De dynamiske stjerner
|
|
|
- Gunnar Jessen
- 9 år siden
- Visninger:
Transkript
1 De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til Satuns bane. Den ha en masse på M og en adius på omking 1180 R. Stjenen e med meget god tilnæmelse kuglesymmetisk opbygget. Navnet, de e af aabisk opindelse og betyde Kæmpens skulde, udtales Bet-æl-GØØS. Foto: Hubble Space Telescope. Figu Gastågen Messie 8 i stjenebilledet Skytten. Fodelingen af gas og støv udvise en vis koncentation ind mod et centum. Selv om skyen tydeligt nok ikke e kuglefomet, vil man som en føste tilnæmelse mod en beskivelse af den antage en kuglesymmetisk fodeling. Voes hjemsted i Univeset, Mælkevejsgalaksen, umme et utal af stjene og skye bestående af gas (hydogen, helium ) og støv. Figu 1 og vise eksemple. Stuktuen af sådanne gasmasse e pæget af modspillet mellem en tiltækkende gavitationskaft, som bevike en sammentækning, og et udadettet gastyk, hvis ænding ud gennem gasmassen bidage med en udadettet tykkaft. Beskivelsen af foholdene lettes meget, hvis man kan antage en kuglesymmetisk opbygning. Det betyde, at alle fysiske støelse som densitet ρ, tyk p og tempeatu T kun afhænge af afstanden fa gasmassens centum. Som figu 1 og antyde, e denne antagelse mee elle minde god. Tyngdekaften Gavitationskaften mellem to punktfomede legeme med massene m 1 og m og afstanden e som bekendt givet ved Newtons gavitationslov m m F G (1) 1 gav Holge Nielsen, Støving Gymnasium S:\_Fy\De dynamiske stjene\dynamiske stjene.docx
2 De dynamiske stjene, suppleende note Side af 5 hvo G e den univeselle gavitationskonstant. Men hvodan foholde det sig, hvis legemene ikke e punktfomede? He komme kuglesymmetien til hjælp. Man kan nemlig vise (og det kunne alleede Newton selv!), at nå man befinde sig inde i en gasmasse i afstanden fa centum, så e tyngdekaften på et lille legeme kun bestemt af den del af gasmassen, som befinde sig inden fo afstanden. Den del, som ligge uden fo give ikke noget nettobidag. I centum e tyngdekaften nul. Lad os betagte et lille kassefomet gaselement, som befinde sig i afstanden fa centum, se figu. Så e tyngdekaften på denne givet ved F m kasse gav G () hvo betegne massen af den del af gasen, som ligge inden fo afstanden. Tykkaften Som bekendt definees tykket p ved fomlen at tykkaften simpelt hen givet ved Ftyk p A. p F, hvo F e kaften vinkelet på aealet A. Defo e A Den hydostatiske ligning Vi betagte nu mee detaljeet de kæfte som vike på den lille kasse fa figu. Vi lade den have lodette side og benytte betegnelsene på figu : Kassen ha aealet A og højden Δ. Gastykket ved kassens bund (afstand ) betegnes p og tykket på kassens top (afstand + Δ) betegnes p + Δp. Bemæk, at da tykket aftage udad, så e Δp negativ! Densiteten af gassen på kassens sted kalde vi ρ. Vi ha nu Kassens volumen: Kassens masse: V A kasse mkasse V A Kassen e påviket af te kæfte i lodet etning: Gavitationskaften: A Fgav G Tykkaft på undesiden: p A Fnedefa Tykkaft på ovesiden: Foppefa ( p p) A Idet vi egne udadettede kæfte positive (og indadettede negative), må den esulteende kaft væe A Fes Fnedefa Foppefa Fgav p A ( p p) A G A p A G Ovevej, hvofo vi ikke medtage de fie tykkæfte i vandet etning i beegningen. Holge Nielsen, Støving Gymnasium Astonomi
3 De dynamiske stjene, suppleende note Side af 5 Figu Snit gennem en kuglesymmetisk gasmasse med adius R. Vi betagte et kassefomet gaselement K i afstanden. Tyngdekaften på dette e alene givet ved den del af gasmassen, som befinde sig inden fo afstanden. Massen af denne del betegnes. I centum e m(0) = 0 og fo = R e M(R) = M, massen af hele gasmassen. Figu Kassen K fa figu i fostøelse. Undesiden befinde sig i afstanden fa centet og gastykket e he p. Ovesiden ha afstanden + Δ og tykket e p + Δp. Kassens vandette aeal betegnes A. De te kæfte, som vike på K i lodet etning, e gavitationskaften, F gav, tykkaften mod undesiden, F nedefa, og tykkaften mod ovesiden, F oppefa. Bemæk etningen af disse kæfte. Stjene: Ligevægt I de fleste stjene ha de indstillet sig en ligevægt mellem de kæfte, som vike: Kassen befinde sig i o. Så e F es = 0 og ligningen kan omskives således: m( ) A m( ) p A G 0 p G p G p Vi genkende som en diffeenskvotient. Ved gænseovegangen 0 gå den mod en diffeentialkvotient, så vi få sluttelig d p m( ) p G () d Denne ligning kaldes diffeentialligningen fo hydostatisk ligevægt. (Hydostatik: Læen om væske og gasse i ligevægt). Diffeentialkvotienten af p e skevet både med Newtons notation ( ) og med Leibnitz (d/d). Ligningen spille (sammen med te ande diffeentialligninge) en afgøende olle fo studiet af stjenenes inde og beegningen af modelle fo den inde opbygning. He vil vi nøjes med at anvende den til en vudeing af, hvo stot tykket e i Solens centum. Holge Nielsen, Støving Gymnasium Astonomi
4 De dynamiske stjene, suppleende note Side af 5 Opgave: Skøn ove tykket p c i Solens centum Vi anbinge os midt i Solen ( = ½ R )og anvende ligning () på foholdene he. Det blive nødvendigt at gøe et pa gove tilnæmelse: Diffeentialkvotienten dp/d tilnæmes med diffeenskvotienten Δp/Δ (0 p c )/(R 0). Vi antage, at Solen e homogen, dvs. M. R I afstanden = ½ R e den indenfo liggende kugles umfang 1 8 af hele Solens umfang, så 1 M Vis ved indsættelse, at man nå fem til fomlen 8 p GM c 8 R og beegn en talvædi fo tykket. Gode solmodelle give vædien p c = Pa. Gasskye: Jeans-instabilitet Stjene dannes i stoe intestellae gasskye. Vi stille nu spøgsmålet, hvonå en sådan sky blive ustabil og tække sig sammen? Den esulteende kaft på kassen i figu må så væe indadettet, F es < 0. Af ligningen () følge så, at m( ) A m( ) p AG 0 p G p G () Uligheden kan benyttes til at finde en nede gænse fo, hvo lille en sky kan væe uden at den tække sig sammen. Detil tænke vi os, at vi befinde os midt i skyen ( = ½ R) og foetage tilnæmelse som i ovenstående opgave: p 0 p p R 0 R centum centum Kuglen med adius ½ R ha et umfang, som e 1/8 af hele kuglens unfang, så vi tilnæme m( ) m( R) M Desuden e kuglens samlede masse jo givet ved M R og endelig anvende vi idealgasligningen til at eliminee centaltykket p centum : Holge Nielsen, Støving Gymnasium Astonomi
5 De dynamiske stjene, suppleende note Side 5 af 5 p centum k B T m centum Vi indsætte de foige fie ligninge i uligheden () og få p m( ) p 1 G G R R R centum k T p G R G R m B centum centum k T B centum R G m Vi ha foetaget et gove tilnæmelse, og defo e de ikke meget fogjot ved endvidee at estatte talfaktoen med 1 (Demed opnå vi også oveensstemmelse med esultatet af en mee koekt udledning!). Vi få altså R kb Tcentum G m R Jeans Skyen e altså ustabil ovefo sammentækning, hvis den adius R e støe end den såkaldte Jeans-adius defineet i ammen ovenfo. Holge Nielsen, Støving Gymnasium Astonomi
Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger
Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende
Gravitationsfeltet. r i
Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo
Projekt 2.3 Anvendelse af Cavalieris princip i areal- og rumfangsberegninger
Pojekt. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende metode til beegning af aeale af figue, de e bestemt af kumme kuve, a siden oldtiden væe at tilnæme disse med polygone.
Annuiteter og indekstal
Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På
Projekt 0.5 Euklids algoritme, primtal og primiske tal
Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige
Elektrostatisk energi
Elektomagnetisme ide 1 af 8 Elektostatik Elektostatisk enegi Fo et legeme, de bevæge sig fa et punkt til et andet, e tilvæksten i potentiel enegi høende til en konsevativ 1 kaft F givet ved minus det abejde,
To legeme problemet og Keplers love
To legeme oblemet og Keles love 0/8 To legeme oblemet og Keles love Indhold. To legeme oblemet. Reduktion til centalbevægelse.... Løsning af diffeentialligningene fo en centalbevægelse.... Lagange fomalismen...3
Annuiteter og indekstal
Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.
Projekt 1.8 Design en optimal flaske
ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn
Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen
Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.
Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v
Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...
Arealet af en sfærisk trekant m.m.
ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt
Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017
Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................
Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen
HTX Næstved Matematik A 8 2 Indholdsfotegnelse Indholdsfotegnelse... 2 Indledning... 3 Poblemstilling... 4 Teoi... 5 Vektoe i planet... 5 Vektobestemmelse... 5 Vinkel mellem to vektoe... 6 Vektokoodinate...
Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen
Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?
Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.
16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode
HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00
1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,
Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys
Metode til beenin af vametansmissionskoefficient (U-vædi) fo oven Nævæende notat beskive en metode til beenin af vametansmissionskoefficienten fo oven. Pincippet i beeninspoceduen tae udanspunkt i beeninsmetoden
Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007
Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det
Elementær Matematik. Lineære funktioner og Andengradspolynomiet
Elementæ Mtemtik Lineæe funktione og Andengdspolynomiet Ole Witt-Hnsen Indhold. Den lineæe funktion.... Stykkevis lineæe funktione.... Andengdspolynomiet.... Pllelfoskydning f koodintsystemet.... Pllelfoskydning
Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.
- 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)
Impulsbevarelse ved stød
Iulsbevaelse ved stød Iulsbevaelse ved stød Indhold Iulsbevaelse ved stød.... Centalt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevaelse ved stød...3 5. Centalt elastisk stød...4 6. Centalt
Matematik på Åbent VUC
Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning
Forløb om annuitetslån
Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes
DesignMat Den komplekse eksponentialfunktion og polynomier
DesignMat Den komlekse eksonentialfunktion og olynomie Peben Alsholm Uge 8 Foå 009 Den komlekse eksonentialfunktion. Definitionen Definitionen Den velkendte eksonentialfunktion x! e x vil vi ofte ligesom
Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning
Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone (, neutone ( n og elektone ( og bestå defo p + mestendels af ladede patikle, men langt, langt støstedelen af denne
Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009
N. -9 Atom numme nul Fag: Fysik A Udabejdet af: Michael Bjeing Chistiansen, Åhus Statsgymnasium, august 9 Spøgsmål til atiklen 1. Hvofo vil det væe inteessant, hvis man fo eksempel finde antikulstof i
11: Det skjulte univers
: Det skjulte unives Jeg nævnte tilbage i kapitel 2, at de e en foklaing på, at univeset ha den oveodnede stuktu, som det ha. Men dengang manglede vi foudsætningene fo at fostå foklaingene. Siden ha elativitetsteoien
Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning
Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone ( ), neutone ( n ) og elektone ( ) og bestå defo p + mestendels af ladede patikle, men den altovevejende del af
MATEMATIK på Søværnets officerskole
MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt
MOGENS ODDERSHEDE LARSEN MATEMATIK
MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen
Sabatiers princip (elevvejledning)
Sabaties pincip (elevvejledning) Væ på toppen af vulkanen Sammenligning af katalysatoe Fomål I skal måle hvo godt foskellige stoffe vike som katalysato fo udvikling af oxygen fa hydogenpeoxid. I skal sammenligne
Opsparing og afvikling af gæld
Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:
3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger
VIDENSYSTEM.dk Bygningsinstallatione Vae Fodelingssyste 3.0 Røbeegning 3.0 Røbeegninge 3.1 Røbeegningens foudsætninge 3. Tyktabsbeegning geneelt 3.3 Paktiske hjælpeidle 3.4 Beegningspincip fo tostengsanlæg
Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet
Pension og Tilbagetækning - Ikke-paametisk Estimation af Heteogenitet Søen Anbeg De Økonomiske Råds Sekataiat, DØRS Pete Stephensen Danish Rational Economic Agents Model, DREAM DREAM Abedspapi 23:2 foeløbig
Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.
Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001
Erhvervs- og Selskabsstyrelsen
Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak
Procent og eksponentiel vækst - supplerende eksempler
Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee
Cykelfysik. Om udveksling og kraftoverførsel
Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple
Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter:
5 Tyngdekaften Nu hvo vi (fohåbentlig) ha fået et begeb om ummets og tidens sammenflettede natu, skal vi vende tilbage til en ting, som vi ganske kot blev konfonteet med i begyndelsen af foige kapitel.
Med disse betegnelser gælder følgende formel for en annuitetsopsparing:
Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som
Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:
0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække
STATISTIKNOTER Simple multinomialfordelingsmodeller
STATISTIKNOTER Simple multinomialfodelingsmodelle Jøgen Lasen IMFUFA Roskilde Univesitetscente Febua 1999 IMFUFA, Roskilde Univesitetscente, Postboks 260, DK-4000 Roskilde. Jøgen Lasen: STATISTIKNOTER:
Magnetisk dipolmoment
Kvantemekanik 9 Side 1 af 8 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π og
Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen
Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk [email protected] A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et
Magnetisk dipolmoment
Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I
rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,
ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet
VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej
VORDINGBORG KOMMUNE N Fægegådsvej Bogøvej Kalvøvej LOKALPLAN NR. B-24.2 Boligomåde ved Kalvøvej Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt til at
Danmarks Tekniske Museum. Det kunstige øje - om mikroskopet og dets verden
Danmaks Tekniske Museum O P T I K & L Det kunstige øje - om mikoskopet og dets veden Y S Til læeen At bille både e fysik og kultuhistoie, e fo mange bøn en velbevaet hemmelighed. Dette til tods fo at alle
( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )
Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt
Julestjerner af karton Design Beregning Konstruktion
Julestjene af katon Julestjene af katon Design Beegning Konstuktion Et vilkåligt antal takke En vilkålig afstand fa entum ud til spidsene En vilkålig afstand fa entum ud til toppunktene i "indakkene" En
OPGAVE 3. A Hvilken opbevaringskasse har det største rumfang?
Rumgeometi OPGAVE 2 Matildes lillebo og lillesøste a ve fundet en I kassene skal de 3 cm 39 3 cm sto sten på standen, og de kan ikke blive enige opbevaes skumteninge, I dette kapitel skal du abejde med
PRINCIPIA. stort. småt. SelvTryk. m F. r _. z l. f A y. - g _ g _ g _.
PRINCIPIA m F g=mg i stot g g g g g M og småt z l v i x v i y m v i z v i f aeal A y x SelvTyk [email protected] - http://home.stofanet.dk/mue Indholdsfotegnelse. Indledning. Kinematik på
VORDINGBORG KOMMUNE. Boligområde "Falunparken" LOKALPLAN NR. B-25.2. 20 kr. FALUNVEJ PRINS JØRGENS ALLÈ KØBENHAVNSVEJ
VORDINGBORG KOMMUNE N PRINS JØRGENS ALLÈ FALUNVEJ KØBENHAVNSVEJ LOKALPLAN NR. B-25.2 Boligomåde "Falunpaken" Vodingbog mats 2005 20 k. Rettelsesblad til Lokalplan B-25.2 Lokalplan C.17.24.01 Vaehus ved
Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.
VORDINGBORG KOMMUNE N VOLDGADE ALGADE BAISSTRÆDE LOKALPLAN NR. C-16.1 Centeomåde mellem Algade og Voldgade, Vodingbog Vodingbog juni 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets
Praksis om miljøvurdering
Paksis om miljøvudeing Miljøvudeingsdage 2015 Nyee paksis på miljøvudeingsomådet Flemming Elbæk Flemming Elbæk, advokat, HD(Ø) Ansættelse: Advokatfuldmægtig, 2006-2008 Juist, Miljøministeiet, 2008-2012
Uddannelsesordning for uddannelsen til Gastronom
Uddannelsesodning fo uddannelsen til Gastonom Udstedelsesdato: 9. juni 2011 Udstedt af Det faglige Udvalg fo Gastonomuddannelsen i henhold til bekendtgøelse n. 329 af 28. apil 2009 om uddannelsene i den
VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE
Modul 0: Speciale 0. semeste, cand.oecon Aalbog Univesitet Afleveet d. 30. maj 202 VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Vejlede: Finn Olesen Skevet af Henik Hanghøj
Fysik A og Astronomi. Keplers love. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.
Keples lve Skeve af Jacb Lasen.å HTX Slagelse Udgive i samabejde med Main Gyde Pulsen.å HTX Slagelse 1 De Lve På baggund af den danske asnm Tych Bahes bsevaine. De va isæ paallaksemålinge af Mas placeing
Etiske dilemmaer i fysioterapeutisk praksis
side 06 fysioteapeuten n. 06 apil 2008 AF: FYSIOTERAPEUT, PH.D.-STUDERENDE JEANETTE PRÆSTEGAARD [email protected] Foto: GITTE SKOV fafo.fysio.dk Etiske dilemmae i fysioteapeutisk paksis Hvis vi ikke
Psykisk arbejdsmiljø (kort) udarbejdet af NFA (AMI)
Psykisk abejdsmiljø (kot) udabejdet af NFA (AMI) Navn, dato, å Hvilken afdeling abejde du i? Afdelingens navn De følgende spøgsmål handle om dit psykiske abejdsmiljø. Sæt et kyds ud fo hvet spøgsmål ved
Retningsbestemt lydgiver
Retningsbestemt lygive Intouktion Ve uenøs musik e et isæ e ybe tone, e høes i sto afstan fa scenen, og et kan væe geneene fo en kunstneiske ufolelse på en naboscene elle fo beboelse i en vis afstan fa
Elementær Matematik. Parameterkurver
Elemenæ Maemaik Paameekuve Ole Wi-Hansen 8 Indhold. Indledende beagninge.... Vekofunkione.... Tangen il en paameekuve.... Lodee, vandee angene og spidse....7. Undesøgelse af paameekuve...8 5. Kuvelængde
SUPERLEDNING af Michael Brix Pedersen
UPERLEDNING af Mihael Bix Pedesen Indledning I denne note foudsættes kendskab til de eleentæe egenskabe ved hödingeligningen (se fx Refeene [] elle [3], lidt eleentæe egenskabe ved koplekse tal og Eules
Frivillige dyrkningsaftaler i indsatsområder
Miljøpojekt N. 812 2003 Fivillige dykningsaftale i indsatsomåde Gundlag og mulighede belyst ud fa kvælstofpoblematikken Egon Noe og Andes Højlund Nielsen Danmaks JodbugsFoskning Helene Simoni Thoup og
diagnostik Skulder fysioterapeuten nr. 05 marts 2009
side 08 fysioteapeuten n. 05 mats 2009 diagnostik Skulde Mogens Dam e oplægsholde på fagfestivalen d. 26.-28. mats 2009. Fysioteapeut Mogens Dam ha udvalgt en ække gængse diagnostiske test fo skuldepobleme.
Wear&Care Brugervejledning. A change for the better
A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone
Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.
VORDINGBORG KOMMUNE NÆSTVEDVEJ N ALGADE MARIENBERGVEJ LOKALPLAN NR. C-2.2 Banegådsomådet, Vodingbog By Vodingbog august 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt
Kort om. Potenssammenhænge. 2011 Karsten Juul
Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...
KOMMUNEPLANTILLÆG 14. Kommuneplan FORSLAG. Dalby Møllevej - Boliger. Offentlig høring xx-xx. Kolding Kommune. Dalby Møllegård.
Da KOMMUNEPLANTILLÆG 14 Dalby Mølleve - Bolige Goldbæk Alle Dalby Møllegåd Dalbyve Dalby Mølleve Ankehusve Goldbækpaken Ankehus Kommuneplan 2017-2029 FORSLAG Offentlig høing xx-xx Kolding Kommune Tillæg
VORDINGBORG KOMMUNE. Butiksområde ved Bryggervangen LOKALPLAN NR. C-15.2. 20 kr. BØDKERVÆNGET BRYGGERVANGEN VÆVERGANGEN VALDEMARSGADE
VORDINGBORG KOMMUNE N BØDKERVÆNGET VÆVERGANGEN BRYGGERVANGEN VALDEMARSGADE LOKALPLAN NR. C-15.2 Butiksomåde ved Byggevangen Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om
1. Indledning... 1 2. Lineær iteration... 2
Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel
Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages
Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.
