Differentialligninger

Størrelse: px
Starte visningen fra side:

Download "Differentialligninger"

Transkript

1 Differentialligninger for A-niveau i st, udgave SkÄrmbillede fra TI-Nspire 015 Karsten Juul

2 Differentialligninger for A-niveau i st, udgave 1 Hvad er en differentialligning? 1a OplÄg til differentialligninger1 1b Hvad er en differentialligning?1 Kontrol af läsning til differentialligning a UndersÅg om funktion er låsning til differentialligning GÅr rede for at funktion er låsning til differentialligning Eksempel 1 b UndersÅg om funktion er låsning til differentialligning GÅr rede for at funktion er låsning til differentialligning Eksempel 3 Bruge oplysningen i differentialligning 3a Bestem ligning for tangent nçr differentialligning er givet3 3b Eksempel pç brug af oplysningen i differentialligningen3 3c Bestem väksthastighed ud fra differentialligning Eksempel 1 4 3d Bestem väksthastighed ud fra differentialligning Eksempel 4 4 Bestemme läsning til differentialligning 4a Bestem låsningerne til en differentialligning 5 4d Bestem en låsning til en differentialligning nçr Én funktionsvärdi (Ét grafpunkt) er givet5 4e Bestem en låsning til en differentialligning nçr to funktionsvärdier (to grafpunkter) er givet 6 5 Opstille differentialligning 5a med besvarelse 6 6 Logistisk differentialligning 6a Vi opstiller en differentialligning 7 6b Vi finder proportionalitetskonstanten7 6c Hvad er en logistisk differentialligning? 7 6d Hvordan Ändres väksthastigheden?7 6e Hvor stor er populationen nçr den vokser hurtigst? 8 6f Vi finder forskrifter for låsningerne til differentialligningen8 6g Vi finder den af låsningerne der passer med populationen 8 6h Hvad sker der med antallet i det lange låb? 8 7 Beviser 7a HjÄlpesÄtning 9 7b SÄtning9 En tidligere version af dette häfte har skiftet adresse til GÇ ind pç for at downloade nyeste version af dette häfte Differentialligninger for A-niveau i st, udgave, Ä 015 Karsten Juul Dette häfte kan downloades fra wwwmat1dk Det må bruges i undervisningen hvis läreren med det samme sender en til som oplyser at det bruges og oplyser hold, niveau, lärer og skole 15/1-015

3 1 Hvad er en differentialligning? 1a OplÄg til differentialligninger En plantes håjde y vokser sçdan at der pç ethvert tidspunkt t gälder at hçjdes väksthastighed = hçjde Dette kan vi skrive med symboler sçdan: y' = y Vi kan ogsç urykke dette ved at sige at i hvert punkt pç grafen er tangenthäldning = y-koordinat Her har vi opstillet en differentialligning Ligningen y y er et eksempel pç en differentialligning De fleste differentialligninger er mere indviklede For funktionen f ( ) 4e gälder at f ( ) 4e f () opfylder betingelsen y' = y for hvert Dette urykker vi ved at sige at f () er en låsning til differentialligningen eller at f () tilfredsstiller differentialligningen Vi ser at funktionen f ( ) e, sç ogsç er en låsning Vi ser at differentialligningen har mange låsninger Symbolet betyder det samme som y Differentialligningen y kan ogsç skrives sçdan: eller sçdan: y y f ( ) f ( ) 1b Hvad er en differentialligning? En ligning er en differentialligning hvis den ubekene er en funktion og funktionens differentialkvotient indgçr En funktion er låsning til en differentialligning hvis funktionen opfylder differentialligningen for hvert i funktionens definitionsmängde Differentialligninger for A-niveau i st, udgave Side Karsten Juul

4 Kontrol af läsning til differentialligning a UndersÅg om funktion er låsning til differentialligning GÅr rede for at funktion er låsning til differentialligning Eksempel 1 UndersÅg om funktionen y y 1 f ( ) er en låsning til differentialligningen Vi indsätter f () = + for y i y' y = 1 : ( + )' ( + ) = 1 1 ( ) 1 Forskriften fortäller at i hvert grafpunkt får man y-koordinat ved at oplçfte -koordinat til anden og lägge -koordinat til resultatet Ligningen kräver for hvert grafpunkt at når y-koordinat gange träkkes fra tangenthäldning skal det give samme tal som når -koordinat i anden gange träkkes fra Da dette er san, gälder: f er låsning til differentialligningen y y 1 b UndersÅg om funktion er låsning til differentialligning GÅr rede for at funktion er låsning til differentialligning Eksempel UndersÅg om funktionen Vi indsätter y 1 f ( ) ln er en låsning til differentialligningen f ( ) y ln for y i 1 : ( ln ) ( ln ) 1 1 ( ln 1) ln 1 1 ln 1 ( ln 1) 1 ln 1 ln 1 Forskriften fortäller at i hvert grafpunkt får man y-koordinat ved at indsätte -koordinat i forskrift og regne ud Ligningen kräver for hvert grafpunkt at tangenthäldning skal väre det tal man får når man indsätter -koordinat og y-koordinat i hçjre side og regner ud 1 ln 1 ln 1 y Da dette er san, gälder: f er låsning til differentialligningen 1 Differentialligninger for A-niveau i st, udgave Side 015 Karsten Juul

5 3 Bruge oplysningen i differentialligning 3a Bestem ligning for tangent nçr differentialligning er givet En funktion f er låsning til differentialligningen y og grafen for f gçr gennem punktet P (3, 7) Bestem en ligning for tangenten til grafen for f i punktet P For en låsning til differentialligningen y gälder at i punktet ( 1, y1) (3,7) er tangenthäldningen a 3 7 = ( Vi har indsat 3 og 7 for og y i håjre side af y ) Ligning for tangent i P(3,7) : y y a 1 ) ( 3) 7 ( y y 1 1 Ligningen fortäller at i ethvert grafpunkt får vi tangenthäldningen når vi oplçfter -koordinaten til anden og träkker y-koordinaten fra resultatet 3b Eksempel pç brug af oplysningen i differentialligningen En funktion f er defineret for ethvert tal og er låsning til differentialligningen 1 y 1 GÅr rede for at f har et minimum I ethvert punkt (, y) pç grafen for f er tangenthäldningen Dette tal har samme fortegn som 1, Ligningen fortäller at i ethvert grafpunkt er tangenthäldningen det tal vi får ved at udregne hçjresiden efter at have indsat grafpunktets koordinater 1 y 1 for y 1 er altid positivt da et tal i anden ikke kan väre negativt 1 0 For 1 har låsningen 1 er 1 1, og for 0 er 1 1 TangenthÄldningen er altsç negativ for f er aftagende i intervallet 1 Heraf fålger at f har minimum for og positiv for 1 1 og voksende i intervallet 1 1, sç Differentialligninger for A-niveau i st, udgave Side Karsten Juul

6 3c Bestem väksthastighed ud fra differentialligning Eksempel 1 Udviklingen i et rs vägt kan beskrives ved differentialligningen 0,08y 16,, 0 t 9 hvor t er tiden mçlt i uger, og y er rets vägt mçlt i gram Bestem väksthastigheden pç det tidspunkt hvor rets vägt er 180 gram Vi indsätter 180 for y i differentialligningen: 0, , 16, 0, ,16 NÇr rets vägt er 180 gram, er väksthastigheden NÅr vi indsätter en konstant for y, så skal vi bevare y i 11, gram pr uge Ligningen fortäller at på ethvert tidspunkt mellem 0 og 9 gälder: NÅr väksthastigheden lägges sammen med 0,08 gange vägten, så får man 16, Ovenfor låste vi en ligning ved at träkke samme tal fra begge sider Hvis vi i stedet vil bruge solve, kan vi taste 3d Bestem väksthastighed ud fra differentialligning Eksempel En plantes håjde er en funktion af tiden der opfylder differentialligningen dh 0,06 0, 93 t h hvor h er håjden mçlt i mm, og t er tidspunktet mçlt i dågn Det oplyses at h ( 1) 3 Bestem väksthastigheden til tidspunktet t 1 Vi indsätter 1 for t og 3 for h i differentialligningen: dh 0,06 0,93 dh 0, Ligningen fortäller at vi får väksthastigheden dh når vi udregner hçjre side efter at have indsat tidspunkt og hçjde på t 's og h's pladser Til tidspunktet t 1 er väksthastigheden 0,073 mm pr dågn Differentialligninger for A-niveau i st, udgave Side Karsten Juul

7 4 Bestemme läsning til differentialligning 4a Bestem låsningerne til en differentialligning 4b Bestem forskrift for låsningerne til differentialligningen y y 1, 3 Nspire låser ligningen y y 1, 3 mht funktionen y og fçr låsningerne y c e 1, 3 BemÇrkning I stedet for c skriver Nspire c1 eller c eller c3 osv 4c De enkelte läsninger I besvarelsen ovenfor fan vi at låsningerne til y y 1, 3 er y = ce + 1,3 NÇr vi i y c e 1, 3 erstatter c med et bestemt tal, fçr vi Én af låsningerne Hvis vi ved at y ( ) 5, dvs at punktet (, 5) ligger pç grafen, sç kan vi bestemme c Dette kan vi gåre med metoden fra ramme 10, men vi kan ogsç blot sätte og 5 ind for og y i y c e 1, 3 og låse mht c : 5 e 51,3 c 1,3 hvoraf c 0, e LÅsningen hvor y ( ) 5, er altsç y = 0,50e + 1,3 PÇ tilsvarende mçde fçr vi: LÅsningen hvor y ( ) 3, er y = 0,3e + 1,3 4d Bestem en låsning til en differentialligning nçr Én funktionsvärdi (Ét grafpunkt) er givet En funktion h er låsning til differentialligningen dh 0,5( h ) og grafen for h gçr gennem punktet (, 1,6 ) Bestem en forskrift for h dh Nspire bestemmer forskriften for den låsning til 0,5( h ) hvor h( ) 1, 6 h( ),67 1,84 4 og fçr Samme bogstav får h Samme bogstav I stedet kunne vi have startet med at finde alle lçsninger (se 4b) Derefter kunne vi have bestemt den af lçsningerne hvor h()=1,6 (se 4c) Differentialligninger for A-niveau i st, udgave Side Karsten Juul

8 4e Bestem en låsning til en differentialligning nçr to funktionsvärdier (to grafpunkter) er givet En funktion p er låsning til differentialligningen dp k p Det oplyses at nçr t 0 er p, og at nçr t 1 er p 1, 5 Bestem en forskrift for p Nspire bestemmer en forskrift for den låsning p til p( t) ( k) e t 1 Da p ( 1) 1, 5, er ( k ) e k 1, 5 1 Nspire låser ligningen ( k) e k 1, 5 mht k og fçr k 1, 1 dp Den sågte forskrift er altsç p ( t) ( 1,1) e 1, 1, dvs t p ( t) 0,79 e 1,1 k BEMÑRK: Vi bruger kun det ene af de to oplyste grafpunkter NÅr vi har fundet forskriften, bruger vi det andet punkt til at bestemme k t k p hvor p ( 0), og fçr Brug to forskellige punkter (0, ) og (1, 1,5) 5 Opstille differentialligning 5a PÇ en skärm er et stort kvadrat med arealet 500 Inden i det store kvadrat er et lille kvadrat med siden s Den hastighed hvormed det lille kvadrats side vokser pç tidspunktet t, er proportional med forskellen pç det store kvadrats areal og det lille kvadrats areal Proportionalitetskonstanten er 0,0079 Opstil en differentialligning der har s(t) som låsning Jeg har brugt farver til at pege på det der er det samme Du skal ikke bruge farver til eksamen Til eksamen skal du kun skrive Én af de tre ligninger Differentialligninger for A-niveau i st, udgave Side Karsten Juul

9 6 Logistisk differentialligning 6a Vi opstiller en differentialligning For en population af r er N(t) Det er oplyst at populationen vokser sçdan at (1) antallet af r pç tidspunktet t uger väksthastigheden er proportional med produktet af antallet og differensen mellem 300 og antallet Ved at skrive (1) med symboler fçr vi fålgende differentialligning: () N' = k N(300 N) Her står: det rçde er proportional med det blå 6b Vi finder proportionalitetskonstanten Det er oplyst at väksthastigheden er 0 pç det tidspunkt hvor antallet er 100 dvs (3) N 0 nçr N 100 Ud fra () og (3) kan vi finde proportionalitetskonstanten k : Antallet N(t) N' = k N (300 N ) 0 = k 100( ) k 0,001 er altsç en låsning til differentialligningen (4) N 0,001 N (300 N) 6c Hvad er en logistisk differentialligning? Differentialligning (4) er af typen y k y ( M y) En differentialligning af denne type kaldes en logistisk differentialligning 6d Hvordan Çndres vçksthastigheden? Af (4) fçr vi: NÇr N 30 er N 8, 1 NÇr N 70 er N 16, 1 NÇr antallet er 70, sç vokser det altsç hurtigere end nçr det er 30 Grunden er at så länge der er god plads, gälder at når der er flere r, vil der komme flere unger Af (4) fçr vi: NÇr N 60 er N 10, 4 Se figur Se figur NÇr antallet er 60, sç vokser det altsç langsommere end nçr det er 70 Grunden er at når der er mange r, er der mindre plads pr r, og så kommer der ikke så mange unger N ' = väksthastigheden N = antallet 300 N = differens mellem 300 og antallet SkÄrmbillede fra TI-Nspire Differentialligninger for A-niveau i st, udgave Side Karsten Juul

10 6e Hvor stor er populationen nér den vokser hurtigst? Se figur Vi vil finde ud af hvor stort antallet N er nçr väksthastigheden er stårst Vi skal altsç finde ud af hvad N skal väre for at fålgende uryk er stårst: Vi fçr hast( N) 0,001 N (300 N) 0,3 N 0,001 N hast' ( N) 0,3 0, 00N sç hast' ( N) 0 netop nçr N 150 Da hast'( 100) 0, 1 og hast ( 00) 0, 1, er hast voksende i intervallet N 150 og aftagende i intervallet 150 N, sç stårste väksthastighed er hast ( 150), 5 NÅr antallet af r er 150, er väksthastigheden stçrst Den stçrste väksthastighed er,5 For en logistisk funktion y hvor y k y ( M y) er M stårrelsen af y nçr y er stårst 6f Vi finder forskrifter for läsningerne til differentialligningen I formelsamlingen stçr at funktionerne (5) y M 1 ce km t Af (5) fçr vi at funktionerne (6) ' er låsning til y k y ( M y) 300 N( t) er låsning til N 0,001 N (300 N) 0,3t 1 ce 6g Vi finder den af läsningerne der passer med populationen Det er oplyst at til tiden t 0 er antallet N Dette indsätter vi i (6) og fçr 10 1 ce Antallet af r er altsç fastlagt ved (7) N( t) e 0,3t 0,30 dvs SkÄrmbillede fra TI-Nspire sç c 9 1 c 6h Hvad sker der med antallet i det lange läb? Da 0,3t 9e er eksponentielt aftagende, er 9e 0,3t sç af (7) ser vi at N( t) nçr t er stor nçr t er stor Se figur AltsÇ er 300 den Åvre gränse for hvor mange r der er plads til Tallet 300 kaldes bäreevnen SkÄrmbillede fra TI-Nspire For en logistisk funktion y hvor y k y ( M y), er M den Åvre gränse for y Differentialligninger for A-niveau i st, udgave Side Karsten Juul

11 7 Beviser k k 7a HjÇlpesÇtning: e k e ' Bevis: For k e er den ydre funktion ( e Differentialkvotienten af den ydre er Differentialkvotienten af e k ' ( e e k) k differentieret: k k e k ), og den indre er k ( ) e, og differentialkvotienten af den indre er k er ydre differentieret (taget i indre) gange indre Hermed har vi bevist hjälpesätningen 7b SÇtning LÅsningerne til differentialligningen (1) y k y er funktionerne () y( ) c e k PÅ k's plads i denne forskrift skal stå det tal der står på k's plads i differentialligningen Uanset hvilket tal vi skriver på c's plads, så får vi en lçsning Der er altså uendelig mange lçsninger FÅrste del af beviset: Vi beviser at hvis en funktion er låsning til (1), sç er den af typen () Anden del af beviset: Vi beviser at alle funktioner af typen () er låsninger til (1) 1 del af beviset for sätningen Hvis en funktion y() k Da y e har egenskaben (1) er k k y e y e y k e k k k y y k e k y e k 0 differentieret giver 0, mç c regel for at differentiere produkt e da vi forudsatte (1) y e Vi ganger begge denne lignings sider med y k k k k e väre lig en konstant: og fçr k k 0 c e da e e e e 1 dvs funktionen er af typen () k del af beviset for sätningen En vilkçrlig funktion k k ce k ce k Venstre side af ligningen giver funktionen c e af typen () indsätter vi for y i ligningen y k y k c e har egenskaben (1) k c k e, dvs ligningen passer, sç og fçr Differentialligninger for A-niveau i st, udgave Side Karsten Juul

12 B bevis 9 bäreevne 8 D differentialligning1 L logistisk 7, 8 låsning1,, 5, 6 O opstil1, 6, 7 P population 7, 8 proportionalitetskonstant 6, 7 T tangent3 tilfredsstille 1 V väksthastighed4, 7, 8

Differentialligninger

Differentialligninger Differentialligninger for A-niveau i st SkÄrmbillede fra TI-Nspire 013 Karsten Juul Differentialligninger for A-niveau i st 1 OplÄg til differentialligninger1 Hvad er en differentialligning?1 3 UndersÅg

Læs mere

sammenhänge for gymnasiet og hf 2010 Karsten Juul

sammenhänge for gymnasiet og hf 2010 Karsten Juul LineÄre sammenhänge for gymnasiet og hf y 0,5x 2,5 200 Karsten Juul I dette häfte har jeg gjort meget for at teksten er skrevet sçdan at du nemmere kan fç overblik over reglerne og den sammenhäng der er

Læs mere

sammenhänge 2008 Karsten Juul

sammenhänge 2008 Karsten Juul LineÄre sammenhänge y x 3 3 008 Karsten Juul Dette häfte er en fortsättelse af häftet "VariabelsammenhÄnge, 008". Indhold 8. Hvad er en lineär sammenhäng?... 3 9. Hvordan ser grafen ud for en lineär sammenhäng?...

Læs mere

Integralregning. for B-niveau i stx. 2015 Karsten Juul

Integralregning. for B-niveau i stx. 2015 Karsten Juul Integralregning or B-niveau i st 05 Karsten Juul Stikordsregister A areal mellem gra og -akse6, 7, 8, 9 areal mellem to graer0, arealunktion, 5, 6 B bestemt integral 5 bestemt integral med Nspire5 bestemt

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

GrundlÄggende. Bogstavregning. for stx og hf Karsten Juul

GrundlÄggende. Bogstavregning. for stx og hf Karsten Juul GrundlÄggende Bogstavregning for st og hf 01 Karsten Juul 1. LigevÄgt bevares når vi träkker fra begge sider... 1. LigevÄgt bevares IKKE når vi träkker fra venstre side... 1. LigevÄgt bevares når vi dividerer

Læs mere

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul Kort om Anengraspolynomier 11 (1) Karsten Juul Dette häfte ineholer pensum i anengraspolynomier for gymnasiet og hf Inhol 1. Definition Anengraspolynomium... 1. Eksempel Hvilke tal er a, b og c lig?...

Læs mere

for C-niveau i stx 2017 Karsten Juul

for C-niveau i stx 2017 Karsten Juul for C-niveau i stx 75 50 25 2017 Karsten Juul Indholdsfortegnelse Indledning 1 Hvad er deskriptiv statistik?...1 2 Hvad er grupperede og ugrupperede data?...1 Ugrupperede data 3 Hvordan udregner vi middeltal

Læs mere

Integralregning. 1. del. 2006 Karsten Juul. M l

Integralregning. 1. del. 2006 Karsten Juul. M l Integralregning del () M l () 6 Karsten Juul Indhold Stamunktion OplÄg om stamunktion Deinition a stamunktion 6 Kontrol a stamunktion 9 SÄtning om stamunktionerne til en unktion Deinition a ubestemt integral

Læs mere

Differentialregning. for B-niveau i hf udgave 3. 2015 Karsten Juul

Differentialregning. for B-niveau i hf udgave 3. 2015 Karsten Juul Dierentialregning r B-niveau i h udgave t s 05 Karsten Juul Dierentialkvtient. Tangent g räringspunkt..... FunktinsvÅrdi g dierentialkvtient..... Frtlkning a ' vedr. gra... 4. Frtlkning a ' nçr er tiden....

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Differentialregning. for gymnasiet og hf. 2010 Karsten Juul

Differentialregning. for gymnasiet og hf. 2010 Karsten Juul Dierentialregning r gymnasiet g h t s 1 010 Karsten Juul 1. GrundlÄggende typer a pgaver med graer...1. Regel m tilväkster r lineäre sammenhänge.... SÅdan kan vi inde häldningskeicienten ud ra lineär gra...

Læs mere

Differentialregning. Et oplæg Karsten Juul L P

Differentialregning. Et oplæg Karsten Juul L P Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Differential- ligninger

Differential- ligninger Differential- ligninger Et oplæg 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der kan gennemgås før man går i gang med en lærebogs fremstilling af emnet differentialligninger Læreren skal

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Integralregning. med Ävelser. for B-niveau i gymnasiet og hf. 2011 Karsten Juul

Integralregning. med Ävelser. for B-niveau i gymnasiet og hf. 2011 Karsten Juul Integralregning med Ävelser or B-niveau i gymnasiet og h 0 Karsten Juul Dette håte gennemgçr integralregningen or B-niveau uden at gäre det mere indviklet end kråvet Évelserne giver eleverne et kendskab

Læs mere

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul Deskriptiv statistik for C-niveau i hf 75 50 25 2015 Karsten Juul DESKRIPTIV STATISTIK 1.1 Hvad er deskriptiv statistik?...1 1.2 Hvad er grupperede og ugrupperede data?...1 1.21 Eksempel pä ugrupperede

Læs mere

Differentialregning. for A-niveau i stx udgave Karsten Juul

Differentialregning. for A-niveau i stx udgave Karsten Juul Dierentialregning r A-niveau i st udgave 4 t s 07 Karsten Juul Dierentialkvtient Tangent g räringspunkt FunktinsvÅrdi g dierentialkvtient Frtlkning a ' vedr gra 4 Frtlkning a ' nçr er tiden 5 Frtlkning

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Trekantsberegning 25 B. 2009 Karsten Juul

Trekantsberegning 25 B. 2009 Karsten Juul Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Start pä ny 3D-figur. Tilpas koordinatsystem. Tegn trekant

Start pä ny 3D-figur. Tilpas koordinatsystem. Tegn trekant Intro til nspire_3d.tns Dokumentet nspire_3d.tns gär det meget hurtigere at tegne figurer til gymnasiets rumgeometri. Nyeste version kan downloades fra http://mat1.dk/noter.htm. Start pä ny 3D-figur 1)

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 75 50 5 016 Karsten Juul GRUPPEREDE DATA 1.1 Hvad er deskriptiv statistik?...1 1. Hvad er grupperede og ugrupperede data?...1 1.1 Eksempel pä ugrupperede data...1 1. Eksempel

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 014 Karsten Juul TEST 1 StikprÅver... 1 1.1 Hvad er populationen?... 1 1. Hvad er stikpråven?... 1 1.3 Systematiske fejl ved valg af stikpråven.... 1 1.4 TilfÇldige fejl

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Differential- regning for gymnasiet og hf

Differential- regning for gymnasiet og hf Dierential- regning r gymnasiet g h Udgave t s 0 Karsten Juul HÄtet Åvelser til hätet Dierentialregning r gymnasiet g h, udgave. gér det nemt at supplere klasseundervisningen med elevers selvständige arbejde

Læs mere

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul Bogstvregning for gymnsiet og hf 010 (01) Krsten Juul Til eleven Brug lynt og viskeläder når du skriver og tegner i häftet, så du får et häfte der er egenet til jävnligt t slå op i under dit videre rejde

Læs mere

Symbolsprog og Variabelsammenhænge

Symbolsprog og Variabelsammenhænge Indledning til Symbolsprog og Variabelsammenhænge for Gymnasiet og Hf 1000 kr 500 0 0 5 10 15 timer 2005 Karsten Juul Brugsanvisning Du skal se i de fuldt optrukne rammer for at finde: Regler for løsning

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul Nogle emner fra Deskriptiv Statistik 75 50 25 2011 Karsten Juul Indhold Hvad er deskriptiv statistik?... 1 UGRUPPEREDE OBSERVATIONER Hyppigheder... 1 Det samlede antal observationer... 1 Middeltallet...

Læs mere

Differentialregning 2

Differentialregning 2 Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()

Læs mere

Integralregning. for A-niveau i stx, udgave Karsten Juul

Integralregning. for A-niveau i stx, udgave Karsten Juul Integrlregning or A-niveu i st, udgve 5 Krsten Juul Stmunktion (uestemt integrl) Hvd er en stmunktion? UndersÄg om g( er stmunktion til ( GÄr rede or t g( er stmunktion til ( En unktion hr mnge stmunktioner

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf 013 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde.... 1 LineÄr väkst. LineÄr funktion... 3. LineÄr väkst... 4. Skriv

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 :

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 : Eksemplarisk løsning af eksamensopgave Nedenstående opgaver er delprøven med hjælpemidler fra Matematik B eksamen d. 22 maj 2014 restart with Gym : Opgave 7 a) For at bestemme a og b i y=ax+b defineres

Læs mere

Differentialkvotient bare en slags hældning

Differentialkvotient bare en slags hældning Differentialkvotient bare en slags hældning Et kort eksperiment som indledning til differentialregning Forfatter: Behrndt Andersen, Texas Instruments, behrndt@ti.com Matematisk område+niveau: Differentialregning

Læs mere

Funktioner generelt. for matematik pä B-niveau i hf. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i hf. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i hf f f ( ),8 013 Karsten Juul Funktioner generelt for matematik pä B-niveau i hf 1 Funktion, forskrift, definitionsmångde 1 Find forskrift 3 StÇrste og mindste

Læs mere

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005)

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005) Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (005) Indholdsfortegnelse Indholdsfortegnelse... Stamfunktion og integralregning...3 Numerisk integration...3 Areal under

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Hvordan Leibniz opfandt integralregningen

Hvordan Leibniz opfandt integralregningen Hvord Leiiz opdt itegrlregige 0 Krste Juul EglÄdere Isc Newto (6-) opdt i 66 itegrlregige. Tskere Gottried Wilhelm Leiiz (66-6) opdt i 6 itegrlregige. Ige dem oetliggjorde deres opidelse med det smme.

Læs mere

Simple udtryk og ligninger

Simple udtryk og ligninger Simple udtryk og ligninger 009 Karsten Juul Til eleven Brug blyant og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt at slå op i under dit videre arbejde med

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

Differentialligninger med TI-Interactive!

Differentialligninger med TI-Interactive! Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Differentialregning ( 16-22)

Differentialregning ( 16-22) Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Fri vækstmodel t tid og P (t) kvantitet. dp dt = kp Løsninger P (t) = Ce kt C fastlægges ved en begyndelsesværdi. Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.

Fri vækstmodel t tid og P (t) kvantitet. dp dt = kp Løsninger P (t) = Ce kt C fastlægges ved en begyndelsesværdi. Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7. Oversigt [S] 7., 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus - 2006 Uge

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Integralregning ( 23-27)

Integralregning ( 23-27) Integralregning ( -7) -7 Side Bestem ved håndkraft samtlige stamfunktioner til hver af funktionerne a) f() =, + 7 ) f() = 7 + 7 c) f() = ep() + ln() d) f() = e ep() + Bestem ved håndkraft samtlige stamfunktioner

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

Mere om. trekantsberegning. D s u. 2012 Karsten Juul

Mere om. trekantsberegning. D s u. 2012 Karsten Juul Mere om rekansberegning D s A C v B 01 Karsen Jl Dee häfe indeholder ilfåjelser il fålgende häfer: Korfae rekansberegning for gymnasie og hf /11-010 hp://ma1.dk/korfae_rekansberegning_for_gymnasie_og_hf.pdf

Læs mere

Differential- regning

Differential- regning Differential- regning 1 del () (1) 006 Karsten Juul Indhold 1 Funktionsværdi, graf og tilvækst1 Differentialkvotient og tangent8 3 Formler for differentialkvotient16 4 Opgaver med tangent 5 Væksthastighed5

Læs mere

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011 Matematik A Studentereksamen stx113-mat/a-09122011 Fredag den 9. december 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

Betydningen af ordet differentialkvotient...2. Sekant...2

Betydningen af ordet differentialkvotient...2. Sekant...2 PeterSørensen.dk Differentiation Indold Betydningen af ordet differentialkvotient... Sekant... Differentiable funktioner...3 f (x) er grafens ældning i punktet med første-koordinaten x....3 Ikke alle grafpunkter

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

for gymnasiet og hf 2011 Karsten Juul

for gymnasiet og hf 2011 Karsten Juul for gymnasiet og hf 75 50 5 011 Karsten Juul I dette häfte er der lagt vägt på at det skal väre egnet til at slå op i når elever léser opgaver at tvivlstilfälde bliver afklaret at det er muligt på forskellige

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Indbydelse til StÄvnenavn-Sted

Indbydelse til StÄvnenavn-Sted Promotor: Tidsplan: Dansk Taekwondo Klub Sidste tilmelding: ArrangÄr: 17. september 010 Gladsaxe Taekwondo Klub Samheon Info mail sendes til de klubber der har tilmeldt deltagere, info Dato: LÅgges ogsç

Læs mere

Matematik Aflevering - Æggebæger

Matematik Aflevering - Æggebæger Matematik Aflevering - Æggebæger Lavet af Morten Kvist i samarbejde med Benjamin Afleveret d. 17/3-2006 Afleveret til Kristine Htx 3.2 Side 1 af 6 Opgave 1 Delopgave A Først har jeg de to logaritme funktioner,

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5

Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Eulers metode Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

BASE. Besvarelse til individuel skriftlig test

BASE. Besvarelse til individuel skriftlig test BASE Besvarelse til individuel skriftlig test Tirsdag d. 21. marts 2006 Tinne Hoff Kjeldsen Bitten Plesner 1 Opgave 1 Vandet i en pool med et volumen på 10.000 gallon indeholder 0,01% klor. Til tiden t

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution Uddannelse Fag og niveau Lærer(e) Hold Hansenberg Gymnasium htx Matematik A Thomas Voergaard.

Læs mere

Øvelser. Differentialregning for gymnasiet og hf Karsten Juul. til hæftet

Øvelser. Differentialregning for gymnasiet og hf Karsten Juul. til hæftet Øvelser til hæftet Differentialregning fr gymnasiet g hf f () t s f f () 00 Karsten Juul Øvelserne i dette hæfte får eleverne til at pdage hvad det er der fregår i differentialregningen Dette pnår man

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

MAT B GSK december 2008 delprøven uden hjælpemidler

MAT B GSK december 2008 delprøven uden hjælpemidler MAT B GSK december 008 delprøven uden hjælpemidler Opg Nedenstående diagram viser sumkurven F() for fordelingen af målte hastigheder højst 60 km/t. Bestem kvartilsættet (bent bilag ) og bestem hvor mange

Læs mere

Matematik B. Anders Jørgensen

Matematik B. Anders Jørgensen Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 03 Karsten Juul TEST StikprÅver.... Hvad er populationen?.... Hvad er stikpråven?....3 Systematiske fejl ved valg af stikpråven.....4 TilfÇldige fejl ved valg af stikpråven...

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere