OM DET UENDELIGT SMAA OG DET UENDELIGT STORE I MATHEMATIKKEN (FRIT EFTER GEORG BRANDES 1869)

Størrelse: px
Starte visningen fra side:

Download "OM DET UENDELIGT SMAA OG DET UENDELIGT STORE I MATHEMATIKKEN (FRIT EFTER GEORG BRANDES 1869)"

Transkript

1 OM DET UENDELIGT SMAA OG DET UENDELIGT STORE I MATHEMATIKKEN (FRIT EFTER GEORG BRANDES 869) Mogens Esrom Larsen 29. august 20 Institut for Matematiske Fag Matematisk Afdeling Københavns Universitet Allerede Euklid er betænkelig ved at tage ordet uendelig forfængeligt. Han skriver, at der er flere primtal end ethvert (endeligt) tal. Argumentet herfor er enkelt: En primfaktor i produktet af et antal primtal plus vil være et nyt primtal. Allerede Pythagoras må sande, at selv de uendeligt mange rationale tal ikke slår til. Den retvinklede ligebenede trekant med katheter af længden har et kvadrat på hypotenusen med arealet 2. Og intet rationalt tal har kvadratet 2. Da fjernsynet kom til Danmark, optrådte Svend Bundgaard på skærmen med denne oplysning. Han skrev et rationalt tal som en uforkortelig brøk, p/q, og sluttede, at hvis p 2 = 2q 2, så må p være lige og derfor q ulige, altså p = 2r, hvor r også et helt tal. Men så kan vi forkorte til 2r 2 = q 2, hvorfor q må være lige. En modstrid. Det fortælles, at dette ikke gav den ventede PR for faget. Grækerne valgte at focusere på geometriske størrelser frem for tal, men løb straks ind i problemer: En terning med rumfanget 2 forlanger jo konstruktionen af 3 2, en suspekt konstruktion. Og cirklens kvadratur, dvs konstruktionen af et kvadrat med arealet π, kommer man ikke i nærheden af. Et uendeligt fænomen inden for de rationale tal er det såkaldte Zenons paradoks. I en bevægelse mod et mål tilbagelægges først halvvejen, så halvvejen af resten osv. Strækningen deles op i uendeligt mange bidder, så man aldrig når frem! Men en fysiker vil måske sige, at med jævn hastighed bliver tiden også delt op efter samme recept, så klokken bliver aldrig hel. Altså, vi har blot bemærket formlen 2 n = = n= I det 9. århundrede tog man sig sammen til at udvide de rationale tal til de reelle tal på en måde, så disse fyldte alle hullerne mellem hine på tallinien. Enten ved at definere uendelige decimalbrøker eller ved Dedekinds snit, der definerer et reelt tal ved mængden af rationale tal, der er større. Altså en nedad begrænset ikke tom delmængde, A, af de rationale tal: Ø A Q med egenskaben, at a A : [a, [ A

2 altså, for hvert a A er halvlinien [a, [ A eller a A r Q : r > a r A altså, hvis a A og r er et rationalt tal, der er større end a, så er r A. Fx defineres 2 som 2 = {x Q x > 0 x 2 > 2} Georg Cantor gør nu den interessante iagttagelse, at med enhver af disse definitioner der er ækvivalente er der flere reelle tal end rationale! Uendelige størrelser er ikke nødvendigvis lige store. Vi definerer ligestorhed på samme måde, som vi indser, at der er lige mange fingre på vore to hænder, nemlig ved at der eksisterer en korrespondance mellem dem. Altså, A og B er lige store, hvis vi kan finde en bijektiv funktion f : A B dvs og x y A f(x) f(y) b B a A : f(a) = b Hvis vi nu har en funktion fra de naturlige tal ind i de reelle tal, altså en følge af reelle tal, og disse, r, r 2,..., r n,... skrives som decimalbrøker, Men værre endnu! Cantor indså, at det er et generelt fænomen i mængdelæren, at der er flere delmængder af en mængde, end der er elementer i den. Det gælder i det små: Den tomme mængde har én delmængde, nemlig sig selv, men ingen elementer! Og en mængde med n elementer har 2 n delmængder, og n < 2 n for alle n N. Det generelle argument er egentlig enkelt: Det er klart, at umiddelbart er der flere delmængder end elementer, husk blot på delmængderne af formen {x}. Hvis der er lige mange delmængder og elementer, må der findes en korrespondance mellem dem, altså en funktion fra mængden, A til mængden D(A) af dens delmængder, f : A D(A), så enhver delmængde bliver billede af et element i A. Men definerer vi delmængden B = {x A x / f(x)} så er spørgsmålet, om vi kan finde b A, så B = f(b). Men er b B? Hvis b B, så siger definitionen, at b / f(b) = B. Og hvis b / B = f(b), så siger definitionen jo, at b B. Dette argument blev berømt som Russel s paradoks, at mængden af alle mængder ikke giver mening. Der er heller ikke nogen største mængde. Et spøjst eksempel på et forvirrende fænomen er det uendelige kræmmerhus dannet af funktionen på intervallet [, [ ved drejning om x x-aksen. r n = r h n, r n r n2...r nm... med rn h Z og r nj {0,,..., 9}, så vil et tal s = 0, s s 2 s 3.. med egenskaben r jj s j {0,,..., 9} ikke være med i følgen. Dette kaldes Cantors diagonalargument. Vi slutter heraf, at allerede Dedekinds delmængder af Q er flere end Q selv, idet det er let at se, at Q kan udtømmes af en passende følge. (Brøkerne p q med p + q n er endeligt mange.) 2 For hvert x dannes en cirkel med radius. Kræmmerhusets rumfang bliver derfor x π x dx = π 2

3 Men overfladen bliver jo 2π x dx = Som en fysiker vil sige: Vi kan fylde det med maling, men vi kan ikke male det! Nu stødte Dedekinds definition John Conway i 970 erne ved at være i to trin, først Q, så R. Samtidig var JC optaget af at generalisere spils additive struktur fra upartiske spil til partisanspil især inspireret af formanden for The British Go Association, John Diamond. Deres iagttagelse af go spillet var, at dette spil på naturlig måde splittes op i en sum af spil ligesom de upartiske spil. Et spil kaldes upartisk, hvis de to spillere har de samme træk til rådighed. Det afgørende er altså, hvis tur det er. Et spil, der ikke er upartisk, kaldes et partisanspil. Det typiske upartiske spil er NIM, opfundet og navngivet af C. L. Bouton i 902. Det er en sum af uhyre enkle spil, nemlig bunker af tændstikker med spillereglen, at den spiller, der har tur, fjerner et antal på mindst én tændstik. Er der kun bunke, vinder han let ved at fjerne hele bunken. Men allerede ved 2 bunker, er situationen anderledes. Er de lige store, har anden spiller den vinderstrategi at kopiere første spillers træk i den urørte bunke. Er de ikke lige store, vinder første spiller ved at gøre dem lige store. Er der 3 eller flere bunker, kompliceres situationen betydeligt. Det viser sig, at alle upartiske spil er ækvivalente med NIM. Partisanspil er spil med fuld information, hvor spillerne har hver sine muligheder. Typiske eksempler er skak, dam og go, hvori spillerne opererer med hver sine brikker. Netop spillet go, der har som mål at afgrænse det største areal på spillebrættet, reduceres i slutspillet til spredte grænsefægtninger rundt om 3 på brættet. Derved opstår den naturlige sum af spil: Spilleren vælger, i hvilken konflikt han vil sætte ind og så hvordan. JC ønsker at starte fra bunden og definere spil, naturlige tal, rationale tal og reelle tal med samme opskrift. Mens Dedekind har én opskrift på de rationale tal og derefter en helt anden på de reelle tal, definerer JC spil rekursivt som følger. Der er to spillere, V (venstre) og H (højre). De har hver sine muligheder, der alle er allerede definerede spil. Svarende til en stilling på go brættet, hvor den ene spiller kan besætte et tomt felt med en sort sten, den anden et tomt felt med en hvid sten. Vi har fra starten kun et spil, som vi kan skrive {Ø Ø}, altså spillet, hvor ingen af spillerne har noget træk til rådighed. Vi betegner dette spil som 0, og forstår det som det spil, hvor den spiller, der er i trækket, har tabt. Nu kan vi definere tre nye spil: {0 Ø}, {Ø 0}, {0 0}, idet vi skriver 0 for {0}. Her er de to første partisanspil, mens det sidste er upartisk. Spillet {0 Ø} er altid vundet for V. Er det hans tur, vælger han spillet 0, der ikke giver H noget træk, så H har tabt. Er det H s tur, har han intet træk og har derfor tabt. Vi betegner dem som hhv {0 Ø} = og {Ø 0} =. Disse spil er tillige eksempler på tal. Tallene er spil, hvor alle mulighederne for begge spillerne tillige er tal, og hvor intet tal, der er til højre, er noget tal til venstre. Spillet {0 0} er derfor ikke noget tal, men et meget simpelt upartisk spil, der betegnes med * og er vundet for den spiller, der er i trækket. Bemærk, at bunken med tændstik i NIM er et eksempel på spillet *. Med denne start opbygger JC spil og blandt dem tal, der snart viser sig at omfatte alle kendte tal og en mangfoldighed af hidtil ukendte størrelser. Også i almindelighed betyder summen af flere spil, at spilleren i tur vælger et

4 af spillene at trække i og så efterlader summen af det heri valgte spil og de urørte. Som man i go vælger et hjørne af brættet at trække i. Betragt nu spillet S = {0 } + {0 } + {Ø 0} Nu kan V trække til som H trækker til som V trækker til 0 + {0 } + {Ø 0} {0 Ø} + {Ø 0} 0 + {Ø 0} som H trækker til 0, og V har tabt. Og H trækker til {0 Ø} + {0 } + {Ø 0} som V trækker til som H trækker til {0 Ø} {Ø 0} {0 Ø} som V trækker til 0 og H har tabt. Med andre ord, S = 0 og derfor er {0 } = 2 Ethvert spil, som tabes af den, der har tur, regnes for 0. Spillene har en partiel ordning defineret ved, at spil, der altid kan vindes af V, er positive. Rekursivt defineres Fx {x y} = { y x} {0 Ø} = {Ø 0} Ordningen defineres derfor som sædvanlig x > y x y > 0 Hvis hverken x y > 0 eller y x > 0, så er der to muligheder: x y = 0 og x y =. Med andre ord, at x y tabes af første spiller hhv vindes af første spiller. Vi skriver hhv x = y og x y. Fx 0. Alle NIM-bunker undtagen den tomme er 0, mens jo Ø = 0. Tallene er simpelthen de ordnede spil, og vi har set starten på de rationale med nævner en potens af 2. Fx sætter vi ω = {0,, 2,... } og finder fx ω + = {0,, 2,... 0}. JC definerer også produkt og kvotient, hvorved hans udvidede talmængde bliver et legeme. Dette indeholder explicitte infinitesimaler, fx ω = {, 2, 4,...}. Spillet = {0 } opfylder 0 < < 2 n } for alle n, den simpleste positive infinitesimal. Man regner med dem fx er {0 } = + + og { } = {0 } Et endnu mindre positivt spil er + n = {0 {0 n}} for n > 0 JC s spil omfatter tallene som den ordnede delmængde, der omfatter de sædvanlige reelle tal, men udgør et langt mere omfattende legeme, kaldet de surreelle tal, med uanede mængder af uendeligt små og uendeligt store størrelser. 4

5 Litteratur. Michael H. Albert, Richard J. Nowakowski, David Wolfe, Lessons in Play, A K Peters, Natick, 2007, 288 s. 2. Elwyn R. Berlekamp, John H. Conway, Richard K. Guy, Winning Ways for your mathematical plays (2 Vol.), Academic Press, London, 985, 850 s. 3. Jörg Bewersdorff, Luck, Logic, and White Lies, A K Peters, Natick, 2005, 486 s. 4. Charles L. Bouton, Nim a game with a complete mathematical theory, Ann. of Math. (2)3 (90 02) John H. Conway, On Numbers and Games, Academic Press, New York, 976, 238 s. 6. John H. Conway, Richard K. Guy, The Book of Numbers, Copernicus, New York, 996, 30 s. 7. John H. Conway, On Numbers And Games, A K Peters, Natick, 200, 242 s. 8. H. D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, R. Remmert, Numbers, Springer, New York, 995, 39 s. 9. Richard K. Guy, fair game, Comap Mathematical Exploration Series, Arlington, Mass, 989, 3 s. 0. Donald E Knuth, Surreal Numbers, Addison Wesley, Reading, Mass, 974,?. 5

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4 Indhold 1 Vindermængde og tabermængde 2 2 Kopier modpartens træk 4 3 Udnyt modpartens træk 5 4 Strategityveri 6 5 Løsningsskitser 7 Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende

Læs mere

Spilstrategier, Kirsten Rosenkilde, september 2007 1. Spilstrategier

Spilstrategier, Kirsten Rosenkilde, september 2007 1. Spilstrategier Spilstrategier, Kirsten Rosenkilde, september 2007 1 1 Spilstrategier Spilstrategier De spiltyper vi skal se på her, er spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at

Læs mere

Elementær Matematik. Mængder og udsagn

Elementær Matematik. Mængder og udsagn Elementær Matematik Mængder og udsagn Ole Witt-Hansen 2011 Indhold 1. Mængder...1 1.1 Intervaller...4 2. Matematisk Logik. Udsagnslogik...5 3. Åbne udsagn...9 Mængder og Udsagn 1 1. Mængder En mængde er

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Matematik, der afgør spil

Matematik, der afgør spil Artikeltype 47 Matematik, der afgør spil Sandsynlighedsregning vinder ofte. Kombinatorisk spilteori sejrer hver gang Mads Thrane Hvis du er træt af at tabe opvasketjansen i Sten Saks Papir eller Terning,

Læs mere

~ mat NYHEDSBREV FOR DANSK MATEMATISK FORENING

~ mat NYHEDSBREV FOR DANSK MATEMATISK FORENING ~ mat M A T I L D E NYHEDSBREV FOR DANSK MATEMATISK FORENING N R 4 3 A U G U S T 2 0 1 1 Formandens klumme Vagn Lundsgaard Hansen DTU Matematik V.L.Hansen@mat.dtu.dk Lad de unge talenter blomstre i forskning,

Læs mere

Kombinatoriske Spil. Noter til QGM Math Club af Tobias Kildetoft

Kombinatoriske Spil. Noter til QGM Math Club af Tobias Kildetoft Kombinatoriske Spil Noter til QGM Math Club af Tobias Kildetoft 1 Forord Disse noter er i stor grad baseret på bogen Lessons in Play af Michael H. Albert, Richard J. Nowakowski og David Wolfe (fra nu af

Læs mere

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Diskret matematik

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Diskret matematik Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2007 1 Diskret matematik Disse noter er en introduktion til skuffeprincippet, grafteori, spilstrategier samt opgaver der kan løses ved farvelægning.

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden.

Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden. Tilhørende: Robert Nielsen, 8b Geometribog Indeholdende de vigtigste og mest basale begreber i den geometriske verden. 1 Polygoner. 1.1 Generelt om polygoner. Et polygon er en figur bestående af mere end

Læs mere

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1. Diskret matematik

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1. Diskret matematik Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1 Diskret matematik Disse noter er en introduktion til skuffeprincippet, grafteori, spilstrategier samt opgaver der kan løses ved farvelægning.

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

Matematiske metoder - Opgavesæt

Matematiske metoder - Opgavesæt Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

Projekt 3.1 Pyramidestub og cirkelareal

Projekt 3.1 Pyramidestub og cirkelareal Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet

Læs mere

Invarianter. 1 Paritet. Indhold

Invarianter. 1 Paritet. Indhold Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, Indledning

UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, Indledning UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, ESBEN BISTRUP HALVORSEN 1 Indledning De fleste kan nok blive enige om, at mængden {a, b, c} er større end mængden {d} Den ene indeholder jo tre elementer,

Læs mere

Første konstruktion af Cantor mængden

Første konstruktion af Cantor mængden DYNAMIK PÅ CANTOR MÆNGDEN KLAUS THOMSEN Første konstruktion af Cantor mængden For de fleste der har hørt on Cantor-mængden, er den blevet defineret på flg måde: I = 0 I = I = 0 0 OSV Cantor mængden C er

Læs mere

Projekt 3.7. Pythagoras sætning

Projekt 3.7. Pythagoras sætning Projekt 3.7. Pythagoras sætning Flere beviser for Pythagoras sætning... Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... Opgave 1: Et kinesisk og et indisk bevis for Pythagoras sætning...

Læs mere

Projekt 6.7. Beviser for Pythagoras sætning - og konstruktion af animationer

Projekt 6.7. Beviser for Pythagoras sætning - og konstruktion af animationer Projekt 6.7. Beviser for Pythagoras sætning - og konstruktion af animationer Flere beviser for Pythagoras sætning 1 Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... 1 Opgave 1 Et

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt

Læs mere

Go, go, go Søren Wengel Mogensen

Go, go, go Søren Wengel Mogensen 4 Blokkens spil Go, go, go Søren Wengel Mogensen Du har set Russell Crowe gøre det i A Beautiful Mind. Nu skal du gøre det i Famøs. Der er selvfølgelig tale om at spille go. Go er meget kort navn for et

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt brikkerne til regning & matematik tal og algebra F+E+D preben bernitt 1 brikkerne. Tal og algebra E+D 2. udgave som E-bog ISBN: 978-87-92488-35-0 2010 by bernitt-matematik.dk Kopiering af denne bog er

Læs mere

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel.

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Gruppeteori Michael Knudsen 8. marts 2005 1 Motivation For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Eksempel 1.1. Lad Z betegne mængden af de hele tal, Z = {..., 2, 1, 0,

Læs mere

Eksempel på den aksiomatisk deduktive metode

Eksempel på den aksiomatisk deduktive metode Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13

Læs mere

Projekt Beholderkonstruktion. Matematik - A

Projekt Beholderkonstruktion. Matematik - A Projekt Beholderkonstruktion Matematik - A [Skriv et resume af dokumentet her. Resumeet er normalt en kort beskrivelse af dokumentets indhold. Skriv et resume af dokumentet her. Resumeet er normalt en

Læs mere

Archimedes Princip. Frank Nasser. 12. april 2011

Archimedes Princip. Frank Nasser. 12. april 2011 Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Facitliste til MAT X Grundbog

Facitliste til MAT X Grundbog Facitliste til MAT X Grundbog Foreløbig udgave Det er tanken der tæller A Formlen bliver l + b, når l og b er i uforkortet stand. B Ingen løsningsforslag. C Ved addition fås det samme facit. Ved multiplikation

Læs mere

Appendix 1. Nogle egenskaber ved reelle tal.

Appendix 1. Nogle egenskaber ved reelle tal. - 0 - Appendi. Nogle egenskaber ved reelle tal. Som bekendt består de reelle tal R (dvs. alle tal på tallinien) af de rationale tal Q og de irrationale tal I, dvs. R = Q I. De rationale tal Q er mængden

Læs mere

Side 1 af 8. Vejledning

Side 1 af 8. Vejledning Side 1 af 8 Vejledning Art. nr. 2079006 Pedalo - Stort spillebræt - spilsamling Læs og opbevar venligst vejledningen De efterfølgende sider indeholder spilanvisning til disse spil: Generel Information:

Læs mere

Matematik Delmål og slutmål

Matematik Delmål og slutmål Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse

Læs mere

Projekt 7.10 Uendelighed Hilberts hotel

Projekt 7.10 Uendelighed Hilberts hotel Hvad er matematik? ISBN 909 Projekter: Kapitel Projekt 0 Uendelighed Hilberts hotel Projekt 0 Uendelighed Hilberts hotel (Materialet i dette projekt er hentet fra Hvad er matematik? A, indledningen til

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru.

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru. 1.1 Introduktion: Euklids algoritme er berømt af mange årsager: Det er en af de første effektive algoritmer man kender i matematikhistorien og den er uløseligt forbundet med problemerne omkring de inkommensurable

Læs mere

Sansernes og forstandens tvivlsomme brugbarhed

Sansernes og forstandens tvivlsomme brugbarhed Sansernes og forstandens tvivlsomme brugbarhed I de syditalienske byer Kroton og Elea opstod omkring 500 f.v.t. to filosofiske retninger, som fik stor betydning for senere tænkning og forskning. Den ene

Læs mere

Der er felter, og på hvert af disse felter har tårnet træk langs linjen og træk langs rækken.

Der er felter, og på hvert af disse felter har tårnet træk langs linjen og træk langs rækken. SJOV MED SKAK OG TAL Af Rasmus Jørgensen Når man en sjælden gang kører træt i taktiske opgaver og åbningsvarianter, kan det være gavnligt at adsprede hjernen med noget andet, fx talsjov, og heldigvis byder

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Viètes formel Jens Siegstad

Viètes formel Jens Siegstad 6 Viètes formel Jens Siegstad Vi skal i denne artikel vise Viètes formel. Theorem 1 (Viètes formel) π = = a k + + hvor a n = + a n 1 for n > 1 og a 1 =. +... Ovenstående formel blev vist i 1593 af Francois

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik. Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1 1 Paritet Diskret matematik. I mange matematikopgaver er det en god ide at se på paritet dvs. hvornår en bestemt størrelse er henholdsvis lige

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Udvalgsaksiomet. Onsdag den 18. november 2009

Udvalgsaksiomet. Onsdag den 18. november 2009 Udvalgsaksiomet Onsdag den 18. november 2009 Eksempler Fourier udvikling af f(x)=x 4 3 5 10 2 1 1 2 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 1 2 3 4

Læs mere

tal og algebra F+E+D brikkerne til regning & matematik preben bernitt

tal og algebra F+E+D brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik tal og algebra F+E+D preben bernitt brikkerne til regning & matematik tal og algebra E+D ISBN: 978-87-92488-35-0 2. udgave som E-bog 2012 by bernitt-matematik.dk Denne

Læs mere

Skak-regler. Inhold Förmål med spillet Forberedelset Flytning av brikkerne. Flyttning af hver enkel brik

Skak-regler. Inhold Förmål med spillet Forberedelset Flytning av brikkerne. Flyttning af hver enkel brik 1 / 5 29.7.2008 10:54 Skak regler Inhold Förmål med spillet Forberedelset Flytning av brikkerne Flyttning af hver enkel brik - Kongen - Dronningen - Tårnet - Løberen - Springeren - Bonden Spillet Skakmat

Læs mere

Årsplan i matematik klasse

Årsplan i matematik klasse 32-36 Brøker og Én brøk - forskellige betydninger en helhed ved hjælp af brøker. en helhed ved hjælp af brøker. Eleven kan bruge brøker til at beskrive forholdet mellem to størrelser. Eleven kan argumentere

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Kædebrøker. b 0 f.eks. 3 b 0 + a 1. f.eks. 3 + 1 b 1 7. a 1. b 1 + a f.eks. 3 + 1 7 + 1. f.eks. 3 + b 1 + a 2 7 + Notation: a 2 b 2 + an.

Kædebrøker. b 0 f.eks. 3 b 0 + a 1. f.eks. 3 + 1 b 1 7. a 1. b 1 + a f.eks. 3 + 1 7 + 1. f.eks. 3 + b 1 + a 2 7 + Notation: a 2 b 2 + an. Kædebrøker Naturvidenskabsfestivalen 2006 foredrag på Herning htx, 26. september Flemming Topsøe Institut for Matematiske Fag, Københavns Universitet b 0 f.eks. 3 b 0 + a 1 f.eks. 3

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

Færdigheds- og vidensområder

Færdigheds- og vidensområder Klasse: Mars 6./7. Skoleår: 16/17 Eleverne arbejder med bogsystemet format, hhv. 6. og 7. klasse. Da der er et stort spring i emnerne i mellem disse trin er årsplanen udformet ud fra Format 7, hvortil

Læs mere

Her følger en række opmærksomhedsfelter i relation til undervisningens form og elevens læring:

Her følger en række opmærksomhedsfelter i relation til undervisningens form og elevens læring: BRØK 1 Vejledning Udvidelsen af talområdet til også at omfatte brøker er en kvalitativt anderledes udvidelse end at lære om stadigt større tal. Det handler ikke længere bare om nye tal af samme type, som

Læs mere

Excel regneark. I dette kapitel skal I arbejde med noget af det, Excel regneark kan bruges til. INTRO EXCEL REGNEARK

Excel regneark. I dette kapitel skal I arbejde med noget af det, Excel regneark kan bruges til. INTRO EXCEL REGNEARK Excel regneark Et regneark er et computerprogram, der bl.a. kan regne, tegne grafer og lave diagrammer. Regnearket kan bruges i mange forskellige sammenhænge, når I arbejder med matematik. Det kan gøre

Læs mere

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden.

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden. Opgave Heltalligt Bestem alle hele tal, n >, for hvilke n + n er et helt tal. Opgave Trekantet I en spidsvinklet trekant ABC skærer vinkelhalveringslinien fra A siden BC i punktet L og den omskrevne cirkel

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Parameterkurver. Et eksempel på en rapport

Parameterkurver. Et eksempel på en rapport x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden

Læs mere

POWER GRID SPILLEREGLER

POWER GRID SPILLEREGLER POWER GRID SPILLEREGLER FORMÅL Hver spiller repræsenterer et energiselskab som leverer elektricitet til et antal byer. I løbet af spillet køber hver spiller et antal kraftværker i konkurrence med andre

Læs mere

83 - Karakterisation af intervaller

83 - Karakterisation af intervaller 83 - Karakterisation af intervaller I denne opgave skal du bevise, at hvis A er en delmængde af R med følgende egenskab: x, y, z R : x, y A og x < z < y z A (1) så er A enten et interval eller en mængde

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Elementær Matematik. Tal og Algebra

Elementær Matematik. Tal og Algebra Elementær Matematik Tal og Algebra Ole Witt-Hansen 0 Indhold Indhold.... De naturlige tal.... Regneregler for naturlige tal.... Kvadratsætningerne..... Regningsarternes hierarki...4. Primtal...4 4. Nul

Læs mere

Brug og Misbrug af logiske tegn

Brug og Misbrug af logiske tegn Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polynomier, Kirsten Rosenkilde, Marts 2006 1 Polynomier Disse noter giver en kort introduktion til polynomier, og de fleste sætninger nævnes uden bevis. Undervejs er der forholdsvis nemme opgaver,

Læs mere

Usædvanlige opgaver Lærervejledning

Usædvanlige opgaver Lærervejledning Mette Hjelmborg Usædvanlige opgaver Lærervejledning Gyldendal Usædvanlige opgaver, lærervejledning af Mette Hjelmborg 008 Gyldendalske boghandel, Nordisk Forlag A/S, København Forlagsredaktion: Stine Kock,

Læs mere

Tallet π er irrationalt Jens Siegstad

Tallet π er irrationalt Jens Siegstad 32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at

Læs mere

Konstruktion af de reelle tal

Konstruktion af de reelle tal Konstruktion af de reelle tal Rasmus Villemoes 17. oktober 2005 Indledning De fleste tager eksistensen af de reelle tal R for givet. I Matematisk Analyse-bogen Funktioner af en og flere variable af Ebbe

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Projekt 7.9 Euklids algoritme, primtal og primiske tal

Projekt 7.9 Euklids algoritme, primtal og primiske tal Projekter: Kapitel 7 Projekt 79 Euklids algoritme, primtal og primiske tal Projekt 79 Euklids algoritme, primtal og primiske tal Projektet giver et kig ind i metodee i modee talteori Det kan udbygges med

Læs mere

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger.

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger. Matematik for malere praktikopgaver 3 Tilhører: Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger 2 Indhold: Tegneopgave... side 4 Ligninger... side 8 Areal...

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Assyrien. Planeterne. Astronomi

Assyrien. Planeterne. Astronomi Assyrien I begyndelsen var iagttagelsen. De ældste overleverede matematiske tekster er assyriske fra et par tusind år før vor tidsregning. I de samtidige kulturer i Ægypten og Kina benyttede man brændbare

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10 Bernoullis differentialligning v/ Bjørn Grøn Side af 0 Bernoullis differentialligning Den logistise differentialligning er et esempel på en ie-lineær differentialligning Den logistise differentialligning

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Dette undervisningsforløb har jeg lavet til et forløb på UCC Nordsjælland for særligt interesserede elever i 8. klasse. Alt, der står med rødt, er henvendt

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Undervisningsoplæg med henblik på udvikling af ræsonnementskompetence i folkeskolens matematikundervisning

Undervisningsoplæg med henblik på udvikling af ræsonnementskompetence i folkeskolens matematikundervisning Undervisningsoplæg med henblik på udvikling af ræsonnementskompetence i folkeskolens matematikundervisning Fredericia 27-10-2010 Flemming Ejdrup Lars Lindhart Anette Skipper-Jørgensen Kompetence At besidde

Læs mere

Matematik for lærerstuderende klasse Geometri

Matematik for lærerstuderende klasse Geometri Matematik for lærerstuderende 4.-10. klasse Geometri Klassisk geometri (kapitel 6) Deduktiv tankegang Ræsonnementskompetence Mål med kapitlet: Erkender Thales sætning som fundament for afstandsberegning.

Læs mere

Invarianter og kombinatoriske beviser

Invarianter og kombinatoriske beviser Invarianter og kombinatoriske beviser Anders Nedergaard Jensen Institut for Matematik, Aarhus Universitet Matematiklærerdag, Aarhus, 24. Marts 2017 En invariant er en værdi/udsagn der forbliver konstant

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere