Procent og eksponentiel vækst - supplerende eksempler

Størrelse: px
Starte visningen fra side:

Download "Procent og eksponentiel vækst - supplerende eksempler"

Transkript

1 Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee måde: + (1 slutvædi statvædi vækstpocete som decimaltal atal ædige De e vist fie type af eksemple med vækstfomle: - eksemple hvo e ukedt - eksemple hvo e ukedt - eksemple hvo e ukedt - eksemple hvo e ukedt Det e meget vigtigt, at du e kla ove, at vækstfomle e i familie med x ekspoetialfuktioe, de omalt skives på dee måde: y b a Det ka væe lidt foviede, me de to fomle/fuktioe udtykke faktisk pæcis det samme et matematisk. Pocet og ekspoetiel vækst Side a

2 Eksemple til iveau F, E og D Pocete og decimaltal Nå et tal skal ædes med et bestemt atal pocet, og ma skal fide de ye vædi, så e lagt de hutigste metode at udytte sammehæge mellem pocettal og decimaltal. Det e altid det opidelige tal, de sættes til 1% 1, Du ha e timelø på 128, k., og du få lovig på e løfohøjelse på %. Hvad blive di ye timelø? E cykel, de omalt koste 2. k., sælges u med e abat på 1%. Hvad blive de ye pis fo cykle? De ye lø blive 1% + % 1% af de gamle lø. Da 1% 1, få ma: 128, 1, 13,82 k. De ye pis blive 1% - 1% 8% af de gamle pis. Da 8%,8 få ma: 2.,8 2., k. Metode ka sættes på fomel på dee måde: (pøv selv at idsætte tallee fa eksemplee) Nyt tal Gammelt tal (1+ ædigspocete som decimaltal (med foteg) Metode ka også buges, hvis du skal ege baglæs. Du få efte e løfohøjelse på 2,% u e måedslø på 18.2 k. Hvad va di lø fø fohøjelse? Et komfu koste efte e pisedsættelse på 3% u 2.6, k. Hvad kostede komfuet fø edsættelse? De ye lø e 1% + 2,% 12,% af de gamle lø. Da 12,% 1,2 få ma: 18.2 Gammel lø 1, Gammel lø 18.8 k. 1,2 De ye pis e 1% - 3% 6% af de gamle pis. Da 6%,6 få ma: 2.6, Gammel pis,6 Gammel pis 2.6, 3. k.,6 Bemæk at det altid e det "gamle tal", de sættes til 1%. Uaset om de ske e stigig elle et fald, og uaset om ma ege femad elle bagud i tid. Pocet og ekspoetiel vækst Side b

3 Eksemple til iveau F, E og D Hvis et tal ove flee omgage skal ædes med bestemte atal pocet, så beeges ædige altid i fohold til "de, hvo ma e kommet til". Eksempel på opgave Som yasat i et fima få du e statlø på 18.2 k. p. måed. Me du få hutigt løfohøjelse to gage. Føst på 1% og side på 1%. Hvo meget komme du til at tjee? Efte de føste løfohøjelse komme du til at tjee 1% + 1% 11% af statløe. Da 11% 1,1 blive løe: , k. Efte de ade løfohøjelse komme du til at tjee 1% + 1% 11% af 1.82 k. Da 11% 1,1 blive løe: 2.2 1, k. Det hutigste e at fide esultatet i e beegig på dee måde: ,1 1, k. Bemæk at statløe gages med 1,1 1,1 1, 26. Defo e løe efte de to fohøjelse hele 26,% højee ed statløe, selv om 1% + 1% 2%. Bemæk også at det e foket at ege opgave som vist til høje. De sidste stigig på 1% skal beeges af løe efte de føste stigig og ikke af statløe. Ret spogligt ka dette væe svæt at høe, me såda e "eglee". Statlø 16.2 k. + Fohøjelse på 1%: 16.2, k. + Fohøjelse på 1%: 16.2, k. Lø efte begge fohøjelse: 2.2 k. Metode ovefo ka også buges, hvis et tal falde, og/elle hvis ma skal ege baglæs. Eksempel på opgave Et pa bukse e ude et udsalg sat ed to gage. Føst med 2% og side med %. Buksee koste u 138 k. Hvo meget kostede buksee fø udsalget? E edsættelse på 2% svae til at beholde 1% - 2% 8%,8 E edsættelse på % svae til at beholde 1% - % 6%,6 Ma få: 138 Føpis,8,6 Føpis,8 Føpis 138,8 28, k. Pocet og ekspoetiel vækst Side c

4 Eksemple til iveau F, E og D Vækst-fomle Nå et tal ove flee omgage skal ædes med det samme atal pocet, buge ma vækst-fomle: + (1 slutvædi statvædi ædigspocete som decimaltal (med foteg) atal ædige Ma buge bogstavee og i fomle, fodi de ofte buges til etebeegig. Så stå fo kapital, mes stå fo etesatse. Du ha e fosikig, hvo de ålige pæmie lige u e på 1.28 k. Pæmie skal stige med 3% om ået de kommede å. Hvad blive pæmie om å? På e ø bo de lige u 816 idbyggee, me tallet fovetes at falde med ca. % om ået de æste mage å. Hvo mage idbyggee ka ma fovete, at de vil væe på øe om å? (statvædie) e 1.28, (ædigspocete) e 3%,3 og (atal ædige e. Slutvædie ( ) fides således: 1.28 (1+,3) ,3 1.k ,12... (statvædie) e 816, (ædigspocete) e -% -, og (atal ædige e. Slutvædie ( ) fides således: 816 (1,) 816,6 613 idbyggee Bemæk at eksemplee ovefo helt svae til eksemplee på sidste side. At gage med 1,3 svae til at gage med 1,3 1,3 1,3 1, 3. At gage med,6 svae til at gage med,6,6..., ,1... Bemæk også at 1,3 1,12. Selv om 3% 12%, så lægge ma i alt 12,% til stattallet. Det e fodi, de 3% pocet hve gag - som vist heude - beeges af et lidt støe tal. Atal å fa u Pis i k. p. å 1.28, 1.28, 1.32, 1.363,2 1.,63 1. Ædig + 3, + 38,6 + 3,2 +,1 De eges med flee decimale ed de viste. Bemæk også at,6,. Selv om % 28%, så tække ma i alt ku 2% fa stattallet. Det e fodi, de % hve gag beeges af et lidt mide tal. Lav selv e tabel som ovefo. Pocet og ekspoetiel vækst Side d

5 Eksemple til iveau F, E og D Udtykket ekspoetiel vækst - som stå i oveskifte - betyde gaske ekelt, at oget egelmæssigt vokse (elle falde med et bestemt atal pocet. Væ opmæksom på, at vækst-fomle e i familie med ekspoetialfuktioe. x De skives omalt på fome y b a. De e omtalt i et adet modul. De to fomle/fuktioe udtykke pæcis det samme et matematisk. I eksemplee på sidste side, blev vækst-fomle bugt til at fide. Me fomle ka også buges til at fide e af de ade støelse (, elle ). Det e dog e del svæee, fodi ma ete skal ege baglæs (ligigs-løsig) elle pøve sig fem (simulatio). I de æste eksemple skal vi fide. I 21 blev et beløb idsat på e koto, de give e fast ålig ete på %. I 211 va beløbet vokset til.22 k. Hvo mage pege blev de idsat? I 21 va de ca. hae i et omåde. Bestade va faldet med ca. 1% p. å i åee foide. Hvo mage hae va de i 2? (ædigspocete) e %, (atal ædige e (slutvædie) e.22 (statvædie) e ukedt og fides således: (1+,) 1, k. 1 1, (ædigspocete) e 1% -,1 (atal ædige e (slutvædie) e (statvædie) e ukedt og fides således:,8 (1,1),8 hae På egemaskie tykkes 22 1, ^ 1 i eksemplet til veste I eksemplet til høje, få ma 1 som esultat, me de e atuligvis ige, de ka vide, hvo mage hae de pæcis e i et omåde. Tallee og 1% e behæftet med usikkehed. Defo opgives facit som et udt tal. Med fae fo foviig vises he e typisk fejl. Det e fistede at ege eksemplet til høje således, me esultatet blive adeledes, og det e foket. I de fokete beegig e de eget "femad" i stedet fo "bagud". Me det e vigtigt at holde sty på, hvad de e stattal, og hvad de e sluttal. (1+,1) 1,1 8 hae 2,1... Pocet og ekspoetiel vækst Side e

6 Eksemple til iveau F, E og D Nu komme de eksemple på, hvoledes ma ka beege, å de ade støelse e kedte. Hold tuge lige i mude. Det e meget svæt! I 22 blev de idsat 12. k. på e koto. I 211 va beløbet (m. ete) vokset til k. Fid de ålige ete? Oplaget fo e avis e fa 2 til 21 faldet fa 2. til 21.1 eksemplae. Fid det geemsitlige ålige fald målt i pocet? (atal ædige e (slutvædie) e (statvædie) e 12. (ædigspocete) e ukedt og ka fides således: ( ( ,86.. (1+ 1, , 1+ 1, 1,,% Altså e ålig ete på,% (atal ædige e 21 2 (slutvædie) e 21.1 (statvædie) e 2. (ædigspocete) e ukedt og ka fides således: ( (1+ 2.,.. (1+,.. 1+, 1+, 1 -,1 -,1% Altså et åligt fald på,1% I eksemplet til veste tage ma de. od af 1,86 og få 1,. Altså: 1,86 1, Det e fodi, at 1, opløftet til. potes give 1,86. Altså fodi: 1, 1, 86 På egemaskie tykkes: x 1,86 elle (på ælde modelle: 1,86 INV y x I eksemplet til høje fide ma et geemsitligt ålige fald på,1%. Me det pæcise fald ka godt have væet støe ogle å og mide ade å. I eksemplet til veste ka ete godt væe vaiabel. Så e,% også et geemsitstal. He vises ige e typisk fejl. Det e fistede at ege eksemplet til høje således, me esultatet blive adeledes, og det e foket. Nå de stå geemsitlig ædig i pocet, (og e ædig ka både væe e stigig elle et fald) skal ma buge vækst-fomle. Samlet fald i tal: Samlet fald i pocet: 23,% 2. 23,% Geems. fald i pocet:,6% Pocet og ekspoetiel vækst Side f

7 Eksemple til iveau F, E og D Til sidst komme de eksemple på, hvoledes ma ka fide, å de ade støelse e kedte. I stedet fo at ege baglæs (ligigs-løsig), pøve ma sig fem (simulatio). Du sætte 6. k. id på e koto med e fast ålig ete på %. Hvoå vil beløbet (m. ete) å op på 1. k.? De bo lige u 13.8 pesoe i e kommue, me tallet fovetes at falde med 2% om ået. Hvoå vil befolkigstallet å 12.? (slutvædie) e 1. (statvædie) e 6. (ædigspocete) e %, (atal ædige e ukedt. Ma gætte på et tal som -vædi, sætte tallet id i fomle og beege. Vi gætte føst på 1 å ( 1) og få: 6. 1, k. Resultatet e mide ed 1., så vi må pøve med et støe. He 1: 6. 1, k. Nu e esultatet fo stot me dog lidt tættee på. Ved fotsat at pøve os fem, å vi til at: 6. 1, må altså væe 13 å. 1. k. (slutvædie) e 12. (statvædie) e 13.8 (ædigspocete) e 2%,2 (atal ædige e ukedt Ma gætte ige på et tal som -vædi, sætte tallet id i fomle og beege. Vi gætte ige på 1 å ( 1) og få: 13.8, pesoe Resultatet e mide ed 12., så vi pøve med et mide. He : 13.8, pesoe Nu e esultatet fo stot me dog lidt tættee på. Ved fotsat at pøve os fem, å vi til at: 13.8, må altså væe å. 12. pes. Eksemplet ovefo til veste ka også eges således: , 6. 1, , 6. 1, Så ka ma eftefølgede - som ovefo - sætte foskellige -vædie id og fosøge at amme 1, 1, Fo 13 få ma: 1, 13 1,66 Metode e hutigee, me de e også svæee at fostå. Pøv selv at buge metode på eksemplet ovefo til høje. Til sidst disse bemækige: eksemplee ovefo e lidt fo "pæe". Du fide meget sjældet e -vædi, de få fomle til at passe så godt som i disse eksemple. de fides e metode til at beege. Me de kæve bug af logaitme-fuktioe, og de må du læse om ade stede. Pocet og ekspoetiel vækst Side g

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

TEORETISK OPGAVE 3. Hvorfor er stjerner så store? TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Beslutning. Gothersgade karréen. Nansensgade 94-96, Gothersgade 155-159, Nørre Farimagsgade 65-71.

Beslutning. Gothersgade karréen. Nansensgade 94-96, Gothersgade 155-159, Nørre Farimagsgade 65-71. Beslutig FÆLLES GÅRDHAVE Gothesgade kaée Nasesgade 94-96, Gothesgade 155-159, Nøe Faimagsgade 65-71. Bogeepæsetatioe ha XX. XX 20XX tuffet byfoyelsesbeslutig om idetig af e fælles gådhave. De fælles gådhave

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00 1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,

Læs mere

Gravitationsfeltet. r i

Gravitationsfeltet. r i Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo

Læs mere

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år. 16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode

Læs mere

SPIL. Sandsynligheder og Strategier

SPIL. Sandsynligheder og Strategier SPIL Sadsylighede og Stategie Ole Witt-Hase Køge Gymasium 2006 INDHOLD Kap. Sadsylighede ved spil.... Lotto... øvelse...3 2. Poke...3 3. Ruisadsylighede ved Roulette mv....5 Kap 2. Stategie ved spil...9.

Læs mere

Sportsfiskerforeningen ALS medlem af Danmarks Sportsfiskerforbund

Sportsfiskerforeningen ALS medlem af Danmarks Sportsfiskerforbund Fomde h odet... medlem f Dmks Spotsfiskefobd å bg oet i Spotsfiskefoeige ALS. J det e toligt, som tide gå. Jeg vil gee beytte lejlighede til t bige e STOR TAK til lle de, de mødte op elle på de ee elle

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( ) Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Beregningsprocedure for de energimæssige forhold for forsatsvinduer

Beregningsprocedure for de energimæssige forhold for forsatsvinduer Beeninspocedue fo de eneimæssie fohold fo fosatsvindue Nævæende dokument beskive en pocedue til bestemmelse, af de eneimæssie fohold fo fosatsvindue. Det skal notees, at beeninen e baseet på en foeløbi

Læs mere

Etiske dilemmaer i fysioterapeutisk praksis

Etiske dilemmaer i fysioterapeutisk praksis side 06 fysioteapeuten n. 06 apil 2008 AF: FYSIOTERAPEUT, PH.D.-STUDERENDE JEANETTE PRÆSTEGAARD j.paestegaad@oncable.dk Foto: GITTE SKOV fafo.fysio.dk Etiske dilemmae i fysioteapeutisk paksis Hvis vi ikke

Læs mere

Summeret for kommuner og region

Summeret for kommuner og region Summeet fo kommue o eio Tilbud Tilsy o odkedelse i åsvæk Løudift Øvie Oveheadomkostie Omkostie Atal tilbud, de ha Ledelse Admiistatio Tilsy Godkedelse tilsy o i alt diftsudifte 1-7 8-24 25-49 odkedelse

Læs mere

Dimittendundersøgelse, 2009 Dato: 3. juni 2009

Dimittendundersøgelse, 2009 Dato: 3. juni 2009 Dimittendundesøgelse 2008-2009 Afspændingspædagoguddannelsen Dimittendundesøgelse, 2009 Dato: 3. juni 2009 Opsummeing af undesøgelse foetaget blandt dimittende fa Afspændingspædagoguddannelsen Datagundlag

Læs mere

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk hvolis@vibog.dk A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

KICK- START STANDE FORÅRETS SALG ENTRÉ GRATIS. Endnu ledige FOR JERES MESSEGÆSTER. - mød over 20.000 købedygtige nordjyder!

KICK- START STANDE FORÅRETS SALG ENTRÉ GRATIS. Endnu ledige FOR JERES MESSEGÆSTER. - mød over 20.000 købedygtige nordjyder! DET NYE KICK- START FORÅRETS SALG - mød ove 20.000 købedygtige nodjyde! Eksklusive moms Nodjysk Ivæksætte Netvæk indbyde igen til Se side 4 GRATIS ENTRÉ FOR JERES MESSEGÆSTER Endnu ledige STANDE - SE STANDPLAN

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I

Læs mere

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud TC A/S Nøegade 21 0900 København C Afgøelse om fastsættelse af WACC i fobindelse med omkostningsdokumentation af pisene i TC s standadtilbud Sagsfemstilling en 29. juni 2006 modtog TC s notat om den beegningsmæssige

Læs mere

Blisterpakninger i det daglige arbejde

Blisterpakninger i det daglige arbejde Bettia Carlse Marts 2013 Blisterpakiger i det daglige arbejde I paeludersøgelse 35 1 har 1.708 beskæftigede sygeplejersker besvaret e række spørgsmål om (hådterige af) blisterpakiger i det daglige arbejde.

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Erhvervs- og Selskabsstyrelsen

Erhvervs- og Selskabsstyrelsen Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com ESBILAC - modermælkserstatig til hvalpe VEJLEDNING De bedste start på livet, e yfødt hvalp ka få, er aturligvis at stille si sult med si mors mælk. Modermælk ideholder alt, hvad de små har brug for af

Læs mere

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Abejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Denne bog tilhøe Navn: Klasse: 1 Hvedagsliv fø og nu fotalt gennem Abejdemuseets

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Wear&Care Brugervejledning. A change for the better

Wear&Care Brugervejledning. A change for the better A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Rumgeometri Side 1 af 20

Rumgeometri Side 1 af 20 Rumgeometi Side af Idhold. Puktmægde i ummet..... Lije i ummet..... Pla... Paametefemstillige fo e pla i ummet e givet ved... Fa ligig til paametefemstillig... Fa paametefemstillig til ligig..... Kugle

Læs mere

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009 N. -9 Atom numme nul Fag: Fysik A Udabejdet af: Michael Bjeing Chistiansen, Åhus Statsgymnasium, august 9 Spøgsmål til atiklen 1. Hvofo vil det væe inteessant, hvis man fo eksempel finde antikulstof i

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Information til dig, der er elev som tekstil- og beklædningsassistent. og/eller beklædningshåndværker. Hej elev!

Information til dig, der er elev som tekstil- og beklædningsassistent. og/eller beklædningshåndværker. Hej elev! Iformatio til dig, der er elev som tekstil- og beklædigsassistet og/eller beklædigshådværker Hej elev! Til dig som er elev som tekstil- og beklædigsassistet og/eller beklædigshådværker Idustri Hej elev!

Læs mere

Helikopterprojekt Vejprospektering mellem Sisimiut og Sønderstrømfjord

Helikopterprojekt Vejprospektering mellem Sisimiut og Sønderstrømfjord Helikoptepojekt Vejpospekteing mellem Sisimiut og Søndestømfjod 7.-. august 006 Hold Emil Stüup-Toft, s060480 Vivi Pedesen, s06048 János Hethey, s03793 Moten Bille Adeldam, s00334 Rettelsesblad til tykt

Læs mere

De dynamiske stjerner

De dynamiske stjerner De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til

Læs mere

Julestjerner af karton Design Beregning Konstruktion

Julestjerner af karton Design Beregning Konstruktion Julestjene af katon Julestjene af katon Design Beegning Konstuktion Et vilkåligt antal takke En vilkålig afstand fa entum ud til spidsene En vilkålig afstand fa entum ud til toppunktene i "indakkene" En

Læs mere

info FRA SÆBY ANTENNEFORENING Lynhurtigt bredbånd til lavpris på vej til hele Sæby! Priser kan ses på bagsiden.

info FRA SÆBY ANTENNEFORENING Lynhurtigt bredbånd til lavpris på vej til hele Sæby! Priser kan ses på bagsiden. ifo FRA SÆBY ANTENNEFORENING Lyhurtigt bredbåd til lavpris på vej til hele Sæby! Priser ka ses på bagside. Velkomme til SAFet - avet på vores eget lokale Bredbåd! Sæby Ateeforeig har med virkig fra 15.

Læs mere

CO 2. -regnskab For virksomheden Jammerbugt Kommune

CO 2. -regnskab For virksomheden Jammerbugt Kommune -egnskab Fo viksomheden Jammebugt Kommune Fosidebilledet vise Ryå, de gå ove sine bedde -egnskab fo Jammebugt Kommune Jammebugt Kommune indgik d. 9. oktobe 2009 en klimakommuneaftale med Danmaks Natufedningsfoening.

Læs mere

Dårligt arbejdsmiljø koster dyrt

Dårligt arbejdsmiljø koster dyrt Dårligt arbejdsmiljø F O A f a g o g a r b e j d e koster dyrt Hvad koster et dårligt arbejdsmiljø, og hvad ka vi gøre for at bedre forholdee for de asatte idefor Kost- og Servicesektore? Læs her om de

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

VI SEJREDE! Vi kom, vi så,

VI SEJREDE! Vi kom, vi så, Vi kom, vi så, VI SEJREDE! Pojekt JCI Julehjælp Svendbog Hjælp os med at hjælpe ande 2011 afsluttede indsamlingen til tængte bønefamilie i Svendbog med sto succes! Søndag d. 18. dec. va sidste indsamlingsdag

Læs mere

Elektrostatisk energi

Elektrostatisk energi Elektomagnetisme ide 1 af 8 Elektostatik Elektostatisk enegi Fo et legeme, de bevæge sig fa et punkt til et andet, e tilvæksten i potentiel enegi høende til en konsevativ 1 kaft F givet ved minus det abejde,

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet Pension og Tilbagetækning - Ikke-paametisk Estimation af Heteogenitet Søen Anbeg De Økonomiske Råds Sekataiat, DØRS Pete Stephensen Danish Rational Economic Agents Model, DREAM DREAM Abedspapi 23:2 foeløbig

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Danish Thundersport Championship 2015

Danish Thundersport Championship 2015 aish hudespot Champioship 2015 dep Mi t på bille di Køb K A. CRA e totyp s Po e: Ma klasse ed. følg C Le 71-. ev bl.a 1 sse bile Opl mel 65-kla astiske Foged ade fat Le masse og e ANISH HUNERSPOR CHAMPIONSHIP

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og TIMEGLASSETS FASER: INTRO Itroe er et foto og ogle spørgsmål til hele kapitlet. Meige med itroe er, at du og di klasse skal få e ide om, hvad kapitlet hadler om, og hvad I skal lære. Prøv at svare på spørgsmålee

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Fra udsat til ansat. Medieinfo. Socialrådgiveren. job til udsatte unge. dgmedia.dk. ds advarer mod at spare i psykiatrien

Fra udsat til ansat. Medieinfo. Socialrådgiveren. job til udsatte unge. dgmedia.dk. ds advarer mod at spare i psykiatrien Socialådgiveen Medieinfo 2015 socialådgiveen 11/14 Læs mee om voes mange ande medie på Fa udsat til ansat viksomhedspaktik skaffe job til udsatte unge dgmedia.dk ds advae mod at spae i psykiatien Kommunalt

Læs mere

Impressivo. Installationsprodukter. Sæt liv i kontakterne. Få en optimal motorløsning side 28

Impressivo. Installationsprodukter. Sæt liv i kontakterne. Få en optimal motorløsning side 28 N. 6 Decembe 2009 pædede yssætig ide 8 Fuldautomatisk ESD-system øge sikkehede i sommeladet side 0 Impessivo. Istallatiospodukte. Sæt liv i kotaktee. Få e optimal motoløsig side 28 Hoses vad side 4 Kotakt

Læs mere

Til dig, der er lærerstuderende Kender du VIA CFU Center for Undervisningsmidler?

Til dig, der er lærerstuderende Kender du VIA CFU Center for Undervisningsmidler? Ti dig, der er ærerstuderede Keder du VIA CFU Ceter for Udervisigsmider? - for dig og di udervisig VIA CFU - tæt på praksis Når det kommer ti æremider, er VIA Ceter for Udervisigsmider eer bare VIA CFU

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

MSLT: Undersøgelse af søvnlatens

MSLT: Undersøgelse af søvnlatens MSLT: Udesøgelse af laes Du skal have foeage e Mulipel Søv Laes Tes - MSLT. Søvlaes e de id, de gå, fa du ha lag hovede på pude fo a, il du. SÅDAN FOREGÅR UNDERSØGELSEN Udesøgelse age e hel dag. Med 2

Læs mere

Impulsbevarelse ved stød

Impulsbevarelse ved stød Iulsbevaelse ved stød Iulsbevaelse ved stød Indhold Iulsbevaelse ved stød.... Centalt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevaelse ved stød...3 5. Centalt elastisk stød...4 6. Centalt

Læs mere

Psyken på overarbejde hva ka du gøre?

Psyken på overarbejde hva ka du gøre? Psyke på overarbejde hva ka du gøre? Idhold Hvorår kommer ma uder psykisk pres? 3 Hvad ka øge det psykiske pres på dit arbejde? 4 Typiske reaktioer 6 Hvorda forløber e krise? 7 Hvad ka du selv gøre? 9

Læs mere

Psykisk arbejdsmiljø (kort) udarbejdet af NFA (AMI)

Psykisk arbejdsmiljø (kort) udarbejdet af NFA (AMI) Psykisk abejdsmiljø (kot) udabejdet af NFA (AMI) Navn, dato, å Hvilken afdeling abejde du i? Afdelingens navn De følgende spøgsmål handle om dit psykiske abejdsmiljø. Sæt et kyds ud fo hvet spøgsmål ved

Læs mere

CoCo-obligationer i matematisk modelperspektivering

CoCo-obligationer i matematisk modelperspektivering CoCo-obligatione i matematisk modelpespektiveing CoCo bonds in a mathematical modeling pespective af JENS PRIERGAARD NIELSEN ######-#### THESIS fo the degee of MSc in Business Administation and Management

Læs mere

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

NOTAT Det daglige arbejde med blisterpakninger

NOTAT Det daglige arbejde med blisterpakninger Sige Friis Christiase 7. maj 2015 NOTAT Det daglige arbejde med blisterpakiger I paeludersøgelse 55 i DSRs medlemspael blev deltagere stillet e række spørgsmål om deres arbejde med blisterpakiger. Afrapporterige

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage Dages forelæsig Ige-Arbirage pricippe Claus Muk kap. 4 Nulkupoobligaioer Simpel og geerel boosrappig Forwardreer Obligaiosprisfassæelse Arbirage Værdie af e obligaio Nuidsværdie af obligaioes fremidige

Læs mere

Trivselsundersøgelse 2010

Trivselsundersøgelse 2010 Tivselsundesøgelse, byggeteknike, kot-og landmålingseknike, psteknolog og bygni (Intenatal) Pinsesse Chalottes Gade 8 København N T: Indhold Indledning... Metode... Tivselsanalyse fo bygni... Styke og

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Praksis om miljøvurdering

Praksis om miljøvurdering Paksis om miljøvudeing Miljøvudeingsdage 2015 Nyee paksis på miljøvudeingsomådet Flemming Elbæk Flemming Elbæk, advokat, HD(Ø) Ansættelse: Advokatfuldmægtig, 2006-2008 Juist, Miljøministeiet, 2008-2012

Læs mere

34. årgang Nr. 38 28. september 2014

34. årgang Nr. 38 28. september 2014 34. ågang N. 38 28. sptmb 2014 E-mail: Bakkanaln@bf-bakkn.dk Hjmmsid: www.bf-bakkn.dk Rdaktion Hjødis Dadlin søndag kl. 16 00 Rdigs af bofæll Indlæg til Bakkanaln: Skiv tkstn i aial 11 pkt Ovskift i aial

Læs mere

Hammerum hitter. Musikholdet kan danne et større orkester FOTO KRISTIAN GRAVERSGAARD. 200 gæster fik inspiration ved Efterskolernes dag

Hammerum hitter. Musikholdet kan danne et større orkester FOTO KRISTIAN GRAVERSGAARD. 200 gæster fik inspiration ved Efterskolernes dag - di vej til e god hadel 79. ågag Uge 3 Hammeum hitte Kike på Toftebo ved Ole Rasmusse Tosdag de 21. jaua kl. 10.00 Højskolesag og de gode fotællig Tosdag de 21. jaua kl. 10.00 i Kikelade Højmesse ved

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

2. februar Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 9. februar 2006 Michael Væth, Afdeling for Biostatistik.

2. februar Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 9. februar 2006 Michael Væth, Afdeling for Biostatistik. . februar 006 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 9. februar 006 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Børn og unge med seksuelt bekymrende og krænkende adfærd

Børn og unge med seksuelt bekymrende og krænkende adfærd Projekt Vest for Storebælt Bør og uge med seksuelt bekymrede og krækede adfærd Hvorår er der grud til bekymrig? Hvorda hevises et bar/e ug til gruppebehadlig? Hvad hadler projektet om? Projekt Vest for

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser.

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser. Betonø ha den støste vandføingskapacitet Et afløbssystems opgave e at lede vand samt uenhede til ensningsanlæg elle ecipient. Evnen til at gøe dette afhænge af systemets hydauliske egenskabe næmee betegnet

Læs mere

Til dig, der er lærerstuderende Kender du VIA CFU Center for Undervisningsmidler?

Til dig, der er lærerstuderende Kender du VIA CFU Center for Undervisningsmidler? Ti dig, der er ærerstuderede Keder du VIA CFU Ceter for Udervisigsmider? - for dig og di udervisig VIA CFU - tæt på di og skoes praksis Når det kommer ti æremider, er VIA Ceter for Udervisigsmider eer

Læs mere

Hidsig debat om fleksjobreform Sygemeldte følges tæt i Jammerbugt Når stress ødelægger helbredet

Hidsig debat om fleksjobreform Sygemeldte følges tæt i Jammerbugt Når stress ødelægger helbredet magasin om det ummelige abejdsmaked N. 14 decembe 2010 4. ågang lige mulighede fo alle altid Hidsig debat om fleksjobefom Sygemeldte følges tæt i Jammebugt Nå stess ødelægge helbedet Indhold Fleksicuity

Læs mere

Gråsten Berberie Gourmet And

Gråsten Berberie Gourmet And Gåsten - en bid bede! Gåsten Bebeie Goumet And Kået som Danmaks bedste juleand - skal bestilles nu! yevelfæ ed e d M Filand SLAGTET PÅ GÅRDEN en t o a n s p t I ng Dyevelfæd & kvalitet, fem fo nationalitet

Læs mere

Nanomaterialer Anvendelser og arbejdsmiljøforhold

Nanomaterialer Anvendelser og arbejdsmiljøforhold F O A F A G O G A R B E J D E Naomaterialer Avedelser og arbejdsmiljøforhold Dee Kort & Godt pjece heveder sig til dig, som er medlem af FOA. Pjece giver iformatio om: Hvad er et aomateriale? Eksempler

Læs mere

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1 Duo HOME Duo OFFICE Programmerigsmaual DK 65.044.50-1 INDHOLD Tekiske data Side 2 Systemiformatio, brugere Side 3-4 Ligge til og slette brugere Side 5-7 Ædrig af sikkerhedsiveau Side 8 Programmere: Nødkode

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere