Amerikanske optioner og nansielle beregninger

Størrelse: px
Starte visningen fra side:

Download "Amerikanske optioner og nansielle beregninger"

Transkript

1 Amerikanske optioner og nansielle beregninger 1 Amerikanske optioner og nansielle beregninger Rolf Poulsen Med den hårdtarbejdende redaktions egne ord så tilstræbes det, at artikler i FAMØS henvender sig til alle på IMF (ansatte og studerende). Jeg vil dog straks begrænse nærværende skriverier til den delmængde af førnævnte, der opfylder mindst en af følgende ikke-disjunkte betingelser: (a) har et åbent sind, (b) har haft Fin1, (c) har læst Lando (1999). Hovedresultatet i bemeldte fortrinlige artikel kan fortælles bemærkelsesværdigt kort i arbitrageprisfastsættelsesteoriens første 1 hovedsætning: En nansiel model (π, δ, r) (priser, dividender, rente) på den stokastiske basis (Ω, {F t } t=0,1,...,t, P ) (udfaldsrum, ltrering, sandsynlighedsmål) er arbitragefri, hvis og kun hvis den har et ækvivalent martingalmål Q (risiko-neutralt mål). Et centralt element i en videnskabelig artikel er at placere sig i forhold til litteraturen. Denne er ingen undtagelse. Men de friere tøjler tillader mig at forstå litteratur på samme måde som folk udenfor den akademiske verdens beskyttede værksted. Nemlig som litteratur: I viktorianske kriminalromaner afsløres i det sidste kapitel, hvor obersten, de uvorne børn, gammeljomfruerne mv. er 1 Som ordenstalsbetegnelsen indikerer, er der også en hovedsætning nummer to. Den siger, at en arbitragefri model er komplet, hvis og kun hvis Q er entydigt. Fra et praktisk synspunkt er dette mere vigtigt, da det fortæller at enhver (ny) kontrakt kan replikeres. Den har derfor kun en eneste fornuftig pris. De konkrete modeller, vi møder i denne artikel, er komplette. Men beregningsmæssige teknikker og trick er ofte uahængige af hvilket af de måske mange martingalmål, man benytter. Der er ikke nogen almindeligt accepteret tredje eller højere hovedsætning.

2 2 Amerikanske optioner og nansielle beregninger forsamlet i biblioteket, hvordan og hvorfor butleren gjorde det. På samme måde vil jeg tilsidst afsløre, hvad amerikanske optioner burde blive kaldt. Undervejs skal vi så grueligt meget igennem, dvs. jeg kommer ind på en række emner fra min forskning. Med en karikeret '70-formulering siger det enormt meget om samfundet. Holdbarheden af litteratur med dette som hovedmål har vist sig tvivlsom. Jeg lader det være op til læseren, om det bliver bedre eller værre, hvis man som overordnet princip søger at bytte litteratur ud med forskning. Arbitragefri prisfastsættelse: tænk globalt, regn lokalt Først omskriver vi den globale denition af et martingalmål fra Lando (1999) til en lokal karakterisation. Vi betragter et vilkåligt 2 aktiv med en givet dividende-proces δ tilpasset vores ltrering og lader angive diskontering med det lokalt riskofrie aktiv, dvs. division med R 0,t = (1 + r 0 ) (1 + r 1 )... (1 + r t 1 ), hvor r er den muligvis stokastiske korte rente. I en arbitragefri model skal aktivets prisproces, π, opfylde π(t) = E Q t = E Q t T j=t+1 ( δ(t + 1) R 0,t+1 δ(t) ) + E Q t E Q t+1 T j=t+2 δ(t), } {{ } = π(t+1) 2 Arbitrært kunne man sige, men det ord er belastet i netop denne sammenhæng. Famøs skabelon

3 Rolf Poulsen 3 hvor vi har brugt reglen om itererede forventninger (eller: tårnegenskaben) og linearitet af betinget forventning. Heraf får vi ved brug af denitionen af R-processen specielt at R 0,t+1 er F t - målelig at π(t) = 1 E Q t (π(t + 1) + δ(t + 1)). (1) 1 + r t Denne lokaliserede ligning (t på venstresiden, kun t + 1 på højresiden) er overmåde nyttig. Den er hjertet i eektive beregninger i modeller med Markov-struktur, den fortæller, hvordan vi håndterer dividendebetalinger og stokastiske renter, 3 og den er central for at forstå, hvordan amerikanske optioner prisfastsættes. Amerikanske optioner: mere subtilt end som så? En europæisk option giver dens ejer ret, men ikke pligt, til at gøre et eller andet på et (eneste) på forhånd fastlagt tidspunkt T (med svag misbrug af notation). Som regel er valget trivielt, og vi siger derfor blot, at ejeren modtager beløbet g(s(t )) på tidspunkt T, hvor g er payo-funktionen. Fx er g(x) = max(k x, 0) =: (K x) + for en strike-k put-option, 4 hvor ejeren har ret, men ikke pligt, til sælge det underliggende aktiv til prisen K. For en amerikansk option vælger ejeren selv, hvornår optionen skal indfries, lad os kalde tidspunktet τ, hvorefter han (straks) modtager g(s(τ)). Ordene amerikansk og europæisk har her ingen 3 En fordel ved den diskrete ramme er, at vi får det hele i et hug; studerende i FinKont-kurser kan skrive under på, at så let går det ikke altid. 4 Hvis det underliggende aktiv ikke udbetaler dividender i optionens løbetid (og renten er positiv), så er det aldrig optimalt at indfri en amerikansk call-option førtidigt. Derfor er put-optionen det gennemgående eksempel her.

4 4 Amerikanske optioner og nansielle beregninger geogrask betydning; vi kunne ligeså godt kalde optionerne orange eller varmforzinkede. 5 Ejeren af en (endnu ikke indfriet) amerikansk option skal hele tiden overveje, om hans option er mere værd død end i live. Hvis han undlader at indfri og derved holder optionen i live, så får han et lignende valg i næste periode. Optionsejeren gør, hvad der er mest fordelagtigt, og oversat til ligninger giver det en dynamisk programmeringsformulering eller Bellman-ligning for prisen, π A, på en amerikansk option: { } π A 1 (t) = max g(s(t)), E Q t 1 + r (πa (t + 1)). (2) t Jeg håber ovenfor at have kommunikeret det intuitivt rimelige i ligning (2), og som vi om lidt vil se, er det kodningsmæssigt lettere gjort end sagt. Men matematisk/teoretisk er det mere subtilt. Thi: Hvis det er 1. led på højresiden i (2) (kaldet indfrielsesværdien; 2. led kaldes tidsværdien), der er størst, så strider det lodret imod ligning (1). Ups. Der, hvor kaninen forsvinder ned i hatten, er at (1) udtaler sig om priser for aktiver, hvis betalinger er givet på forhånd. Men altså igen: givet som tilpasset stokastisk proces, dvs. når et træ repræsenterende informationsstrukturen er blevet lavet, så kendes aktivets betalinger i hver eneste knude. For en amerikansk option har ejeren derimod en yderst ikke-triviel indvirkning på betalingsprocessen. Ikke desto mindre kan man vise, at (2) vitterlig giver den eneste arbitragefri amerikanske options- 5 En historie fortæller, at den (amerikanske) økonom Paul Samuelson som den første brugte betegnelsen amerikansk om optioner med førtidige indfrielsesrettigheder. Han gjorde det for at signalere noget bedre, noget mere avanceret. Selveste internettet har dog været ude af stand til at bekræfte den historie, så... Famøs skabelon

5 Rolf Poulsen 5 S0<-100; r<-0.03; alpha<-0.07; sigma<-0.20 expiry<-1; strike<-100 n<-expiry*252; dt<-expiry/n u<-exp(alpha*dt+sigma*sqrt(dt)); d<-exp(alpha*dt-sigma*sqrt(dt)) R<-exp(r*dt) q<-(r-d)/(u-d) S<-put<-matrix(0,nrow=(n+1),ncol=(n+1)) put[,n+1]<-pmax(strike-s0*u^(0:n)*d^(n:0),0) for (i in n:1) { for (j in 1:i){ S[j,i]<-S0*u^(j-1)* d^(i-j) put[j,i]<-max(max(strike-s[j,i],0), (q*put[j+1,i+1]+(1-q)*put[j,i+1])/r) } } Tabel 1 R-kode med en naturlig algoritme til prisfastsættelse af en amerikansk put-option. For at prisfastsætte den europæiske option fjernes den kursiverede del af koden. Koden under stregen vil senere rykke ud for at forøge beregningshastigheden. Koden ligger i pris. 6 Det kræver en udugt til optimale stoppetider, hvilket gøres glimrende i kapitel 2 i Lamberton & Lapeyre (1996). Og i Fin2. Amerikanske optioner: nemmere gjort end sagt For at illustrere, hvordan man faktisk regner amerikanske optionspriser ud, lad os da trække en arbejdshest af stalden: standardbinomialmodellen, som vist i Figur 1. Her udvikler aktiekursen sig 6 En anden detalje, der afsløres, når man arbejder sig igennem beviset for (2), er at vi rettelig burde sige, at π A (t) er tid-t prisen på den amerikanske option givet den endnu ikke er blevet indfriet.

6 6 Amerikanske optioner og nansielle beregninger som S(t + t) = S(t) { exp(α t + σ t) =: u m/ ssh 1 2 exp(α t σ t) =: d m/ ssh 1 2, hvor α og σ er konstanter. Aktieafkastenes spredning bestemmes af σ, der kaldes volatiliteten. Igen har vi foretaget en subtil udvidelse af modelrammen: Vi kan ikke blot variere antallet af skridt, men også og uafhængigt heraf tidsskridtlængden t. Man kan spørge, hvorfor tidsskaleringen er som den er; specielt hvorfor ±σ t modellerer usikkerheden. Det vil dog føre for vidt at komme ind på det her, men tro mig: Det er det. 7 Vi antager, renten er konstant og parametriserer diskonteringsfaktoren som R 0,t = R t/ t, hvor R = e r t. Den betingede Q-op-sandsynlighed er den samme i alle knuder, q = R d u d. Taylor-udvilker man q i t ser man, at led af formen σ t dominerer for små tidsskridt (hvor t t). Kombineres det med en tilpas kraftig version af den centrale grænseværdisætning, se kapitel 7 i Lando & Poulsen (2006), kan vise man, at α asymptotisk ingen eekt har på optionspriser og derfor ofte udlades. Sandsynlighedsteoretikere kan skimte Girsanovs sætning her. Tabel 1 giver en R-implementation af en naturlig algoritme til udregning af prisen på en amerikansk put-option. R er et open source programmeringssprog, det kan downloades fra og er uhyre nemt at installere. Som noget meget nyttigt ifm. 7 En indikation af rimeligheden kan man få således: Benyt empiriske horisont-h log-afkast, A h (t) = ln(s(t )/S(t h t)), til at estimere α og σ. Foretag estimationen for forskellige horisonter, h, og se, at α og σ er nogenlunde upåvirkede heraf. Famøs skabelon

7 Rolf Poulsen 7 aktiekurs, S(t) tid, t Figur 1 Aktiekursgitter for standardbinomialmodellen (med 10 tidsskridt og iøvrigt parametre som i Tabel 1). De fede knuder (og aht. graske udtryk: linjerne, der forbinder dem) angiver den kritiske indfrielsesgrænse for en amerikansk strike-100 put-option: Første gang aktiekursen falder til dette niveau, indfries optionen. forskningssamarbejde eller projektvejledning, så er R-kode meget transportabel. Man kan køre hinandens programmer uden den udvidede eksamen som systemadministrator. R har stærke statistik-værktøjer (med en bred fortolkning af statistik, der inkluderer fx lineær algebra og grak) og minder syntaksmæssigt om Matlab. Det er, hvad dataloger kalder et domain-specic language (DSL); det retter sig imod brugere, der skal løse bestemte typer opgaver, og har så nyttig funktionalitet hertil indbygget. Modsætningen til DSL er general-purpose languages (GPL) som fx C++,

8 8 Amerikanske optioner og nansielle beregninger Java eller Python. Jeg kalder som regel DSL for højniveau-sprog og GPL for lavniveau-sprog. Datalogiske pedanter kan sikkert give grunde til, at jeg ikke burde gøre det. I prisfastsættelsesalgoritmen trævler vi os rekursivt baglæns fra det senest mulige slutidspunkt, idet vi hele tiden udnytter, at vi netop har beregnet (t + 1)-elementet i ligning (2). Udvidelsen ift. prisfastsættelse af den europæiske option beløber sig til en halv linjes kode. Førtidig indfrielse af put-optionen sker for lave aktiekurser. For ethvert (tilstrækkeligt stort) tidspunkt, t i, ndes i gitteret et maksimalt tid-t i aktiekursniveau, S (t i ), således at for aktiekurser under S (t i ) indfries optionen. Kurven t S (t) kaldes den kritiske indfrielsesgrænse, en illustration ses i Figur 1. 8 Den optimale strategi for optionsejeren der ikke kan se ind i fremtiden er at indfri optionen første gang, den kritiske indfrielsesgrænse rammes. Som beregnere bevæger vi os altså fra højre mod venstre i gitteret, som optionsejere fra venstre mod højre. Amerikanske optioner: rettidig omhu i regnerier Der er en række måder at forbedre beregningstiden for den naturlige algoritme i Tabel 1: 1. Hav nyeste version installeret. For anstændig software sker der ofte forbedringer bag scenen, dvs. skjult for slutbrugeren, og de har positiv indvikning på tidsforbruget. Her betød et 8 Den opmærksomme læser ser, at vi på indfrielseskurven har tegnet punktet (udløbstid, strike) (eller: (T, K)) skønt dette ikke er et gitterpunkt. Man får glattere konvergens (for t 0) af (specielt europæiske) optionspriser, hvis man (ved valg af skridtlængde) sikrer, at K altid ligger på et gitterpunkt. Den rene af sind påpeger det inkonsistente i at bruge modeller for det underliggende aktiv, der afhænger af den option, man skal prisfastsætte. Yeah, well... Famøs skabelon

9 Rolf Poulsen 9 qur<-q/r; qdr<-(1-q)/r; u.pow<-u^(0:n); d.pow<-d^(0:n) S<-S0*u.pow[1:(n+1)]*d.pow[(n+1):1] ; put<-pmax(strike - St,0) for (i in n:1) { S<-S0*u.pow[1:i]*d.pow[i:1] put[1:i]<-pmax(strike-s,(qur*put[2:(i+1)]+qdr*put[1:i])) } Tabel 2 Hastighedsforbedret kode til prisfastsættelse af en amerikanske put-option. Koden ovenfor erstatter koden under stregen Tabel 1, skift fra R til R omtrent en halvering af kørselstiden. 2. Undgå unødvendige beregninger. Flyt så mange funktionskald som muligt udenfor løkker. Her gav det en ca. 10% forbedring af kørselstiden. Dimensionér i videst muligt omfang vektorer og matricer på forhånd. Højniveau-sprog tvinger typisk ikke brugeren til dette. Det kan være behageligt, da det ligger i numeriske metoders natur, at mange ting først bliver kendt, efterhånden som programmet løser ens opgave. Men der kan være tid at spare. ET konkret R-eksempel: Skriver man skriver cbind inde i en løkke, skal en rød lampe lyse. 3. Brug indbygget funktionalitet. Her specielt: Udnyt R's evne til at arbejde med vektorer og matricer, undgå elementfor-element-operationer. 9 Her nedbringer det beregningstiden med omkring en faktor 7. 9 Ikke alle funktioner virker på er-dimensionale objekter på den måde, du måske tror/håber. Lad fx x være en vektor og sammenlign max(x,0) med pmax (x,0). Eller lad X og Y være matricer og sammenlign X*Y med X%*%Y.

10 10 Amerikanske optioner og nansielle beregninger 252 skridt R-kode C++-kode Metode Tid (ms) Metode Tid (ms) Windows; Tabel 1; R Visual Studio; Tabel 1 9 Windows; Tabel 1; R Visual Studio; Tabel 2 1,5 Windows; Tabel 2; R Windows; Tabel 2; R Linux; Tabel 1; R (fys., p) 458 (fys., o-p) 260 GNU g++ ; Tabel 1 35 (CPU, p) 126 (CPU, o-p) 119 GNU g++ ; Tabel 2 6,0 Linux; Tabel 2; R (fys., p) 209 (fys., o-p) 57 (CPU, p) 55 (CPU, o-p) 51 Europæisk B/S-formel 0, B/S-sim. ± 0,3% Tabel 4 stier ± 1,4% (30 252) skridt R-kode C++-kode Metode Tid (s) Metode Tid (s) Windows; Tabel 1; R Visual Studio; Tabel 2 2,3 GNU g++ ; Tabel 2 12 Windows; Tabel 2; R ,8 Tabel 3 Beregningstider for algoritmer til prisfastsættelse af en amerikansk put-option i standarbinomialmodellen. Parametrene er som angivet i Tabel 1. Al kode ndes i ~rolf/famoes. Windows-kørslerne er foretaget på en Intel P8700 Core2Duo CPU med 2.5 GHz og 3 GB RAM. Eller mere forståeligt: På min et par år gamle computer, der da den var ny, var ret kraftig af en bærbar at være. Linux-kørslerne er fra IMF's Shannon-server, og her indikerer p/o-p om kørslen skete på et travlt tidspunkt eller ej (peak/o-peak). Famøs skabelon

11 Rolf Poulsen 11 I de meget læseværdige Higham (2002) og Eddelbuettel (2009) kan man nde mere. Køreklar R-kode ses i Tabel 2. Man kan rettelig mene, at ovenstående liste mangler et punkt: 0. Kommenter/dokumenter dine programmer. Lad os sige grunden til, at det ikke er gjort her, er hensynet til det typograske udtryk. Selv Schrödinger kunne ikke svinge en måske død kat i Tabel 3 uden at ramme en beregningstid. Allerførst ser vi, at med de forholdsvis simple justeringer nævnt ovenfor, falder tiden, det tager at udregne prisen på en 1-årig amerikansk put-option i en standardbinomialmodel med daglige skridt ( t = 1/252), fra 750 til 15 millisekunder, dvs. med en faktor 15. Der er beregningstider både fra en (Windows-)PC og fra IMF's (Linux-)server Shannon. Når man skal dele regnekraften med andre, så er der forskel på den tid, det fysisk tager at køre programmet, og den tid, det ville have taget, hvis man havde tingene for sig selv (CPU-tiden). Der kan derfor være tydelige fordele (her en faktor 4) ved at køre sine programmer udenfor spidsbelastningsperioder, dvs. om natten og i weekenden. En skeptiker kunne nu sige: Ja, jo, men er det besværet værd? Forbedringen er jo mindre end et sekund. Til det behøves bare henvises til nedre del af Tabel 3. Her beregnes en amerikansk optionspris for en 30-årig option i en model med daglige skridt; skal man eksempelvis prisfastsætte konverterbare realkreditobligationer, så er det en relevant problemstørrelse. 10 Her tager Tabel 2- koden omkring 7 sekunder, mens tidsforbruget for Tabel 1-koden er 10 minutter. 11 Så er forskellen pludselig til at få øje på, når man 10 Som den engelske komiker Andy Zaltzman plejer at sige i den fremragende og stærkt vanedannende podcast The Bugle: That's a lie, but my point stands. 11 Antallet af knuder i et binomialgitter vokser kvadratisk i antallet af tidsskridt. Man ville derfor forvente, at en 30-årig option tog 30 2 = 900 gange så

12 12 Amerikanske optioner og nansielle beregninger sidder foran computeren. Og hvis man så ikke-spor-hypotetisk (se Pedersen, Weissensteiner & Poulsen (2011)) skal udregne ikke 1, men priser, der skal indgå i et dynamisk porteføljevalgsproblem, så kan den ene beregning køres over en nat, mens den anden tager en måned. Så selv med dagens computere kan beregningstid blive en askehals. Det betyder, at der er al mulig grund til forske i forbedrede berergningsmetoder. En ide er, naturligvis, at man med blyant og papir leder efter lukkede formler. Det kan give dramatiske hastighedsforøgelser; eksempelvis ser vi i Tabel 3, at det kun tager 0,04 millisekund at udregne en optionspris fra Black-Scholes-formlen (der dog kun virker for europæiske optioner). En anden mulighed er at formulere sine prisfastsættelsesproblemer vha. partielle dierentialligninger og så angribe dem numerisk. Binomial-metoden kan ses som en numerisk løsningsmetode, men som sådan er den en absolut letvægter, der ndes væsentligt bedre teknikker. En tredje tilgangsvinkel er Monte Carlo-simulationsteknikker, eller i min forskningsverden blot: simulation. Dette er en bred betegnelse for beregningsmetoder, hvor tilfældige tal samt asymptotiske resultater som fx store tals lov spiller en stor rolle. Monte Carlo henviser så til casinoet sammesteds, 12 hvor der er masser af tilfældige udfald men hvor vi godt ved, hvordan det går i det lange løb. Simulation er som udgangspunkt langsomt. Tabel 3 viser, at for at ramme en lang tid at prisfastsætte som en 1-årig. For den naturlige metode passer det så godt, som det nogenlunde kan. Den 30-årige optimerede R-kode er noget hutigere end "forventet", 6, 8 < 13, 5 = 0, ; det skyldes at de 15 millisekunder inkluderer nogle faste beregningsomkostninger eksempelvis til kompilering. C++-koden taber omvendt hastighed, 2, 3 > 1, 35 = 0, Grunden er ikke helt klar for mig, måske ekstra omkostninger til hukommelsesallokering ifm. lange vektorer. 12 For administrative feinschmeckere er Monte Carlo et kommunaldisktrikt i fyrstendømmet Monaco. Famøs skabelon

13 Rolf Poulsen 13 europæisk put-optionspris indenfor 1% skal der omkring en halv million udfald til. Det tager nogle hundrede millisekunder. Og det kræver endda, at man kan simulere S(T ) direkte, dvs. ikke skal lave sti-vise beregninger. Skal man det, så eksploderer beregningstiden. Den simulationsbaserede amerikanske optionsprisfastsættelseskode fra Tabel 4 tager millisekunder. (Og den regner ikke engang det rigtige ud, men det har ikke noget med hastigheden at gøre.) Simulationsmetoders styrke ligger i deres alsidighed; mange mere komplicerede modeller og problemstillinger har de let ved at håndtere. Og ofte 13 er det vigtigere at have et approksimativt svar på det rigtige spørgsmål, end et ultra-præcist svar på et forkert spørgsmål. En fjerde mulighed er at skifte hest ved at programmere prisfastsættelsesalgoritmerne i et lavniveau-sprog; C++ er den nansielle sektors foretrukne. Det stiller større krav til programmeringsfærdigheder, men belønningen skulle gerne være forøget hastighed; brugervenlighed i interfacet og ekstra funktionalitet koster. Algoritmerne fra Tabel 1 og 2 er stort set bare løkker indeni hinanden, så de er nemme at implementere i C++. I højre søjle i Tabel 3 ses beregningsstider. Man opnår en tydelig forbedring (under Windows er det 15 vs. 1,5 millisekunder for en 1-årig option og 6,8 vs. 2,3 sekunder for en 30-årig option). Men det gode højniveausprog er ikke håbløst bagud. Sammenlignes en naiv implementering (ala Tabel 1) i Microsofts Visual Studio-miljø med den optimerede R-kode, så er forskellen blot 10 vs. 15 millisekunder for 1-årige optioner. For 30-årige optioner er R-kodens tider en faktor 3 fra C++-kodens. Meget groft sagt er beregningstidsforbedrin- 13 Man kan mene, at ofte burde være altid. Det synspunkt afspejles dog ikke udpræget i vore uddannelser.

14 14 Amerikanske optioner og nansielle beregninger gen altså her halvanden størrelsesorden 14 ved, at man tænker sig om indenfor R, og en halv størrelsesorden ved, at man skifter R ud med C++. Så det er ikke en datalogisk dødssynd, at lade det afhænge af situationen, 15 om man skønner det umagen værd at bruge C++. I sådanne overvejelser er et realistisk forhold til egne programmeringsevner tilrådeligt. Amerikanske optioner og simulation: hvordan ikke og hvordan så? Et af de store forsknings- og anvendelsesområder indenfor kvanititativ nansierngsteori de seneste 10 år har været brugen af simulation til prisfastsættelse af amerikanske optioner. Det folkelige gennembrud kom med Longsta & Schwartz (2001). Denne artikel var dog langt fra den første, der kombinerede amerikanske optioner og simulation. Forfatterne til eksempelvis Carriere (1996), Broadie & Glasserman (1997) og Andersen (1999) kan med en vis ret mugge over, at have fået stjålet rampelyset. Jeg tror en meget vigtig grund til, at det er Longsta & Schwartz (2001), der løber med citationerne, er at forfatterne turde bruge selv i et af de mest prestigefyldte tidsskrifter de første 10 sider til detaljeret at gennemgå et simpelt taleksempel; 3 perioder, 8 stier, alle kan være med. Men inden jeg når til Longsta og Schwartz' (simulation-regression)-ide, vil jeg først forklare, hvorfor det er 14 Med det bevidst løse begreb størrelsesorden mener jeg noget ala tipotens til forskel, så faktor 10 er en størrelesorden, faktor 100 er to, og faktor er en halv. 15 Et sted det er umagen værd at bruge C++, eller ihvertfald at kalde kompileret kode fra R, er ved løsning partielle dierentialligninger med dierensmetoder. Famøs skabelon

15 Rolf Poulsen 15 Nsim< DiscPayoff<-rep(0,Nsim) S<-rep(S0,(n+1)) for (j in 1:Nsim){ UpMoves<-cumsum((runif(n) < q)) S[2:(n+1)]<-S0*u^UpMoves*d^((1:n)-UpMoves) SnellZ<-gS<-pmax(strike-S,0) for (i in n:1) SnellZ[i]<-max(gS[i],R*SnellZ[i+1]) tau.index<-dummy[snellz==gs][1] DiscPayoff[j]<-disc^((tau.index-1))*gS[tau.index] } print(c(mean(discpayoff), 1.96*sd(DiscPayoff)/sqrt(Nsim))) Tabel 4 En simulationsalgoritme, man kunne tro, udregner den amerikanske put-optionspris. Men det gør den ikke. overraskende og langt fra oplagt, at det overhovedet kan lade sig gøre. Til det formål vil jeg vise, hvordan man ikke skal gøre. Der er andre måder end ligning (2) at karakterisere den amerikanske optionspris på. I den sammenhæng er stoppetider vigtige. Denitionen er (her) simpel: en stoppetid, τ, er en stokastisk variabel, der tager værdier i mængden {0, 1,..., T } for hvilken hændelsen {τ n} er F n -målelig for ethvert n. Intuitivt betyder det, at på tid n ved vi, om vi er stoppet eller ej. Den amerikanske optionspris kan repræsenteres som løsningen til det optimale stoppetidsproblem π A (0) = max τ T EQ ( e rτ g(s(τ)) ), (3) hvor T er mængden af alle stoppetider. Og det lyder jo rimeligt nok; vi stopper, så vi (i forventning og diskonteret) får mest muligt ud af vores option. Det optimale tidspunkt at stoppe, τ, er τ = min{t g(s(t) = V (t)}, (4)

16 16 Amerikanske optioner og nansielle beregninger hvor den såkaldte Snell-foldning V er deneret rekursivt baglæns ved V (T ) = g(s(t )) og V (t) = max{g(s(t)), e r t E Q t (V (t + t))}. (5) Igen: Det lyder rimeligt nok. Ligningen ovenfor er jo stort set (2), og vi kan vel ligeså godt stoppe første gang, det ikke kan blive bedre. Man kan nu forsøge regne på (3)-(5) med denne algoritme: 1. Simuler N aktiekurs-stier hver med n skridt, {S j (t i )} n i=0, hvor t = T/n, t i = i t og j-indekset angiver sti-nummeret. 2. Udregn foldningen som V j (t i ) = max { g(s j (t i )), e r t V j (t i+1 ) }. 3. Brug τ j = min {t i V j (t i ) = g(s j (t i ))} som indfrielsestidspunkt for sti j. 4. Udregn gennemsnittet over mange stier (j) af e rτ j g(s j (τ j )) og brug det som estimat for den amerikanske optionspris. Algoritmen er implementeret som R-kode i Tabel 4. I Tabel 5 sammenlignes beregnede priser. Simulationsalgoritmen ovenfor giver en pris, der er omtrent dobbelt så stor som den korrekte amerikanske put-optionspris. Ups. Så hvad er der galt? Fejlen ligger i algoritmens 2. skridt, foldningsudregningen. Her er den betingede forventningsoperator fra ligning (5) forsvundet. Beregningen af foldningen bruger derfor fremtidig information, hvorved det fundne indfrielsestidspunkt matematisk set ikke er en stoppetid. Et par faktorer gør en fejlagtig implementation som denne svær at fange. For det første er den forkerte pris ikke åbenlyst forkert; om 6,74 eller ca. 13 er det rigtige tal, er ikke umiddelbart oplagt. Det betyder så på positiv-siden, at en pris udregnet med den Famøs skabelon

17 Rolf Poulsen 17 Optionstype Algoritme Pris (± konf'bånd) Eu. put 6,46 Am. put Tabel 1 6,74 Am. put (misforstået) Tabel 4 13,0 ±0, 2 Am. put L & S (2001)-sim. 6,7 ±0, 2 Tabel 5 Den amerikanske put-option forsøgt prisfastsat med algoritmen og parametrene fra Tabel 1 (korrekt), med algoritmen fra Tabel 4 (forkert) og med simulationsmetoden fra Longsta & Schwartz (2001) (appoksimativt korrekt; der bruges 2.-gradspolynomier i regressionerne). Ved at tillægge eller fratrække tallet angivet med ± fås 95%-kondensintervallet for prisestimaterne opnået ved simulation. slags fuld forudsigelighed er en ikke-triviel øvre grænse for værdien af den amerikanske option. I mere avancerede sammenhænge kan den korrekte optimale indfrielsesstrategi være meget vanskelig at beregne, men den øvre grænse nem. I kapitel 3 i Rasmussen, Madsen & Poulsen (2011) bruges det til at nde øvre grænser for konverteringsgevinster i realkreditmarkeder, og folk snedigere end os bruger ideen i såkaldte primal-dual-simulationer. For det andet er foldningsberegningen lokaliseret, den involverer kun t i og t i+1 så man ved første øjekast ikke ser ret langt ind i fremtiden men altså alligevel nok til at tingene bryder sammen. Lad os nu se på, hvad man så kan gøre. Vi beholder vores N simulerede aktiekurs-stier, zoomer ind på et tidspunkt t i og antager i den baglæns rekursive tradition, at alt t i+1 -relevant allerede er beregnet. Markov-egenskaben fortæller os, at tidsværdien af op-

18 18 Amerikanske optioner og nansielle beregninger tionen har den funktionelle form E Q t i (π A (t i+1 )/R) =: f ti (S(t i )). Langs sti j kender vi det rette argument, tallet S j (t i ), problemet er, at vi ikke kender funktionen f ti. Det er en betinget forventet værdi, så vi kunne prøve at starte N nye simulerede stier fra S j (t i ). Men for hver af dem ville vi på tid t i+1 skulle starte nye stier osv. hele vejen ud til tid T. Vi ender med at have noget ala N n stier (fx ), og det jo ikke til at have med at gøre. 16 Men vi kan jo prøve med et gæt eller en approksimation til f ti 's form, fx kvadratisk f ti (x) = a 0 + a 1 x + a 2 x 2, hvor a'erne er ukendte koecienter, som vi vil estimere. (De budre egentlig have t i 'er på, men det er sent i artiklen...) Vi opfatter nu næste periodes (diskonterede) faktisk realiserede optionsværdi π A j (t i+1)/r (husk: det tal har vi beregnet, da vi arbejder rekursivt baglæns) som et signal om tidsværdien. Det gør vi for alle stier og kombinerer det med den postulerede funktionelle form af f ti, så vi får ligningerne π A j (t i+1 )/R = a 0 + a 1 S j (t i ) + a 2 S 2 j (t i ) + ɛ j for j = 1,..., N, hvor ɛ j 'erne er fejlled. Vi kan nu estimere a'erne ved lineær regression, her specikt â = 1 R (X X) 1 X π A (t i+1 ), hvor X er en matrix med indgange X j,k = Sj k 1 (t i ) for j = 1,..., N og k = 1, 2, 3. Det er denne regression på tværs af stier, der sikrer, at fremtidige værdier ikke udnyttes på en ulovlig 16 Sådanne nested simulations er ikke helt så fjollede, som jeg her får dem til at se ud. Men beregningsmæsssigt dyre er de altid. Famøs skabelon

19 Rolf Poulsen 19 måde. For at forstå forskellen til det første simulationsforsøg kan man gøre sig følgende tankeeksperiment: I næstsidste periode har to simulerede stier begge aktiekursen 98. For den ene sti slutter aktiekursen i 102, for den anden i 97. I snyde-algoritmen indfries strike-100 put-optionen for den første sti (venter man får man 0; bedre at få 2 nu), men ikke for den anden (venter man får man 3 isf. 2 nu). Brugen af den estimerede funktionelle form af tidsværdien sikrer, at man for stier med samme aktiekurser træer de samme indfrielsesbeslutninger. Som tid-t i optionsværdi(estimat)er bruger vi π A j (t i ) = max ( (K S j (t i )) +, ) 3 X j,k (t i )â k, vi estimerer det kritiske niveau for indfrielse som S (t i ) = max{x K K x = f ti (x)}, og vi er klar til at fortsætte videre baglæns til tidspunkt t i 1. Der er et par ekstra julelege i Longsta og Schwartz' fulde algoritme (fx at man kun bruger in-the-money-stier i regressionen), som gør koden for omfattende til at blive gengivet her, men den kan ndes samme sted som artiklens øvrige programmer. Sidste linje i Tabel 5 viser, at selv med den nok noget friske kvadratiske approksimation til optionens tidsværdi, så ligger den beregnede amerikanske put-optionspris ganske tæt på den (i binomialmodellen entydigt) sande værdi; 6,7 ± 0,2 ift. 6,74. En grund til dette er den forholdvis tilgivende natur af problemet: Vi skal nde det kritiske niveau, hvor vi skal indfri vores option. Det er netop der, hvor værdien af at indfri er den samme som af at holde optionen i live. Mindre fejltagelser er derfor næppe katastrofale. k=1

20 20 Amerikanske optioner og nansielle beregninger Hvorfor amerikanske optioner burde blive kaldt Kierkegaard-optioner Søren Kierkegaard skrev, at livet leves forlæns, men forstås baglæns. Det beskriver præcis situationen for amerikanske optioner: Vi bestemmer den optimale indfrielsesstrategi (og samtidig prisen) rekursivt baglæns, men må som ejere af en amerikansk option følge strategien forlæns i tid uden at kunne se ind i fremtiden. Litteratur Andersen, L. (1999), `A simple approach to the pricing of Bermudan swaptions in the multifactor LIBOR market model', Journal of Computational Finance 2, 532. Broadie, M. & Glasserman, P. (1997), `Pricing American-Style Securities by Simulation', Journal of Economic Dynamics and Control 21, Carriere, J. F. (1996), `Valuation of the early-exercise price for derivative securities using simulations and splines', Insurance: Mathematics and Economics 19, Eddelbuettel, D. (2009), Introduction to High-Performance Computing with R, Præsentation ved The Institute of Statistical Mathematics Tachikawa, Tokyo. eddelbuettel.com/papers/ismnov2009introhpcwithr. pdf. Higham, D. J. (2002), `Nine Ways to Implement the Binomial Method for Option Valuation in MATLAB', SIAM Review 44, Lamberton, D. & Lapeyre, B. (1996), Introduction to stochastic calculus applied to nance, Chapman & Hall. Famøs skabelon

Fagblad for Aktuar, Matematik, -Økonomi og Statistik

Fagblad for Aktuar, Matematik, -Økonomi og Statistik FAMØS Fagblad for Aktuar, Matematik, -Økonomi og Statistik ved Københavns Universitet Tegnere: Maja Kærulff Schliemann Deadline for næste nummer: 29. februar 2012 Indlæg modtages gerne og bedes sendt til

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI 4 timers skriftlig eksamen, 10-14, tirsdag 1/6 2004. Ingen hjælpemidler (blyant & lommeregner dog tilladt).

Læs mere

Hvad bør en option koste?

Hvad bør en option koste? Det Naturvidenskabelige Fakultet Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag 9. oktober 2012 Dias 1/19 Reklame først: Matematik-økonomi-uddannelsen Økonomi på et solidt matematisk/statistisk

Læs mere

Investerings- og finansieringsteori, F04, ugeseddel 5

Investerings- og finansieringsteori, F04, ugeseddel 5 25. februar 2004 Rolf Poulsen AMS Investerings- og finansieringsteori, F04, ugeseddel 5 Husk at eksamenstilmelding foregår i uge 9 & 0 (23/2-7/3). Hvis man møder op i auditorium 8 onsdag 3/3 kl. 3.5, kan

Læs mere

Hvad bør en option koste?

Hvad bør en option koste? Det Naturvidenskabelige Fakultet Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag 19. marts 2015 Dias 1/22 Reklame først: Matematik-økonomi-uddannelsen Økonomi på et solidt matematisk/statistisk

Læs mere

Investerings- og finansieringsteori

Investerings- og finansieringsteori Sidste gang: Beviste hovedsætningerne & et nyttigt korollar 1. En finansiel model er arbitragefri hvis og kun den har et (ækvivalent) martingalmål, dvs. der findes et sandsynlighedsmål Q så S i t = E Q

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Matematisk modellering og numeriske metoder. Lektion 13

Matematisk modellering og numeriske metoder. Lektion 13 Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 3. november 206 Numerisk metode til Laplace- og Poisson-ligningerne. Finite difference-formulering af problemet I det følgende

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Investerings- og finansieringsteori, F04, ugeseddel 7

Investerings- og finansieringsteori, F04, ugeseddel 7 12. marts 2004 Rolf Poulsen AMS Investerings- og finansieringsteori, F04, ugeseddel 7 Seneste forelæsninger Mandag 8/3: Resten af kapitel 5. Jeg beviste 1st and 2nd theorem of asset pricing eller mathematical

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kvadratisk regression

Kvadratisk regression Kvadratisk regression Helle Sørensen Institut for Matematiske Fag Københavns Universitet Juli 2011 I kapitlet om lineær regression blev det vist hvordan man kan modellere en lineær sammenhæng mellem to

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Andengradsligninger. Frank Nasser. 12. april 2011

Andengradsligninger. Frank Nasser. 12. april 2011 Andengradsligninger Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Mulige bachelorprojekter

Mulige bachelorprojekter Bachelorprojektformalia Selvstændigt projekt (under vejledning), der involverer litteratursøgning og -studier og rapportskrivning. Ikke (for meget) overlap med (obligatoriske) kurser. Ekstern censur &

Læs mere

Fig. 1 Billede af de 60 terninger på mit skrivebord

Fig. 1 Billede af de 60 terninger på mit skrivebord Simulation af χ 2 - fordeling John Andersen Introduktion En dag kastede jeg 60 terninger Fig. 1 Billede af de 60 terninger på mit skrivebord For at danne mig et billede af hyppighederne flyttede jeg rundt

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI 4 timers skriftlig eksamen, 9-13, tirsdag 16/6 2003. Ingen hjælpemidler (blyant & lommeregner dog tilladt).

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen. december 16 1 Numerisk integration og differentiation 1.1 Simpsons regel Antag, at vi har en funktion f på intervallet I = [a,

Læs mere

Om hypoteseprøvning (1)

Om hypoteseprøvning (1) E6 efterår 1999 Notat 16 Jørgen Larsen 11. november 1999 Om hypoteseprøvning 1) Det grundlæggende problem kan generelt formuleres sådan: Man har en statistisk model parametriseret med en parameter θ Ω;

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version university of copenhagen University of Copenhagen Notat om statistisk inferens Larsen, Martin Vinæs Publication date: 2014 Document Version Peer-review version Citation for published version (APA): Larsen,

Læs mere

Sidste gang. Afsnit 5.5: (Ækvivalente) martingalmål. Fin1 11/3 2009 1

Sidste gang. Afsnit 5.5: (Ækvivalente) martingalmål. Fin1 11/3 2009 1 Sidste gang Afsnit 5.4: Betingede middelværdier; regneregler, fortolkning og eksempler. Martingaler. Variationer over dette har en betydelig tendens til at dukke op til eksamen. Afsnit 5.2: Finansielle

Læs mere

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm.

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm. Institut for Matematiske Fag Plan Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser Helle Sørensen Eftermiddagen vil være bygget om 3 4 eksempler: A. B. Random

Læs mere

Aflevering 4: Mindste kvadraters metode

Aflevering 4: Mindste kvadraters metode Aflevering 4: Mindste kvadraters metode Daniel Østergaard Andreasen December 2, 2011 Abstract Da meget få havde løst afleveringsopgave 4, giver jeg har en mulig (men meget udførlig) løsning af opgaven.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

22. maj Investering og finansiering Ugeseddel nr. 15. Nogle eksamensopgaver:

22. maj Investering og finansiering Ugeseddel nr. 15. Nogle eksamensopgaver: 22. maj 2006 Investering og finansiering Ugeseddel nr. 15 Nogle eksamensopgaver: 1 NATURVIDENSKABELIG KANDIDATEKSAMEN INVESTERING OG FINANSIERING Antal sider i opgavesættet (incl. forsiden): 6 4 timers

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Pointen med Differentiation

Pointen med Differentiation Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Matematikken i kunstig intelligens Opgaver om koordinerende robotter

Matematikken i kunstig intelligens Opgaver om koordinerende robotter Matematikken i kunstig intelligens Opgaver om koordinerende robotter Thomas Bolander 2. juni 2018 Vejledning til opgaver Opgave 1 kan eventuelt springes over, hvis man har mindre tid. De resterende opgaver

Læs mere

Matematikken i kunstig intelligens Opgaver om koordinerende robotter LØSNINGER

Matematikken i kunstig intelligens Opgaver om koordinerende robotter LØSNINGER Matematikken i kunstig intelligens Opgaver om koordinerende robotter LØSNINGER Thomas Bolander 25. april 2018 Vejledning til opgaver Opgave 1 kan eventuelt springes over, hvis man har mindre tid. De resterende

Læs mere

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Hans Hüttel 27. oktober 2004 Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics.

Læs mere

Projekt 2.9 Sumkurver som funktionsudtryk anvendt til Lorenzkurver og Ginikoefficienter (især for B- og A-niveau)

Projekt 2.9 Sumkurver som funktionsudtryk anvendt til Lorenzkurver og Ginikoefficienter (især for B- og A-niveau) Projekt 2.9 Sumkurver som funktionsudtryk anvendt til Lorenzkurver og Ginikoefficienter En sumkurve fremkommer ifølge definitionen, ved at vi forbinder en række punkter afsat i et koordinatsystem med rette

Læs mere

Residualer i grundforløbet

Residualer i grundforløbet Erik Vestergaard www.matematikfysik.dk 1 Residualer i grundforløbet I dette lille tillæg til grundforløbet, skal vi kigge på begreberne residualer, residualplot samt residualspredning. Vi vil se, hvad

Læs mere

Simuleringsmodel for livsforløb

Simuleringsmodel for livsforløb Simuleringsmodel for livsforløb Implementering af indkomststokastik i modellen 9. november 2009 Sune Sabiers sep@dreammodel.dk Indledning I forbindelse med EPRN projektet Livsforløbsanalyse for karakteristiske

Læs mere

Funktionsterminologi

Funktionsterminologi Funktionsterminologi Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Rolf Fagerberg. Forår 2013

Rolf Fagerberg. Forår 2013 Forår 2013 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM536 og DM537 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM536 og DM537 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard Mandags Chancen En optimal spilstrategi Erik Vestergaard Spilleregler denne note skal vi studere en optimal spilstrategi i det spil, som i fjernsynet går under navnet Mandags Chancen. Spillets regler er

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

Polynomiumsbrøker og asymptoter

Polynomiumsbrøker og asymptoter Polynomiumsbrøker og asymptoter Frank Villa 9. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Lineære sammenhænge, residualplot og regression

Lineære sammenhænge, residualplot og regression Lineære sammenhænge, residualplot og regression Opgave 1: Er der en bagvedliggende lineær sammenhæng? I mange sammenhænge indsamler man data som man ønsker at undersøge og afdække eventuelle sammenhænge

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Matematisk modellering og numeriske metoder. Lektion 19

Matematisk modellering og numeriske metoder. Lektion 19 Matematisk modellering numeriske metoder Lektion 19 Morten Grud Rasmussen 15. november, 2013 1 Mangeskridtsmetoder til løsning af førsteordens ODE er [Bens afsnit 21.2 side 908] 1.1 Adams-Bashforth-metoder

Læs mere

Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression.

Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression. Bilag 3: Uddrag af Matematik 1999. Skriftlig eksamen og større skriftlig opgave ved studentereksamen og hf. Kommentarer på baggrund af censorernes tilbagemeldinger HF-tilvalgsfag (opgavesæt HF 99-8-1)

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

En martingalversion af CLT

En martingalversion af CLT Kapitel 11 En martingalversion af CLT Når man har vænnet sig til den centrale grænseværdisætning for uafhængige, identisk fordelte summander, plejer næste skridt at være at se på summer af stokastiske

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

IT opgave. Informationsteknologi B. Vejleder: Karl. Navn: Devran Kücükyildiz. Klasse: 2,4

IT opgave. Informationsteknologi B. Vejleder: Karl. Navn: Devran Kücükyildiz. Klasse: 2,4 IT opgave Informationsteknologi B Vejleder: Karl Navn: Devran Kücükyildiz Klasse: 2,4 Dato:03-03-2009 1 Indholdsfortegnelse 1. Indledning... 3 2. Planlægning... 3 Kommunikationsplanlægning... 3 Problemstillingen...

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Pointen med Funktioner

Pointen med Funktioner Pointen med Funktioner Frank Nasser 0. april 0 c 0080. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................

Læs mere

Sandsynlighedsbaserede metoder

Sandsynlighedsbaserede metoder Metodeartikel 29 Sandsynlighedsbaserede metoder Monte Carlo-metoden Daniel Kjær I sidste udgave af Famøs kunne læseren finde første halvdel af en todelt artikelserie om sandsynlighedsbaserede metoder under

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Elementær Matematik. Mængder og udsagn

Elementær Matematik. Mængder og udsagn Elementær Matematik Mængder og udsagn Ole Witt-Hansen 2011 Indhold 1. Mængder...1 1.1 Intervaller...4 2. Matematisk Logik. Udsagnslogik...5 3. Åbne udsagn...9 Mængder og Udsagn 1 1. Mængder En mængde er

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Klasse 1.4 Michael Jokil 03-05-2010

Klasse 1.4 Michael Jokil 03-05-2010 HTX I ROSKILDE Afsluttende opgave Kommunikation og IT Klasse 1.4 Michael Jokil 03-05-2010 Indholdsfortegnelse Indledning... 3 Formål... 3 Planlægning... 4 Kommunikationsplan... 4 Kanylemodellen... 4 Teknisk

Læs mere

BOSK F2012, 1. del: Prædikatslogik

BOSK F2012, 1. del: Prædikatslogik ε > 0. δ > 0. x. x a < δ f (x) L < ε February 8, 2012 Prædikater Vi skal lære om prædikatslogik lad os starte med prædikater. Et prædikat er et orakel der svarer ja eller nej. Eller mere præcist: Prædikater

Læs mere

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet Sikre Beregninger Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Introduktion I denne note skal vi kigge på hvordan man kan regne på data med maksimal sikkerhed, dvs. uden at kigge på de tal

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 23. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI. 4 timers skriftlig eksamen, 9-13 torsdag 6/

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI. 4 timers skriftlig eksamen, 9-13 torsdag 6/ NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI 4 timers skriftlig eksamen, 9-13 torsdag 6/6 2002 VEJLEDENDE BESVARELSE OG KOMMENTARER Opgave 1 Spg 1a

Læs mere

13.1 Matrixpotenser og den spektrale radius

13.1 Matrixpotenser og den spektrale radius SEKTION 3 MATRIXPOTENSER OG DEN SPEKTRALE RADIUS 3 Matrixpotenser og den spektrale radius Cayley-Hamilton-sætningen kan anvendes til at beregne matrixpotenser: Proposition 3 (Lasalles algoritme) Lad A

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Baggrund: I de senere år har en del gymnasieskoler eksperimenteret med HOT-programmet i matematik og fysik, hvor HOT står for Higher

Læs mere

Brug og Misbrug af logiske tegn

Brug og Misbrug af logiske tegn Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Bilag A. Dexia-obligationen (2002/2007 Basis)

Bilag A. Dexia-obligationen (2002/2007 Basis) Bilag A Dexia-obligationen (2002/2007 Basis) Også kaldet A.P. Møller aktieindekseret obligation (A/S 1912 B). Dette værdipapir som i teorien handles på Københavns Fondsbørs (omend med meget lille omsætning)

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel.

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Gruppeteori Michael Knudsen 8. marts 2005 1 Motivation For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Eksempel 1.1. Lad Z betegne mængden af de hele tal, Z = {..., 2, 1, 0,

Læs mere

Michael Jokil 11-05-2012

Michael Jokil 11-05-2012 HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...

Læs mere

Modellering. Matematisk undersøgelse af omverdenen. Matematisk modellering kan opfattes som en matematisk undersøgelse af vores omverden.

Modellering. Matematisk undersøgelse af omverdenen. Matematisk modellering kan opfattes som en matematisk undersøgelse af vores omverden. Modellering Matematisk undersøgelse af omverdenen. 1 Modellering hvad? Matematisk modellering kan opfattes som en matematisk undersøgelse af vores omverden. Matematisk modellering omfatter noget udenfor

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Indholdsfortegnelse... 2. Projektplan... 3. Vores research... 4 HCI... 5. Formidlingsmetode og teori... 6. Valg af Målgruppe... 8. Layout flyer...

Indholdsfortegnelse... 2. Projektplan... 3. Vores research... 4 HCI... 5. Formidlingsmetode og teori... 6. Valg af Målgruppe... 8. Layout flyer... Indholdsfortegnelse Indholdsfortegnelse... 2 Projektplan... 3 Vores research... 4 HCI... 5 Formidlingsmetode og teori... 6 Valg af Målgruppe... 8 Layout flyer... 9 Vores flyer... 10 Kildefortegnelse...

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere