion og restlevetid for trådbindere

Appendiks B: Korrosion og restlevetid for trådbindere Appendiks B: Koosion og esleveid fo ådbindee I de følgende omales koosionspocessene fo ådbindee og hvodan man beegne esleveiden fo en koodee ådbinde. Tådbindee ha i idens løb væe udfø af: messing (en legeing

Læs mere

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen, ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

De dynamiske stjerner

De dynamiske stjerner De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til

Læs mere

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( )

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( ) Kvantemekanik 0 Side af 9 Bintatomet I Sfæisk hamoniske Ifølge udtyk (9.7) e Lˆ Lˆ og de eksistee således et fuldstændigt sæt af = 0 samtidige egenfunktione fo ˆL og L ˆ de som antydet i udtyk (9.8) kan

Læs mere

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

MSLT: Undersøgelse af søvnlatens

MSLT: Undersøgelse af søvnlatens MSLT: Udesøgelse af laes Du skal have foeage e Mulipel Søv Laes Tes - MSLT. Søvlaes e de id, de gå, fa du ha lag hovede på pude fo a, il du. SÅDAN FOREGÅR UNDERSØGELSEN Udesøgelse age e hel dag. Med 2

Læs mere

Rumgeometri Side 1 af 20

Rumgeometri Side 1 af 20 Rumgeometi Side af Idhold. Puktmægde i ummet..... Lije i ummet..... Pla... Paametefemstillige fo e pla i ummet e givet ved... Fa ligig til paametefemstillig... Fa paametefemstillig til ligig..... Kugle

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 8 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π og

Læs mere

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I

Læs mere

PÆDAGOGISK KVALITETSEVALUERING

PÆDAGOGISK KVALITETSEVALUERING PÆDAGOGISK KVALITETSEVALUERING - E N M E T O D E, D E R V I R K E R I P R A K S I S HVAD ER PÆDAGOGISK KVALITETSEVALUERING? Pædagogisk Kvalitetsevalueing gø det attaktivt fo ledelse og pesonale at gå pædagogikken

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys Metode til beenin af vametansmissionskoefficient (U-vædi) fo oven Nævæende notat beskive en metode til beenin af vametansmissionskoefficienten fo oven. Pincippet i beeninspoceduen tae udanspunkt i beeninsmetoden

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.

Læs mere

Gravitationsfeltet. r i

Gravitationsfeltet. r i Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo

Læs mere

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger VIDENSYSTEM.dk Bygningsinstallatione Vae Fodelingssyste 3.0 Røbeegning 3.0 Røbeegninge 3.1 Røbeegningens foudsætninge 3. Tyktabsbeegning geneelt 3.3 Paktiske hjælpeidle 3.4 Beegningspincip fo tostengsanlæg

Læs mere

Matematik B Klasse 1.4 Hjemmeopaver

Matematik B Klasse 1.4 Hjemmeopaver Matematik B Klasse 1.4 Hjemmeopaver 1) opgave 336, side 23 Opgaven går ud på at jeg skal finde ud af hvor gamle børnene højst kan være, når forældrene tilsammen er 65 år og de skal være 40 år ældre end

Læs mere

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser.

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser. Betonø ha den støste vandføingskapacitet Et afløbssystems opgave e at lede vand samt uenhede til ensningsanlæg elle ecipient. Evnen til at gøe dette afhænge af systemets hydauliske egenskabe næmee betegnet

Læs mere

Elektrodynamik. Christian Andersen. 15. juni 2010. Indhold 1. 1 Indledning 3

Elektrodynamik. Christian Andersen. 15. juni 2010. Indhold 1. 1 Indledning 3 Elektodynamik Chistian Andesen 15. juni 010 Indhold Indhold 1 1 Indledning 3 Elektostatik 3.1 Det elektiske felt............................. 3. Divegens og Cul af E-felte...................... 3.3 Elektisk

Læs mere

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016 Regional Udvikling, Miljø og Råstoffe Jodfouening - Offentlig høing Foslag til nye foueningsundesøgelse og opensninge 2016 Decembe 2015 Food En jodfouening kan skade voes fælles gundvand, voes sundhed

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Trivselsundersøgelse 2010

Trivselsundersøgelse 2010 Tivselsundesøgelse, byggeteknike, kot-og landmålingseknike, psteknolog og bygni (Intenatal) Pinsesse Chalottes Gade 8 København N T: Indhold Indledning... Metode... Tivselsanalyse fo bygni... Styke og

Læs mere

Elektrostatisk energi

Elektrostatisk energi Elektomagnetisme ide 1 af 8 Elektostatik Elektostatisk enegi Fo et legeme, de bevæge sig fa et punkt til et andet, e tilvæksten i potentiel enegi høende til en konsevativ 1 kaft F givet ved minus det abejde,

Læs mere

11: Det skjulte univers

11: Det skjulte univers : Det skjulte unives Jeg nævnte tilbage i kapitel 2, at de e en foklaing på, at univeset ha den oveodnede stuktu, som det ha. Men dengang manglede vi foudsætningene fo at fostå foklaingene. Siden ha elativitetsteoien

Læs mere

Nr. Hvornår Hvor mange år siden: 1 Du startede i skole 2 Du blev født 3 1982 4 Statsministerens fødselsår. (1966)

Nr. Hvornår Hvor mange år siden: 1 Du startede i skole 2 Du blev født 3 1982 4 Statsministerens fødselsår. (1966) Observationer fra Dyrehaven & Bakken Dyrehaven: Hvis I kommer med tog til Klampenborg station, kan I evt. starte med at tage et smut forbi skovhuggeregetræet. Det står ca. 150 m. fra stationen, på vej

Læs mere

At score mål på hjørnespark

At score mål på hjørnespark At scoe ål på hjønespk Ole Witt Hnsen, lekto eeitus undevisningens udvikling i gnsiet Indtil 988 hvilede fsikundevisningen i gnsiet på det teoetiske, so n søgte t bekæfte genne deonsttionsfosøg elle fsikøvelse,

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Roskilde Kommune Teknik og Miljø Rådhusbuen 1 4000 Roskilde Jyllinge, den 28. juli 2014

Roskilde Kommune Teknik og Miljø Rådhusbuen 1 4000 Roskilde Jyllinge, den 28. juli 2014 Roskilde Kommune Teknik og Milø Rådhusbuen 000 Roskilde Jyllinge, den. uli 0 Kommenteing fa de 0 gundefoeninge nod fo v i Jyllinge Nodmak til Gontmiappoten Skitsepoekt fo lokale løsninge til siking af

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul Tekansbeegning fo - og - niea i sx og hf dgae l 34 8 014 Kasen Jl Indhold 1. Vinkle... 1. Tekans häjde og aeal... 1.1 HÄjde.... 1. HÄjde-gndlinje-fomel fo ekans aeal... 1.3 Eksemel ho aeal e kend... 1

Læs mere

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år. 16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007 AKTUEL ANALYSE Nye tie på boligmakeet 24. janua 2007 De høje pisstigningstakte på boligmakeet e løjet af, og meget tale fo en fotsat afæmpning i en kommene ti. Sien boligmakeet vente i 1993, e pisene vokset

Læs mere

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00 1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,

Læs mere

WWW g SOCIALE MEDIER. IQg NQ. I Ng takt med at vi bruger mere og mere tid på nettet

WWW g SOCIALE MEDIER. IQg NQ. I Ng takt med at vi bruger mere og mere tid på nettet VIRKELIG g VIRTUEL WWW g SOCIALE MEDIER I takt med at vi bge mee og mee tid på nettet smelte det sammen med nævæ og fysisk kontakt. Vi få hologamme d kan øe. De sociale medie blive alt afgøende fo fastholde

Læs mere

BEVISER TIL SÆTNINGER I BOGEN

BEVISER TIL SÆTNINGER I BOGEN MTEMK Mtemtik o hh C-iveu BEVISER TIL SÆTNINGER I BOGEN Dette e e smlig ove lle e sætige og evise e e i oge. Det e met som suppleee mteile isæ til e eleve, e skl hve mtemtik på B- elle -iveu. ee i ku metget

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

Den ideelle operationsforstærker.

Den ideelle operationsforstærker. ELA Den ideelle operationsforstærker. Symbol e - e + v o Differensforstærker v o A OL (e + - e - ) - A OL e ε e ε e - - e + (se nedenstående figur) e - e ε e + v o AOL e - Z in (i in 0) e + i in i in v

Læs mere

LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG

LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG AALBORG KOMMUNE TEKNISK FORVALTNING JUNI 2001 Vejledning En lokalplan fastlægge bestemmelse fo, hvodan aeale, nye bygninge, beplantning,

Læs mere

Beregningsprocedure for de energimæssige forhold for forsatsvinduer

Beregningsprocedure for de energimæssige forhold for forsatsvinduer Beeninspocedue fo de eneimæssie fohold fo fosatsvindue Nævæende dokument beskive en pocedue til bestemmelse, af de eneimæssie fohold fo fosatsvindue. Det skal notees, at beeninen e baseet på en foeløbi

Læs mere

Elementær Matematik. Parameterkurver

Elementær Matematik. Parameterkurver Elemenæ Maemaik Paameekuve Ole Wi-Hansen 8 Indhold. Indledende beagninge.... Vekofunkione.... Tangen il en paameekuve.... Lodee, vandee angene og spidse....7. Undesøgelse af paameekuve...8 5. Kuvelængde

Læs mere

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

TEORETISK OPGAVE 3. Hvorfor er stjerner så store? TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk

Læs mere

Kortfattet. for gymnasiet og hf. 2010 Karsten Juul

Kortfattet. for gymnasiet og hf. 2010 Karsten Juul Kotfattet fo gymnasiet og hf 5 00 Kasten Jl Indhold. HÄjde og aeal.... Pythagoas' såtning... 3. Ensinklede tekante...4 4. Cosins og sins i etinklet tekant...6 5. Tangens i etinklet tekant...9 6. Vinkle...

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE CHR RICHARDTSVEJ N KØBENHAVNSVEJ LOKALPLAN NR. B-16.2 Boligomåde vest fo Solbakkevej, Vodingbog By Vodingbog septembe 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE N VOLDGADE ALGADE BAISSTRÆDE LOKALPLAN NR. C-16.1 Centeomåde mellem Algade og Voldgade, Vodingbog Vodingbog juni 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets

Læs mere

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009 N. -9 Atom numme nul Fag: Fysik A Udabejdet af: Michael Bjeing Chistiansen, Åhus Statsgymnasium, august 9 Spøgsmål til atiklen 1. Hvofo vil det væe inteessant, hvis man fo eksempel finde antikulstof i

Læs mere

Rasmus Joensen formand Sláið Ring raj@effo.fo. Maria Kristiansdóttir Nordlek repræsentant Sláið Ring E-mail: trygvi.samuelsen@skulin.

Rasmus Joensen formand Sláið Ring raj@effo.fo. Maria Kristiansdóttir Nordlek repræsentant Sláið Ring E-mail: trygvi.samuelsen@skulin. 5.-8. juli 2017 S TÆ V N E U D VA L G Rasmus Joensen fomand Sláið Ring aj@effo.fo Maia Kistiansdótti Nodle epæsentant Sláið Ring E-mail: tygvi.samuelsen@sulin.fo Elin Sydebø Klasvía Dansifelag E-mail:

Læs mere

, idet der jo af ovenstående udregninger (hvor vi har regnet ensbetydende, dvs vi kan slutte begge veje) følger at > K.

, idet der jo af ovenstående udregninger (hvor vi har regnet ensbetydende, dvs vi kan slutte begge veje) følger at > K. Hvd e mtemtik? A ISBN 978-87-766-497-4 Pojekte: Kpitel 2. Pojekt 2.4 Støelsesoden fo funktione Pojekt 2.4. Støelsesoden fo funktionene Intoduktion, og ln( ) I dette foløb vil vi dels få et edskb til t

Læs mere

Bygning 1, Etage 03. M1 - Aktiv sengeplads. M3 - Aktivt badeværelse. M5 Aktivt birum. M7 Afstilling. O3 begrænset trådløs dækning.

Bygning 1, Etage 03. M1 - Aktiv sengeplads. M3 - Aktivt badeværelse. M5 Aktivt birum. M7 Afstilling. O3 begrænset trådløs dækning. Bygning 1, Etage 03 Bygning 1, Etage 04 Bygning 1, Etage 05 Bygning 1, Etage 06 Bygning 1, Etage 07 Bygning 1, Etage 08 Bygning 1, Etage 09 Bygning 1, Etage 10 Bygning 1, Etage 11 Bygning 1, Etage 12 Bygning

Læs mere

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud TC A/S Nøegade 21 0900 København C Afgøelse om fastsættelse af WACC i fobindelse med omkostningsdokumentation af pisene i TC s standadtilbud Sagsfemstilling en 29. juni 2006 modtog TC s notat om den beegningsmæssige

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Impulsbevarelse ved stød

Impulsbevarelse ved stød Iulsbevaelse ved stød Iulsbevaelse ved stød Indhold Iulsbevaelse ved stød.... Centalt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevaelse ved stød...3 5. Centalt elastisk stød...4 6. Centalt

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter:

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter: 5 Tyngdekaften Nu hvo vi (fohåbentlig) ha fået et begeb om ummets og tidens sammenflettede natu, skal vi vende tilbage til en ting, som vi ganske kot blev konfonteet med i begyndelsen af foige kapitel.

Læs mere

Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1

Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1 Oversigt [S]. Nøgleord og begreber Retningsafledt Gradientvektor Gradient i flere variable Fortolkning af gradientvektoren Agst, opgave 5 Delvis afledt [S]. Directional derivatives and te... Definition

Læs mere

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet STUDENTEREKSAMEN AUGUST 009 MATEMATIK A-NIVEAU Onsdag den 1. august 009 Kl. 09.00 14.00 STX09-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Ud med Valde. Bølle-Bob er på vej hen til Valde Underbid. Han går gennem byen ned mod losse-pladsen. Her bor Valde i sin gamle vogn.

Ud med Valde. Bølle-Bob er på vej hen til Valde Underbid. Han går gennem byen ned mod losse-pladsen. Her bor Valde i sin gamle vogn. 1. Ud med Valde Bølle-Bob er på vej hen til Valde Underbid. Han går gennem byen ned mod losse-pladsen. Her bor Valde i sin gamle vogn. Så møder han Sara.»Har du hørt det?«siger hun. 5 »Hørt hvad?de har

Læs mere

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?.

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?. Hvor høj er skolens flagstang? Undersøgelsesbaseret matematik 8.a på Ankermedets Skole i Skagen Marts 2012 Klassen deltog for anden gang i Fibonacci Projektet, og der var afsat ca. 8 lektioner, fordelt

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Teorien. solkompasset

Teorien. solkompasset Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 008 HHX08-MAB Matematik Niveau B Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undvisningsbskivls Stamoplysning til bug vd pøv til gymnasial uddannls Tmin Tmin hvo undvisningn afslutts (Juni 2016) Institution Uddannls Rybns HTX Fag og nivau Matmatik B/A Læ Jack Sandbæk Hold 1.c Ovsigt

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Cisgene bygplanter. planteforskning.dk Bioteknologi

Cisgene bygplanter. planteforskning.dk Bioteknologi plantefoskning.dk Cisgene bygplante Nyttige egenskabe kan tilføes til femtidens afgøde ved hjælp af genetisk modifikation uden indsættelse af atsfemmede gene. Den nye stategi anvendes bl.a. til udvikling

Læs mere

Det er det talte ord, der gælder. har lyst til at mødes og bakke op om vores 1. maj.

Det er det talte ord, der gælder. har lyst til at mødes og bakke op om vores 1. maj. 1. maj tale af LO s næstformand Lizette Risgaard. Det er det talte ord, der gælder God morgen. Godt at se Jer. Hvor er det dejligt, at så mange så tidligt har lyst til at mødes og bakke op om vores 1.

Læs mere

VORDINGBORG KOMMUNE. Butiksområde ved Bryggervangen LOKALPLAN NR. C-15.2. 20 kr. BØDKERVÆNGET BRYGGERVANGEN VÆVERGANGEN VALDEMARSGADE

VORDINGBORG KOMMUNE. Butiksområde ved Bryggervangen LOKALPLAN NR. C-15.2. 20 kr. BØDKERVÆNGET BRYGGERVANGEN VÆVERGANGEN VALDEMARSGADE VORDINGBORG KOMMUNE N BØDKERVÆNGET VÆVERGANGEN BRYGGERVANGEN VALDEMARSGADE LOKALPLAN NR. C-15.2 Butiksomåde ved Byggevangen Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om

Læs mere

Øvelser i Begynderklassen.

Øvelser i Begynderklassen. Øvelser i Begynderklassen. 1 Her starter banen! Tidtagningen begynder, når dommeren kommanderer "Fremad". 2 Banen er slut - Tidtagningen stoppes 3* Højre sving. 90 skarp drejning til højre. Som ved normal

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Sjov med pizza-stykker

Sjov med pizza-stykker Sjov med pizza-stykker Første gang eleverne får materialet i hånden, bør de have tid til selv at undersøge det, så de bliver fortrolige med de forskellige dele. Det kan også være en god idé at lade eleverne

Læs mere

STATISTIKNOTER Simple multinomialfordelingsmodeller

STATISTIKNOTER Simple multinomialfordelingsmodeller STATISTIKNOTER Simple multinomialfodelingsmodelle Jøgen Lasen IMFUFA Roskilde Univesitetscente Febua 1999 IMFUFA, Roskilde Univesitetscente, Postboks 260, DK-4000 Roskilde. Jøgen Lasen: STATISTIKNOTER:

Læs mere

Dokumentation af Python

Dokumentation af Python Dokumentation af Python Lavet af Ali Murtada, klasse 2.3 IT - Dokumentation af Python - SNOWMAN Resume: Vi har fået til opgave, at programmere en robot/snowman i visual python. Robotten består af 13 dele,

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komlekse eksonentialfunktion og olynomie Peben Alsholm Uge 8 Foå 009 Den komlekse eksonentialfunktion. Definitionen Definitionen Den velkendte eksonentialfunktion x! e x vil vi ofte ligesom

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

Matematik C Højere forberedelseseksamen

Matematik C Højere forberedelseseksamen Matematik C Højere forberedelseseksamen Hæfte: August 2014 Kl. 9.00-12.00 Copyright Anders og Mark Kommentar til opgaven: Lilla farve - angiver formlen. Rød farve - angiver ophævelsen af en ligning. Matematik

Læs mere

Sabatiers princip (elevvejledning)

Sabatiers princip (elevvejledning) Sabaties pincip (elevvejledning) Væ på toppen af vulkanen Sammenligning af katalysatoe Fomål I skal måle hvo godt foskellige stoffe vike som katalysato fo udvikling af oxygen fa hydogenpeoxid. I skal sammenligne

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Få dit livs fladeste, flotteste og stærkeste mave

Få dit livs fladeste, flotteste og stærkeste mave 24 JULE PLANKER Få dit livs fladeste, flotteste og stærkeste mave Plejer din mave også at få en ekstra delle eller to i december? Bare rolig, i år kommer I FORM dig til hjælp. Redningen hedder PLANKEN

Læs mere

CO 2. -regnskab For virksomheden Jammerbugt Kommune

CO 2. -regnskab For virksomheden Jammerbugt Kommune -egnskab Fo viksomheden Jammebugt Kommune Fosidebilledet vise Ryå, de gå ove sine bedde -egnskab fo Jammebugt Kommune Jammebugt Kommune indgik d. 9. oktobe 2009 en klimakommuneaftale med Danmaks Natufedningsfoening.

Læs mere

Brydningsindeks af vand

Brydningsindeks af vand Brydningsindeks af vand Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 15. marts 2012 Indhold 1 Indledning 2 2 Formål

Læs mere