FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

Størrelse: px
Starte visningen fra side:

Download "FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder"

Transkript

1 FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder

2 Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse Hulspejl ed relekterede etall Spredelses overlade vrkede so hulspejl Besteelse a brydgsdeks or spredelses glas Strålegag ed relekso ra dersde a salelse Besteelse a brydgsdeks or salelses glas Astroosk kkkert Polarsato Teoretsk orberedelse a) b) c)... 4 Dskusso a ejl og uskkerheder Salelser Spredelse Hulspejl ed relekterede etall Spredelses overlade vrkede so hulspejl Besteelse a brydgsdeks or spredelses glas Strålegag ed relekso ra dersde a salelse Besteelse a brydgsdeks or salelses glas Astroosk kkkert Polarsato Kokluso

3 Forål Forål Forålet ed de ølgede øvelser er at gve et dblk de geoetrske optk. Heruder begreber og dverse kopoeter. V vl øvelsere etervse abldgsorele or salelser og hulspejl, berege deres brædvdder, krugsrader og brydgsdeks. Desude vl v bruge og etervse suorle, or saesatte lsesysteer, ved optske ålger a brædvdder. Sdst vl v udersøge lys polarsato og lys bølgeatur. Målet øvelsere er at vse de age ulgheder der lgger optk, orbdelse ed struettekolog, så so brller, kkkerter, kroskoper og kaeraer

4 Eleeter Måleresultater. Salelser +0 c lse: Der oretages 3 ålger ed e +0 c lse. s sættes tl 3 orskellge værder og s ærke åles, or dereter at berege brædvdde. Tl alle 3 åles størrelse a gestade og blledet, or at berege orstørrelse. s s' Noel Forskel Gestad Bllede Forstørrelse ra Forstørrelse s og s'. Målg 9,00 0,00 9,74 0,00 0,6,40,70,3 -,05. Målg,00 7,70 9,8 0,00 0,9,40,0 0,88-0,80 3. Målg 5,00 6,0 9,83 0,00 0,7,40,60 0,67-0,65 Geest 9,79 0,00 0, +5 c lse: Der oretages 3 ålger ed e +5 c lse. s sættes tl 3 orskellge værder og s ærke åles, or dereter at berege brædvdde. s s' Noel Forskel. Målg 9,00 6,30 4,73 5,00 0,7. Målg,00 5,90 4,65 5,00 0,35 3. Målg 5,00 5,60 4,58 5,00 0,4 Geest 4,65 5,00 0, c lse: s er gvet på orhåd tl at være 60 c, og derudra åles s og brædvdde bereges. s s' Noel Forskel 60,00 54,00 8,4 30,00,58-4 -

5 Eleeter +0 c og +30 c lse: Der oretages 3 ålger ed e +0 og e +30 c lse saesat. s sættes tl 3 orskellge værder og s ærke åles, or dereter at berege brædvdde. De oelle bereges vha. suorle. s s' syste,ålg Forskel syste,ålg Noel Noel orskel. Målg 0,00 9,0 7,45 7,8 0,7 7,50 0,05. Målg 0,00,50 7,69 7,8 0,4 7,50 0,9 3 Målg 30,00 0,50 7,78 7,8 0,49 7,50 0,8 Geest 7,64 7,8 0,36 7,50 0,4. Spredelse -0 c og +0 c lse: s sættes tl 3 orskellge værder og s alæses, or dereter at berege brædvdde. Da der kke ka oretages ålger på e -0 lse, sættes dee sae ed e +0 lse, og brædvdde bereges. Suorle bruges tl at berege spredelses brædvdde. s s' Noel Forskel Spredelse. Målg 30,00 43,00 7,67 0,00,33,97. Målg 40,00 3,70 7,99 0,00,0,50 3. Målg 50,00 8,70 8,3 0,00,77,6 Geest 7,97 0,00,03,54.3 Hulspejl ed relekterede etall -6 c hulspejl: ålger oretages på et -6 c hulspejl, hvoreter brædvdde bereges. s s' Noel Forskel. Målg 50,00 4,00 6, 6,00 0,.Målg 40,00 7,00 6, 6,00 0, Geest 6,7 6,00 0,7 Sde 5 a

6 Eleeter.4 Spredelses overlade vrkede so hulspejl -0 c lse so hulspejl: ålger oretages ed begge sder a e spredelse ugerede so et hulspejl, hereter bereges brædvdde, og krugsraduse bestees or begge sder. s s' Noel Forskel Krugsradus Sde :. Målg 30,00 4,70 9,87 0,00 0,3 9,73. Målg 35,00 5,0 0,55 0,00 0,55,0 Geest 0, 0,00 0, 0,4 Sde : 3. Målg 30,00 5,0 0,04 0,00 0,04 0,09 4. Målg 35,00 3,90 9,95 0,00 0,05 9,90 Geest 0,00 0,00 0,00 9,99.5 Besteelse a brydgsdeks or spredelses glas Tl beregg avedes geesttet a begge sders krugsradus or spredelse ast.4, og geesttet a brædvdde ra ast.. V bruger brlleageres orel. ( ) ( + ),54 + r r + r r ( + ) 0,4 9,99,47 Sde 6 a

7 Eleeter.6 Strålegag ed relekso ra dersde a salelse +30 c lse so hulspejl: ålger oretages or hver sde a lse, hvoreter brædvdde or systeet bereges og lses krugsrader bestees. Dereter bereges brædvdde or lse so et hulspejl. s s' Sde syste. Målg 0,00 0,50 6,89. Målg 30,00 8,60 6,68 Geest 6,78 Sde 3. Målg 0,00 0,80 7,0 4Målg 30,00 8,80 6,80 Geest 6,9 Brædvdde or lse so hulspejl bereges ud ra de geestlge brædvdde or systeet og de geestlge brædvdde or salelse ra ast., vha. a suorle. Systeet er saesæt a to salelser og et hulspejl, betragtet so tætsddede. Sde : syste hulspejl hulspejl, salelse syste 6,78 + salelse 8,4 hulspejl,97c Sde : hulspejl, 3, 45c r 6,9 8,4 r,97 5,94c 3,45 6,90c Sde 7 a

8 Eleeter.7 Besteelse a brydgsdeks or salelses glas Tl beregg avedes geesttet a begge sders krugsradus or salelse ast.6, og geesttet a brædvdde ra ast.. V bruger brlleageres orel. ( ) ( + ) 8,4 r + r r r + ( + ) 5,94 6,90,46.8 Astroosk kkkert Ved ed et CCD kaera at åle de sylge lægde på e leal placeret på det odsatte sde a kkkerte ka orstørrelse bereges vha. lægde ålt ude kkkert. Objektvet er kostat e +30 c lse. Der prøves ed lere okular lser. Lægde ude kkkert: 8,7 4,6 68, c Lægder ed kkkert: Lse Sylge pukter Øvre Nedre Lægde Forstørrelse Teoretsk orstørrelse Avgelse +5 4,4 3,5 9, 9 6,9 6 0, ,0 3,8 0, 3,4 3 0,4 Sde 8 a

9 Eleeter -0 73,5 30,8 4,7,6,5 0,.9 Polarsato E laser sættes tl at rae e glasplade gee e polarsator, so er justeret tl at p- polarseret lyset, hvoreter stråle raer e ur. Glasplade drejes u dtl laserstråle kke ses på ure. Astade A og B åles. Hereter bereges Brewster-vkle v. A 8,9 c. B 7,4 c. v ta 7,4 9, ,97 Sde 9 a

10 Eleeter 3 Teoretsk orberedelse 3. a) So det ka ses på blledet vl der kke ske oget ed s og s ved askærg, da abøjge a blledet gee lse opylder regle, daldsvkel lg udaldsvkel. Deror ædres oreterge a blledet sat brædvdde kke. Derod vl der træge dre lys gee lse, og abldge vl blve ere kocetreret, e svagere. Sde 0 a

11 Eleeter 3. b) Et objekt betragtes ude kkkert og syslje tl yderpuktere daer ed plalje e vkel a, hvs objektet bageter betragtes gee e kkkert, vl e syslje tl yderpuktere dae e y vkel B. Overører v dette tl de to lser e kkkert år v e spel saehæg elle a og B. ta ta ta ta h ( β ) ta( α ) ( β ) ta( α ) ( β ) ( α ) Ved så vkler er h ta( v ) v deror ka v sge at Sde a

12 Eleeter α F β 3.3 c) Brewstervkle or overgage elle to ateraler ed brydgsdeks på heholdsvs,5 og. ta ( φ) φ ta,5 33,69 Ved at beytte Sell s lov ed e vkel på 4º ka v etervse at der er total dre relekso år vkle Φ er højere e 4º. sφ sφ,5s sφ φ s sφ sφ ( 4) () 90 Sde a

13 Eleeter 4 Dskusso a ejl og uskkerheder Når v kgge på vores åleresultater, ses det tydelgt at der er e avgelse, so kke er kostat og so varerer størrelse ra ålg tl ålg. Dette ka skyldes age tg, e e a grudee, og e eget væsetlg, er de åde so ålgere oretages på. Ved ålg a astade, skal v stlle skarpt på blledet a de projekterede gestad. Me skarpstllg a blledet, ka varerer eget alt eter hvlke perso der stller skarpt. Lagt ra alle eesker har perekt sy og de orskel der er ra blledet tl blledet blver opattet vores øje ka varerer, alt eter hvor stor styrke a har på se øje. Også brller ka splle d her, da optkere ote laver brller so er e sugle skarpere, større styrke, e ålgere a øjet. Ved ålger a saesatte lsesysteer, reger v ed at lsere er så tæt sae so ulgt, e realtete sad de ca. c. ra hade, hvlket gver e systeatsk ejl ved ålgere a et sådat syste. 4. Salelser +0 c lse: Mddelværde a brædvdde, : 9,79 Stadartavgelse a e ålg, : ( x ) 0,047 Stadartavgelse, : 0,07 Ved orstørrelsesdele ses det at der er e kostat avgelse på 0,08 ved de to ørste og e på 0,0 ved de sdste. Her kue a godt kokludere a der er e systeatsk ejl, e på grud a de begræsede atal ålger, vlle dette kke være klogt, da der er lere aktorer der spller d. Sde 3 a

14 Eleeter +5 c lse: Mddelværde a brædvdde, : 4,65 Stadartavgelse a e ålg, : ( x ) 0,075 Stadartavgelse, : 0, c lse: Det ses ud ra resultatet at det kke er helt præcst, e dog e god tlærelse tl det rgtge resultat. Avgelse ka have lere årsager, e skarpstllge ka have e væsetlg dlydelse. +0 c og +30 c lse: Mddelværde a brædvdde or systeet, : 7,64 Stadartavgelse a e ålg, : ( x ) 0,7 Stadartavgelse, : 0,098 Sde 4 a

15 Eleeter 4. Spredelse -0 c og +0 c lse: Mddelværde a brædvdde or systeet, : 7,97 Stadartavgelse a e ålg, : ( x ) 0,8 Stadartavgelse, : 0,6 Mddelværde a brædvdde or spredelse, :,54 Stadartavgelse a e ålg, : ( x ) 0,407 Stadartavgelse, : 0,35 Sde 5 a

16 Eleeter 4.3 Hulspejl ed relekterede etall Mddelværde a brædvdde, : 6,7 Stadartavgelse a e ålg, : ( x ) 0,07 Stadartavgelse, : 0, Spredelses overlade vrkede so hulspejl Mddelværde a brædvdde,, sde : 0, Stadartavgelse a e ålg, : ( x ) 0,48 Stadartavgelse, : 0,34 Mddelværde a brædvdde,, sde : 0,00 Stadartavgelse a e ålg, : Sde 6 a

17 Eleeter ( x ) 0,064 Stadartavgelse, : 0,045 Mddelværde a krugsraduse, r, sde : 0,4 Stadartavgelse a e ålg, : ( x ) 0,969 Stadartavgelse, : 0,685 Mddelværde a krugsraduse, r, sde : 9,99 Stadartavgelse a e ålg, : ( x ) 0,35 Stadartavgelse, : 0,095 Sde 7 a

18 Eleeter 4.5 Besteelse a brydgsdeks or spredelses glas V ved kke ed skkerhed hvad de orskellge lser er lavet a, e a vores resultat ka v koe ed et kvalceret gæt. Vores resultat tyder på at lseateralet er glas eller et lgede aterale, da brydgsdekset or glas er,5. Dog er resultatet kke præcst, so ge skyldes åleuskkerheder, skarpstllg.eks Strålegag ed relekso ra dersde a salelse Mddelværde a brædvdde,, sde : 6,78 Stadartavgelse a e ålg, : ( x ) 0,49 Stadartavgelse, : 0,05 Mddelværde a brædvdde,, sde : 6,9 Stadartavgelse a e ålg, : ( x ) 0,49 Stadartavgelse, : 0,05 Sde 8 a

19 Eleeter Mddelværde a krugsraduse, r, sde : 3,57 Stadartavgelse a e ålg, : ( x ) 0,83 Stadartavgelse, : 0,00 Mddelværde a krugsraduse, r, sde : 3,8 Stadartavgelse a e ålg, : ( x ) 0,97 Stadartavgelse, : 0,0 4.7 Besteelse a brydgsdeks or salelses glas V vl ge gå udra at lse er lavet a glas og der ed se at resultatet kke helt lever op tl det orvetede,5, e er dog pæ på vej. Ige er der et utal a tg der ka have dlydelse på resultatet. Bl.a. er det geestsværdere der er brugt tl at berege, hvlket vl sge at orholdet elle de to rader kke er de sae so hvs det var værder der var taget ra sae ålg. Sde 9 a

20 Eleeter 4.8 Astroosk kkkert Ma ka se på skeaet ast.8, at avgelse atager ed orstørrelse. Dette skyldes at hvs der er e llle systeatsk ejl og uskkerhed, blver dee også orstørret, jo højere orstørrelse a laver på de Astrooske kkkert. 4.9 Polarsato De teoretske brewstervkel lgger dee stuato på 56,3. De ålte var 5,97, dette gver e avgelse på 4,34. Avgelse skyldes sær åleuskkerhed på opstllge, og taget de betragtg, er e avgelse på 4,34 acceptabel. Sde 0 a

21 Eleeter 5 Kokluso Ma ka ude tvvl se at der e god overessteelse elle det teoretske, og de praktsk udørte ekspereter. Avgelsere lægger alle eksperetere ærhede a det teoretske grudlag, og gver et overbevsede dtryk a hvorda optk ka beskrves teore. Der er klart age ulgheder ed apulato a gestade/blleder sat lys, ved brug a optk. Øvelsere har gvet orståelse or teore og prakssse, bag de gægse brug a optk hverdage. Nav: Dato: Jacob Chrstase Nav: Dato: Morte Olese Nav: Dato: Adreas Lyder Sde a

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Kvalitet af indsendte måledata

Kvalitet af indsendte måledata Notat ELT2004-112 Aktørafregg Dato: 23. aprl 2004 Sagsr.: 5584 Dok.r.: 185972 v1 Referece: NIF/AFJ Kvaltet af dsedte måledata I Damark er det etvrksomhederes opgave at måle slutforbrug, produkto og udvekslg

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005 Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle

Læs mere

Induktionsbevis og sum af række side 1/7

Induktionsbevis og sum af række side 1/7 Iduktosbevs og sum af række sde /7 Skrver ma,,,...,,..., =, 2, 3,... 2 3 taler ma om e talfølge, eller blot e følge. Adre eksempler på følger er, -,, -,, -,..., (-) +,..., =, 2, 3,..., 2, 3, 4,...,,...,

Læs mere

FACITLISTE TIL KOMPLEKSE TAL

FACITLISTE TIL KOMPLEKSE TAL FACITLISTE TIL KOMPLEKSE TAL Kaptel Opgave Opgave Opgave Det emmeste check af lgge er at opløfte begge sder tl. potes. Bombells metode gver følgede lgger: a a b = 5 ( ) b a b = 09 = 7. Løs dem med et CAS

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epdemolog og bostatstk. Uge, trsdag. Erk Parer, Isttut for Bostatstk. Geerelt om statstk Dataaalyse - Deskrptv statstk - Statstsk feres Sammelgg af to grupper med kotuerte data - Geemst og spredg - Parametre

Læs mere

Transmissionsteknik \ Automatisering \ Systemintegration \ Service. Håndbog. Fremstilling af specialkabler Kabler til synkrone servomotorer

Transmissionsteknik \ Automatisering \ Systemintegration \ Service. Håndbog. Fremstilling af specialkabler Kabler til synkrone servomotorer Trasmssostekk \ Automatserg \ Systemtegrato \ Servce Hådbog Fremstllg a specalkabler Kabler tl sykroe servomotorer Udgave 12/2011 19301693 / DA SEW-EURODRIVE Drvg the world Idholdsortegelse 1 Crmpværktøj...

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Statistisk analyse. Vurdering af usikkerhed i forbindelse med statistiske opgørelser forudsætter:

Statistisk analyse. Vurdering af usikkerhed i forbindelse med statistiske opgørelser forudsætter: Statstsk aalyse Vurderg af uskkerhed forbdelse med statstske opgørelser forudsætter: Kvattatve mål for varato og spredg forbdelse med statstske opgørelser varas og stadardafvgelse Kvattatve mål for tlfældgheder

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

Figur 3: Illustration af hvordan en børsteløs DC-motor kan betragtes rent magnetisk.

Figur 3: Illustration af hvordan en børsteløs DC-motor kan betragtes rent magnetisk. Opstlnng af oel for en børsteløs D-otor Danel R. Peersen & Jesper. Larsen 4. aprl 2003 I ette arbejsbla vl er blve opstllet en oel af en børsteløs D otor (LDM). Moellen er opstllet e et forål at kunne

Læs mere

Pearsons formel for χ 2 test. Den teoretiske forklaring

Pearsons formel for χ 2 test. Den teoretiske forklaring Pearsos formel for χ test De teoretse forlarg Ole Wtt-Hase 04 Idhold. Normalfordelge og χ.... Pearsos formel for χ test... 3. Forlarg på Pearsos formel....4 Pearsos formel for χ test. Normalfordelge og

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Elementær Matematik. Sandsynlighedsregning

Elementær Matematik. Sandsynlighedsregning lemetær Matematk Sadsylghedsregg Ole Wtt-Hase Køge Gymasum 008 INDHOLD KAP. KOMBINATORIK.... MULTIPLIKATIONS- OG ADDTIONSPRINCIPPT.... PRMUTATIONR... 3. KOMBINATIONR...3 KAP. NDLIGT SANDSYNLIGHDSFLT...7.

Læs mere

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj)

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj) Betækg om kommueres udgftsbehov Blag (med metodedskusso af professor Aders Mlhøj) Betækg r. 36 Oktober 998 Kommueres Udgftsbehov Betækg om kommueres udgftsbehov - Redegørelse fra arbejdsgruppe uder Idergsmsterets

Læs mere

TEORETISKE MÅL FOR EMNET:

TEORETISKE MÅL FOR EMNET: TEORETISKE MÅL FOR EMNET: Kende begreberne ampltude, frekvens og bølgelængde samt vde, hvad begreberne betyder Kende (og kende forskel på) tværbølger og længdebølger Kende lysets fart Kende lysets bølgeegenskaber

Læs mere

BEVISER TIL KAPITEL 7

BEVISER TIL KAPITEL 7 BEVISER TIL KAPITEL 7 A. Komplemetærhædelse Det er klart, at e hædelse A og de komplemetære hædelse A udgør hele udfaldsrummet U, dvs. A A = Da fås P(U = U P(A A = P (A + P(A = da de to hædelser er dsjukte

Læs mere

Forberedelse til den obligatoriske selvvalgte opgave

Forberedelse til den obligatoriske selvvalgte opgave MnFremtd tl OSO 10. klasse Forberedelse tl den oblgatorske selvvalgte opgave Emnet for dn oblgatorske selvvalgte opgave (OSO) skal tage udgangspunkt dn uddannelsesplan og dt valg af ungdomsuddannelse.

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005 Dages program Økoometr De multple regressosmodel. september 005 Emet for dee forelæsg er de multple regressosmodel (Wooldrdge kap 3.-3.3+appedx E.-E.) Defto og motvato Fortolkg af parametree de multple

Læs mere

Kombinatorik. 1 Kombinationer. Indhold

Kombinatorik. 1 Kombinationer. Indhold Kombator, marts 04, Krste Roselde Georg Mohr-Kourrece Kombator Kombator går ud på at tælle atallet af ombatoer af et eller adet, og for at ue tælle atallet af ombatoer smart har ma brug for forsellge tællestrateger

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

AALBORG UNIVERSITET 2001

AALBORG UNIVERSITET 2001 AALBORG UNIVERSITET 001 P-1 PROJEKT GRUPPE B 16 STORGRUPPE 01 DEN TEKNISK - NATURVIDENSKABELIGE BASISUDDANNELSE P1 projekt Aalborg Unverstet 001 Gruppe B16 AALBORG UNIVERSITET Den Teknsk-naturvdenskabelge

Læs mere

IKKE-KONTINUERTE (DISKRETE) STOKASTISKE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRISK, BINOMIAL, POISSON

IKKE-KONTINUERTE (DISKRETE) STOKASTISKE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRISK, BINOMIAL, POISSON IE-ONTINUERTE (DISRETE) STOASTISE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRIS, BINOMIAL, POISSON Edelgt sadsylghedsfelt V reeterer: Et sadsylghedsfelt ( P ) U, kaldes edelgt, hvs

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 260912 Brevd. 1957603 Ref. LAOL Dr. tlf. 4631 3152 lasseo@rosklde.dk NOTAT: Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2013 19. august

Læs mere

Note til Spilteori Mikro 2. år 2. semester Erik Bennike. Note til Spilteori

Note til Spilteori Mikro 2. år 2. semester Erik Bennike. Note til Spilteori Note tl Splteor Mkro. år. semester Erk Beke Note tl Splteor Gos s. - Splteor eskæftger sg med sttoer hvor der er strtegsk fhægghed geter mellem. Nytte for de ekelte get fhæger således kke lee f ege hdlger

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 271218 Brevd. 2118731 Ref. KASH Dr. tlf. 4631 3066 katrnesh@rosklde.dk NOTAT:Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2014 17. august

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Kogebog: 5. Beregn F d

Kogebog: 5. Beregn F d tattk 8. gag KONFIDENINERVALLER Kofdetervaller: kaptel Valg og tet af fordelgfukto tattk 8. gag. KONFIDEN INERVALLER Et kofde terval udtrykker tervallet hvor de rgtge værd af parametere K, med γ % adylghed

Læs mere

Indeks over udviklingen i biltrafikken i Danmark

Indeks over udviklingen i biltrafikken i Danmark Ideks over udvklge bltrafkke Damark Afdelgsgeør Alla Crstese, Vejdrektoratet, og cvlgeør, p.d. Crsta Overgård ase, TetraPla A/S. Baggrud og formål. Baggrud Vejdrektoratet ar sde 978 regelmæssgt udgvet

Læs mere

Fra små sjove opgaver til åbne opgaver med stor dybde

Fra små sjove opgaver til åbne opgaver med stor dybde Fra små sjove opgaver tl åbne opgaver med stor dybde Vladmr Georgev 1 Introdukton Den største overraskelse for gruppen af opgavestllere ved "Galle" holdkonkurrenen 009 var en problemstllng, der tl at begynde

Læs mere

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS y = cy ( c 0 ) Pla for IV geemgag Økoometr Istrumetvarabelestmato 6. ovember 004 F9: Hvad er IV estmato: Bvarat model, et strumet: Kap.5. + afst -4 ote. F0: IV estmato det multple tlfælde (eksakt detfceret):

Læs mere

SERVICE BLUEPRINTS KY selvbetjening 2013

SERVICE BLUEPRINTS KY selvbetjening 2013 SERVICE BLUEPRINTS KY selvbetjenng 2013 EFTER Desgn by Research BRUGERREJSE Ada / KONTANTHJÆLP Navn: Ada Alder: 35 år Uddannelse: cand. mag Matchgruppe: 1 Ada er opvokset Danmark med bosnske forældre.

Læs mere

Samarbejdet mellem jobcentre og a-kasser inden for FTFområdet

Samarbejdet mellem jobcentre og a-kasser inden for FTFområdet BEU - 14.9.2009 - Dagsordenspunkt: 3 09-0855 - JEFR - Blag: 3 Samarbejdet mellem jobcentre og a-kasser nden for FTFområdet Det ndstlles: At BEU tlslutter sg, at KL/FTF-aftalen søges poltsk forankret gennem

Læs mere

Guitarskole. Komplet guitarskole i tre dele. 1. og 2. del. 3. del. Forfattet og tilegnet sine elever af. Matteo Carcassi. Op. 59

Guitarskole. Komplet guitarskole i tre dele. 1. og 2. del. 3. del. Forfattet og tilegnet sine elever af. Matteo Carcassi. Op. 59 Gutarskole Koplet gutarskole tre dele 1. og 2. del Indeholder grundbegreber, beskrvelse af nstruentet, nødvendge eksepler og øvelser en rækkefølge, der letter anvendelsen. 3. del 50 progressve stykker,

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Kædning og sæsonkorrektion af det kvartalsvise nationalregnskab

Kædning og sæsonkorrektion af det kvartalsvise nationalregnskab Danmarks Sask Naonalregnskab 9. november 00 ædnng og sæsonkorrekon af de kvaralsvse naonalregnskab Med den revderede opgørelse af de kvaralsvse naonalregnskab 3. kvaral 007 6. januar 008 blev meoden l

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen Bilag 5: DEA-odelle Bilaget ideholder e teis besrivelse af DEA-odelle FRSYNINGSSERETARIATET FEBRUAR 2013 INDLEDNING... 3 INPUTSTYRET DEA-MDEL... 3 UTPUTSTYRET DEA-MDEL... 7 SALAAFAST... 12 2 Idledig Data

Læs mere

2. Sandsynlighedsregning

2. Sandsynlighedsregning 2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har

Læs mere

Binomialfordelingen. Erik Vestergaard

Binomialfordelingen. Erik Vestergaard Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 9

Kvantitative metoder 2 Forår 2007 Ugeseddel 9 Kvanttatve metoder 2 Forår 2007 Ugeseddel 9 Program for øvelserne: Introdukton af problemstllng og datasæt Gruppearbejde SAS øvelser Paneldata for tlbagetræknngsalder Ugesedlen analyserer et datasæt med

Læs mere

Note til Generel Ligevægt

Note til Generel Ligevægt Mkro. år. semester Note tl Generel Lgevægt Varan kap. 9 Generel lgevægt bytteøkonom Modsat partel lgevægt betragter v nu hele økonomen på én gang; v betragter kke længere nogle prser for gvet etc. Den

Læs mere

Inertimoment for arealer

Inertimoment for arealer 13-08-006 Søren Rs nertmoment nertmoment for arealer Generelt Defntonen på nertmoment kan beskrves som Hvor trægt det er at få et legeme tl at rotere eller Hvor stort et moment der skal tlføres et legeme

Læs mere

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal

Læs mere

KENDETEGN FOTKEEVENTYRETS. i faøíii"n. riwalisøring. Içannibalismz. a9ergãrg ffe barn til volçsøn. for ryllølsø. åøt bernløse ægtepãx.

KENDETEGN FOTKEEVENTYRETS. i faøíiin. riwalisøring. Içannibalismz. a9ergãrg ffe barn til volçsøn. for ryllølsø. åøt bernløse ægtepãx. FOTKEEVENTYRETS KENDETEGN Når du læser et folkeeventyr, er der nogle kendetegn sonì dubør være ekstra opmærksom på. Der er nogle helt faste mønstre og handlnger, som gør, at du kan genkende et folkeeventyr.

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Ds ese Uestet Sde sde Stlg pøe pøe, /, / og 3/, Kusus ys Kusus. //4 Vghed: 4 te lle hjælpedle: Ige hjælpedle "Vægtg": Beselse bedøes so e helhed. Alle s sl begudes ed de det e get. Alle elleegge sl eges.

Læs mere

Kulturel spørgeguide. Psykiatrisk Center København. Dansk bearbejdelse ved Marianne Østerskov. Januar 2011 2. udgave. Kulturel spørgeguide Jan.

Kulturel spørgeguide. Psykiatrisk Center København. Dansk bearbejdelse ved Marianne Østerskov. Januar 2011 2. udgave. Kulturel spørgeguide Jan. Vdenscenter for Transkulturel Psykatr har ekssteret sden 2002 og skal fremme psykatrsk udrednng, dagnostk, behandlng, pleje og opfølgnng af patenter, der har en anden etnsk baggrund end dansk. Kulturel

Læs mere

FORDELINGER: HYPERGEOMETRISK FORDELING, BINOMIALFORDELING MIDDELVÆRDI DEFINITION. X er en stokastisk variabel på et endeligt sandsynlighedsfelt ( )

FORDELINGER: HYPERGEOMETRISK FORDELING, BINOMIALFORDELING MIDDELVÆRDI DEFINITION. X er en stokastisk variabel på et endeligt sandsynlighedsfelt ( ) FORDELINGER: HYERGEOMETRIS FORDELING, BINOMIALFORDELING MIDDELVÆRDI Mddelværd MIDDELVÆRDI (TYS: ERWARTUNGSWERT ) DEFINITION X er e stokastsk varabel på et edelgt sadsylghedsfelt U, ( ) Mddelværde af X

Læs mere

TO-BE BRUGERREJSE // Tænder

TO-BE BRUGERREJSE // Tænder TO-BE BRUGERREJSE // Tænder PROCES FØR SITUATION / HANDLING Jørgen er 75 år og folkepensonst. Da han er vanskelgt stllet økonomsk, har han tdlgere modtaget hjælp fra kommunen, bl.a. forbndelse med fodbehandlng

Læs mere

HASTIGHEDSKORT FOR DANMARK VHA. GPS

HASTIGHEDSKORT FOR DANMARK VHA. GPS HASTIGHEDSKORT FOR DANMARK VHA. GPS Ove Aderse xcalibur@cs.aau.dk Istitut for Datalogi Aalborg Uiversitet Harry Lahrma lahrma@pla.aau.dk Trafikforskigsgruppe Aalborg Uiversitet Kristia Torp torp@cs.aau.dk

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kvanttatve metoder 2 Forår 2007 Oblgatorsk opgave 2 Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Opgavens prmære formål er at lgne formen på tag-hjem delen af eksamensopgaven. Der

Læs mere

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol Udvklng af en metode tl effektvurderng af Mljøstyrelsens Kemkalenspektons tlsyn og kontrol Orenterng fra Mljøstyrelsen Nr. 10 2010 Indhold 1 FORORD 5 2 EXECUTIVE SUMMARY 7 3 INDLEDNING 11 3.1 AFGRÆNSNING

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet

Læs mere

1 Indeksberegninger. 1.1 Indeksberegningers formål og brug. 1.2 Typer af indeks

1 Indeksberegninger. 1.1 Indeksberegningers formål og brug. 1.2 Typer af indeks 7 Ideksberegger. Ideksbereggers formål og brug Damarks Sasks deks bruges l a gve e ekel og brugbar mål for udvklge værder, rser eller mægder over d. Hvs ma har e alrække over aal fødsler sde 9 ka ma dae

Læs mere

Mary Rays. Træn lydighed, agility og tricks med klikkertræning. Mary Ray. Atelier. Andrea McHugh

Mary Rays. Træn lydighed, agility og tricks med klikkertræning. Mary Ray. Atelier. Andrea McHugh Mary Rays Mary Rays Mary Ray Andrea McHugh Træn lydghed, aglty og trcks med klkkertrænng Ateler An Hachette Lvre UK Company Frst publshed n Great Brtan n 2009 by Hamlyn, a dvson of Octopus Publshng Group

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

FOLKEMØDE-ARRANGØR SÅDAN!

FOLKEMØDE-ARRANGØR SÅDAN! FOLKEMØDE-ARRANGØR SÅDAN! Bornholms Regonskommune står for Folkemødets praktske rammer. Men det poltske ndhold selve festvalens substans blver leveret af parter, organsatoner, forennger, vrksomheder og

Læs mere

TO-BE BRUGERREJSE // Personligt tillæg

TO-BE BRUGERREJSE // Personligt tillæg TO-BE BRUGERREJSE // Personlgt tllæg PROCES FØR SITUATION / HANDLING Pa er 55 år og bor en mndre by på Sjælland. Hun er på førtdspenson og har været det mange år på grund af problemer med ryggen efter

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Referat fra Bestyrelsesmøde

Referat fra Bestyrelsesmøde Bestyrelsesmøde Holmsland Sogneforenng. Fremmødte: Iver Poulsen, Chrstan Holm Nelsen, Tage Rasmussen, Kresten Bundgaard, Maranne Dderksen, Bjarne Vogt, Vggo Kofod Fraværende: Ingen Dagsorden for mødet

Læs mere

Capital Asset Pricing Modellen

Capital Asset Pricing Modellen Captal Asset Prcng Modellen og det danske aktearked Bachelorprojekt af Thoas Klesdorff Hougaard Vejleder Lone Sauelsen Afleverngsdato.05.006 Erhvervsøkono/HA-uddannelsen Insttut for Safundsvdenskab og

Læs mere

Referat fra Bestyrelsesmøde

Referat fra Bestyrelsesmøde Bestyrelsesmøde Holmsland Sogneforenng. Bestyrelsesmedlemmerne er ndkaldt tl bestyrelsesmøde som ovenfor anført. Fremmødte: Iver Poulsen, Bodl Schmdt, Lars Provstgaard, Chrstan Holm Nelsen, Maybrtt Pugflod;

Læs mere

FTF dokumentation nr. 3 2014. Viden i praksis. Hovedorganisation for 450.000 offentligt og privat ansatte

FTF dokumentation nr. 3 2014. Viden i praksis. Hovedorganisation for 450.000 offentligt og privat ansatte FTF dokumentaton nr. 3 2014 Vden prakss Hovedorgansaton for 450.000 offentlgt og prvat ansatte Sde 2 Ansvarshavende redaktør: Flemmng Andersen, kommunkatonschef Foto: Jesper Ludvgsen Layout: FTF Tryk:

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 10

Kvantitative metoder 2 Forår 2007 Ugeseddel 10 Kvanttatve metoder 2 Forår 2007 Ugeseddel 0 Program for øvelserne: Gennemgang af teoropgave fra Ugesedel 9 Gruppearbejde og plenumdskusson SAS øvelser, spørgsmål -4. Sdste øvelsesgang (uge 2): SAS øvelser,

Læs mere

Referat fra Bestyrelsesmøde

Referat fra Bestyrelsesmøde Bestyrelsesmøde Holmsland Sogneforenng. Fremmødte: Iver Poulsen, Chrstan Holm Nelsen, Bjarne Vogt, Tage Rasmussen, Bodl Schmdt, Susanne K. Larsen, Vggo Kofod Dagsorden for mødet er: 1) Kommentarer/godkendelse

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Salg af kirkegrunden ved Vejleå Kirke - opførelse af seniorboliger. hovedprincipper for et salg af kirkegrunden, som vi drøftede på voii møde.

Salg af kirkegrunden ved Vejleå Kirke - opførelse af seniorboliger. hovedprincipper for et salg af kirkegrunden, som vi drøftede på voii møde. Ishøj Kommune Att.: Kommunaldrektør Anders Hvd Jensen Ishøj Store Torv 20 2635 Ishøj Lett Advokatfrma Rådhuspladsen 4 1550 København V Tlr. 33 34 00 00 Fax 33 34 00 01 lettl lett.dk www.lett.dk Kære Anders

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Referat fra Bestyrelsesmøde Mandag den 08.oktober 2012 - kl. 19.00 i Holmsland Idræts- og Kulturcenter

Referat fra Bestyrelsesmøde Mandag den 08.oktober 2012 - kl. 19.00 i Holmsland Idræts- og Kulturcenter Bestyrelsesmøde Holmsland Sogneforenng. Bestyrelsesmedlemmer er ndkaldt tl bestyrelsesmøde som ovenfor anført. Fremmødte: Iver Poulsen, Chrstan Holm Nelsen, Bodl Schmdt, Maybrtt Pugflod Lars Provstgaard,

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00 Fagblok 4b: Regnskab og fnanserng 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 tl 31.01 2004 kl. 14.00 Dette opgavesæt ndeholder følgende: Opgave 1 (vægt 50%) p. 2-4 Opgave 2 (vægt 25%) samt opgave 3 (vægt

Læs mere

Tabsberegninger i Elsam-sagen

Tabsberegninger i Elsam-sagen Tabsberegnnger Elsam-sagen Resumé: Dette notat beskrver, hvordan beregnngen af tab foregår. Første del beskrver spot tabene, mens anden del omhandler de afledte fnanselle tab. Indhold Generelt Tab spot

Læs mere

Forbedret Fremkommelighed i Aarhus Syd. Agenda. 1. Vurdering af forsøg Lukning af Sandmosevej

Forbedret Fremkommelighed i Aarhus Syd. Agenda. 1. Vurdering af forsøg Lukning af Sandmosevej Trafkgruppen Agenda 1. Vurderng af forsøg Luknng af Sandmosevej 2. Vurderng af foreslået forsøg Luknng af Sandmosevej og Brunbakkevej 3. Forslag tl forbedret fremkommelghed for hele Aarhus Syd 4. Kortsgtet

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Luftfartens vilkår i Skandinavien

Luftfartens vilkår i Skandinavien Luftfartens vlkår Skandnaven - Prsens betydnng for valg af transportform Af Mette Bøgelund og Mkkel Egede Brkeland, COWI Trafkdage på Aalborg Unverstet 2000 1 Luftfartens vlkår Skandnaven - Prsens betydnng

Læs mere

Geometrisk Optik. Teori og forsøg

Geometrisk Optik. Teori og forsøg Geometrik Optik Teori og orøg Køge Gmaium 004-005 Ole Witt-Hae Idold Kap. Geometrik Optik.... Strålegage i toer.... relekio i et plat pejl... 3. elekio i et kokavt ulpejl... 4. elekio i et kovekt ulpejl...6

Læs mere

n n ' 8 DK. 2012 Ansøgning om byggetilladelse/ Anmeldelse af byggearbejde D D D D 3 3 3 3 3 3 E 3

n n ' 8 DK. 2012 Ansøgning om byggetilladelse/ Anmeldelse af byggearbejde D D D D 3 3 3 3 3 3 E 3 WS101651W omska 18 12 2012 10 17 SEPBARCOE 0U121 Syddjurs Kommue Hovedgade 77 8410 Røde Telefo 87 5 50 00 Kommues av og adresse Syddjurs Kommue Borgerservice Hovedgade 77 8410 Røde ' 8 K. 2012 Udfyldes

Læs mere

Kreditrisiko efter IRBmetoden

Kreditrisiko efter IRBmetoden Kredtrsko efter IRBmetoden Vacceks formel Arbejdspapr, oktober 2013 1 KRAKAfnans - Fnanskrsekommssonens sekretarat Teknsk arbejdspapr udkast 15. oktober 2013 Indlednng Det absolutte mndstekrav tl et kredtnsttut

Læs mere

NOTAT Det daglige arbejde med blisterpakninger

NOTAT Det daglige arbejde med blisterpakninger Sige Friis Christiase 7. maj 2015 NOTAT Det daglige arbejde med blisterpakiger I paeludersøgelse 55 i DSRs medlemspael blev deltagere stillet e række spørgsmål om deres arbejde med blisterpakiger. Afrapporterige

Læs mere

Forberedelse INSTALLATION INFORMATION

Forberedelse INSTALLATION INFORMATION Forberedelse 1 Pergo lamnatgulvmateraler leveres med vejlednnger form af llustratoner. Nedenstående tekst gver forklarnger på llustratonerne og er nddelt tre områder: Klargørngs-, monterngs- og rengørngsvejlednnger.

Læs mere

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskj Den store russske forfatter tænkte naturlgvs kke på markedsførng, da han skrev dsse lner.

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere