Formelsamling til Fourieranalyse 10. udgave

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Formelsamling til Fourieranalyse 10. udgave"

Transkript

1 Formelsmling til Fouriernlyse. udgve Kristin Jerslev og Steven Hyden 3. oktober 9 Her følger en formelsmling lvet til kurset Fouriernlyse på Arhus Universitet. Bemærk venligst, t smlingen indeholder sætninger og formler, der er relevnt for opgveløsning, hvorfor ikke lle sætninger og formler er medtget. Visse sætninger hr ikke nogen relevns for opgveløsning og visse sætninger forudsættes kendte. Formler og sætninger er hentet fr notekompendiet A First Course in Wvelets with Fourier Anlysis. Fejl, forslg til forbedringer og lign. bedes henvendt til Kristin Jerslev, Nye og opdterede udgver vil ltid kunne hentes fr Ændringer fr 9. til. udgve Slåfejl rettet i formel (8) ( f(x) f(λ)) (Tk til Ole). Ændringer fr 8. til 9. udgve Fortegnsfejl rettet i formel (9) (Tk til Bent). Ændringer fr 7. til 8. udgve Tilføjet mindre uddybning om komplekse fourierkoefficienter for negtive værdier f k (formel ()) (Tk til Jn). Fortegnsfejl rettet i formel (33) (Tk til Dniel). Ændringer fr 6. til 7. udgve Fejl rettet i formel (7). Ændringer fr 5. til 6. udgve Stvefejl rettet i fsnittet om Plncherels sætning. Nottionen i fsnittet om Egenskber ved Fouriertrnsformtionen er blevet omskrevet. Ændringer fr 4. til 5. udgve Kosmetiske tilrettelser. Tilføjet fsnit om Fouriertrnsformtionen f lige og ulige funktioner. Fejl rettet i ligning 3.

2 Det indre produkt i L Definition.5 om det indre produkt i rummet L. På intervllet L ([, b]) er det indre produkt f to funktioner, f(x) og g(x) defineret som: f, g L = Generelt om Fourierrækker b f(x)g(x) dx () Sætning. om Fourierrækker. For en given funktion f(x), der er periodisk, vil Fourierrækken være givet ved: f(x) = + = k = π b k = π ( k cos (kx) + b k sin (kx)) () k= π π π π π π Fourierrækker på generelle intervller f(x) dx (3) f(x) cos (kx) dx (4) f(x) sin (kx) dx (5) Sætning.4 om Fourierrækker på generelle intervller. For en given funktion f(x), der er periodisk på intervllet x vil Fourierrækken være givet ved: f(x) = + = k = b k = k= [ k cos Fourierrækker for lige og ulige funktioner ( ) ( )] kπx kπx + b k sin (6) f(x) dx (7) f(x) cos dx (8) f(x) sin dx (9) Sætning.8 om Fourierrækker for lige og ulige funktioner. For en given lige funktion f(x) vil Fourierrækken på intervllet [, ] være givet ved: f(x) = + = k = k= k cos () f(x) dx () f(x) cos dx ()

3 Hvis f(x) er en ulige funktion på førnævnte intervl er Fourierrækken givet ved: f(x) = b k sin (3) k= b k = f(x) sin dx (4) Er funktionen f(x) kun defineret på et hlvintervl giver dette ikke noget problem. Fourierrækken på det hlve intervl kn udtrykkes som enten en cosinuseller en sinusrække. For t udtrykke f(x) som en cosinusrække udvides f(x) blot som en lige funktion og derefter findes Fourierrækken som vist ovenfor for lige funktioner. Tilsvrende for en udvidelse som ulige funktion. Fourierrækker på kompleks form For ethvert reelt tl, t, er den komplekse eksponentilfunktion givet som: e it = cos t + i sin t (5) Sætning.8 om Fourierrækker på kompleks form. Fourierrækken for en given funktion f(x) på intervllet [ π, π] er på kompleks form givet ved: f(x) = α k = k= π π α k e ikx (6) f(x)e ikx dx (7) Ønskes en omregning fr kompleks til reel Fourierrække benyttes følgende smmenhæng: = α (8) k = α k + α k (9) b k = i(α k α k ) () Hvor α k, b k og k er givet som vist tidligere. Ønskes en omregning fr reel til kompleks Fourierrække benyttes følgende smmenhæng: α = () α k = ( k ib k ) () Hvis f(x) tger reelle værdier, vil de kompleksekoefficienter for negtive værdier f k være givet ved α k = α k, hvor stjernen ngiver komplekskonjungering. 3

4 Konvergens for Fourierrækker Punktvis konvergens Sætning.8 om punktvis konvergens. Hvis funktionen f(x) er periodisk og stykkevis kontinuert og punktet x er et punkt, hvor f er både venstre- og højredifferentibel, men ikke nødvendigvis kontinuert, siges Fourierrækken t konvergerer imod: f(x + ) + f(x ) (3) Dermed sgt, t ved et diskontinuert punkt konvergerer Fourierrækken imod middelværdien f grænserne fr højre og venstre. Er f kontinuert er middelværdien det smme som funktionsværdien i punktet x. Uniform konvergens Sætning.3 om uniform konvergens. Hvis f(x) er en stykkevis glt og periodisk funktion vil Fourierrækken konvergerer uniformt mod f(x). Givet en funktion g(x), der opfylder ovenstående krv er den dermed også kontinuert. Som følge f sætning.8 vil en uniform konvergent Fourierrække dermed også være punktvis konvergent. Vær opmærksom på, t det modstte ikke gælder. For en uniform konvergent Fourierrække er det tilldt t sætte lighedstegn mellem Fourierrækken og funktionen selv. Givet f(x) er en funktion med Fourierrækken f(x) = + k= ( k cos ( ) kπx ) er det dermed tilldt t skrive f(x) = f(x) L konvergens Sætning.35 om L konvergens. Givet f(x) er en funktion i L ([ π, π]) vil funktionens Fourierrække konvergere mod f(x) i L forstnd. Sætning.36 om kompleks L konvergens. Givet f(x) er en funktion i L ([ π, π]) med komplekse Fourierkoefficienter, α k vil prtilsummen f N (x) = N k= konvergere mod f(x) i L forstnd, når N. Prsevls ligninger α k e ikx (4) Sætning.39 om Prsevls ligning på reel form. Antget f(x) hr Fourierrækken f(x) = + k= ( k cos kx+b k sin kx) L [ π, π] vil følgende identitet gælde: π π π f(x) dx = + ( k + b k ) (5) Dette udtryk bruges som oftest til t finde en værdi for summen f uendelige rækker. k= 4

5 Sætning.4 om Prsevls ligning på kompleks form. Antget f(x) hr Fourierrækken f(x) = k= α ke ikx L [ π, π] vil følgende identitet gælde: f = π f(x) dx = α k (6) π k= Yderligere vil der for to funktioner f og g L [ π, π] gælde: π f, g = f(x)g(x)dx = π k= α k β k (7) Hvor α k er de komplekse Fourierkoefficienter, der hører til funktionen f(x) og β k er de komplekse Fourierkoefficienter, der hører til g(x). Fouriertrnsformtion Sætning. om Fouriertrnsformtion og den inverse Fouriertrnsformtion. For en kontinuert og differentibel funktion f(x) med f(x) dx < vil følgende gælde: f(x) = f(λ) = f(λ)e iλx dλ (8) f(x)e iλx dx (9) I ovenstående udtryk benævnes f(x) som f s Fouriertrnsformerede. I det følgende vil en Fouriertrnsformtion blive benævnt F[f] = f. Egenskber ved Fouriertrnsformtion Fr sætning. fås følgende identitet. F [F[f]](x) = F [ f](x) = f(x) (3) Sætning.6 om egenskber ved Fouriertrnsformtionen. Hvis f(x) og g(x) er differentible funktioner der er defineret på den reelle kse med f(x) = for store x vil følgende egenskber for Fouriertrnsformtionen gælde. Fouriertrnsformen og den inverse Fouriertrnsform er linære opertorer. Det betyder, t for enhver konstnt c gælder: F[f + g] = F[f] + F[g] (3) F[cf] = cf[f] (3) F [f + g] = F [f] + F [g] (33) F [cf] = cf [f] (34) Fouriertrnsformtionen f et produkt f f(x) med x n er givet ved: F[x n f(x)](λ) = i n dn F[f](λ) (35) dλn 5

6 Den inverse Fouriertrnsformtion f et produkt f f(λ) med λ n er givet ved: F [λ n f(λ)](x) = ( i) n dn dx n F [ f](x) (36) Fouriertrnsformtionen f n gnge differentieret funktion, f(x) er givet ved: F[f (n) ](λ) = (iλ) n F[f](λ) (37) Den inverse Fouriertrnsformtion f en n gnge differentieret funktion, f(λ) er givet ved: F [ f (n) ](x) = ( ix) n F [ f](x) (38) Fouriertrnsformtionen for en vilkårlig trnsformtion lngs x-ksen er givet ved: F[f(x )](λ) = e iλ F[f](λ) (39) En skleret funktions Fouriertrnsformtion er givet ved: F[f(bx)](λ) = ( ) λ b F[f] b (4) Hvis f(x) = for x < så vil Fouriertrnsformtionen f f(x) være givet ved: F[f](λ) = L[f](iλ) (4) Hvor L[f] er LPlcetrnsformtionen f f(x) defineret ved: L[f](s) = Fouriertrnsformtionen f lige og ulige funktioner. f(x)e xs dx (4) Hvis f(x) er en lige funktion tger Fouriertrnsformtionen en meget pæn (og reel) form. F[f](λ) = f(x)e iλx dx = f(x) cos (λx) dx (43) Tilsvrende gælder det, t er g(x) en ulige funktion vil Fourierintegrlet tge en ren imginær form. F[g](λ) = g(x)e iλx dx = i g(x) sin (λx) dx (44) 6

7 Fouriertrnsformering f foldninger Definition.9 om foldningen f to funktioner. Hvis f(x) og g(x) er to kvdrtintegrble funktioner er foldningen, f g defineret ved: (f g)(t) = Ovenstående er ækvivlent med: (f g)(t) = f(t x)g(x) dx (45) f(x)g(t x) dx (46) Sætning. om Fouriertrnsformtionen f foldede funktioner. Hvis g(x) og f(x) er to kvdrtintegrble funktioner vil Fouriertrnsformtionen f deres foldning være givet ved: F[f g] = f ĝ (47) F [ f ĝ] = f g (48) Mere om Fouriertrnsformtionen som linær opertor Sætning. om Fouriertrnsformtionen som linær opertor. Hvis f(x) og g(x) er to kvdrtintegrble funktioner gælder følgende identitet: Plncherels formel F[f], g L = f, F [g] L (49) Sætning. om Plncherels formel. Hvis f(x) og g(x) er to kvdrtintegrble funktioner gælder følgende indentiteter: F[f], F[g] L = f, g L (5) F [f], F [g] L = f, g L (5) F[f] L = f L (5) 7

8 Vigtige Fouriertrnsformtioner Her følger en liste over funktioner og deres Fouriertrnsform, der er værd t hve ved hånden, når opgver skl løses. Normeringsfktor fr Fouriertrnsformtion er benyttet. f(x) {, b < x < b {, b < x < c x + ( > ) { x x +, < x < b x b, b < x < b { e x, < x < > { e x, b < x < c { e ix, b < x < b { e ix, b < x < c { c, < x < b e x > F{f(x)}(λ) sin (bλ) π λ e ibλ e icλ iλ π e λ π e λ + e ibλ e ibλ λ ( + iλ) e ( iλ)c e ( iλ)b ( iλ) sin (b(λ )) π λ i e ib( λ) e ic( λ) λ ic (e iλ e ibλ ) λ e λ 4 sin(x) π, λ < ;, λ > x { cos x, x π cos λπ π λ e x, > π ( + λ ) xe x iλ, > π ( + λ ) x e x ( λ ), > π ( + λ ) xe x iλe λ 8

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx = Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (

Læs mere

ANALYSE 1, 2014, Uge 3

ANALYSE 1, 2014, Uge 3 ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.

Læs mere

ANALYSE 1, 2013, Uge 2

ANALYSE 1, 2013, Uge 2 ANALYSE 1, 2013, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

For så kan de to additionsformler samles i én formel, der kan ses som et specialtilfælde af den komplekse eksponentialfunktions funktionalligning,

For så kan de to additionsformler samles i én formel, der kan ses som et specialtilfælde af den komplekse eksponentialfunktions funktionalligning, 15.1. Komplekse integrler 293 læse, og hvordn gør mn det i prksis? Men den virkelige motivtion bg begrebet bliver udst til fsnit 18.5, hvor vi viser t foldning f sndsynlighedsmål lder sig udtrykke meget

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1 SEKTION 7 FOURIERANALYSE 7 Fouriernlyse Periodiske funktioner er vigtige i mnge smmenhænge, både videnskbeligt og teknisk Vi vil normlisere, så ntger, t perioden er π Disse funktioner er bedst nlyseret

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Matematisk modellering og numeriske metoder. Lektion 12

Matematisk modellering og numeriske metoder. Lektion 12 Mtemtisk modellering numeriske metoder Lektion 12 Morten Grud Rsmussen 21. oktober, 213 1 Prtielle differentilligninger 1.1 Løsning f vrmeligningen vh. Fourierrækker [Bens sektion 12.6 på side 558] Vi

Læs mere

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske

Læs mere

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8.

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8. Anlyse Øvelser Rsmus Sylvester Bryder. og 5. oktober 3 Supplerende opgve Ld C([, b], C) betegne rummet f lle kontinuerte funktioner f : [, b] C, hvor < b, og definér et indre produkt på C([, b], C) ved

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Nsser 20. pril 2011 c 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Om Riemann-integralet. Noter til Matematik 1

Om Riemann-integralet. Noter til Matematik 1 Om Riemnn-integrlet. Noter til Mtemtik 1 Jon Johnsen Institut for Mtemtiske Fg, Alborg Universitet Fredrik Bjers Vej 7G, 9220 Ålborg Ø 3. december 2001 1 Indledning Integrlregning går tilbge til Newtons

Læs mere

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0 INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til

Læs mere

2. Fourierrækker i en variabel

2. Fourierrækker i en variabel .1. Fourierrækker i en variabel I Kapitel II 7 blev der indført, dels funktionsrummene L p (X, µ) (mere udførligt skrevet L p (X, E, µ)), dels rummene L p (X, µ), der fås af L p (X, µ) ved at funktioner

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2 Mt1GB Minilex Henrik Dhl, Hold 8 29. mj 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 18 2.1 Begrænsethed, åben/lukket..................... 18 2.2 Differentition............................ 18 2.3 Differentilligninger.........................

Læs mere

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010 Mtemtikprojekt om Integrlregning Lvet f Arendse Morsing Gunill Olesen Julie Slvensky Michel Hnsen 15 Oktober 21 Indhold I Del 1................................ 3 I Generelt om stmfunktioner og integrler........

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Matematisk modellering og numeriske metoder. Lektion 10

Matematisk modellering og numeriske metoder. Lektion 10 Matematisk modellering og numeriske metoder Lektion 10 Morten Grud Rasmussen 2. november 2016 1 Partielle differentialligninger 1.1 Det grundlæggende om PDE er Definition 1.1 Partielle differentialligninger

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Fourier transformationen

Fourier transformationen MODUL 6 Fourier transformationen Forfattere: Øistein WIND-WILLASSEN & Michael ELMEGÅRD 4. juni 4 Indhold Fourier transformationen 5. Definition og oprindelse.............................. 5.. Funktioner

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Analyse 1, Prøve 2 Besvarelse

Analyse 1, Prøve 2 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet maj Analyse, Prøve Besvarelse Opgave (3%) (a) (%) Bestem mængden af x R for hvilke rækken ( + (x) n ) er konvergent og angiv sumfunktionen

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Integrationsteknikker

Integrationsteknikker Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1

Læs mere

Fremkomsten af mængdelæren. Stig Andur Pedersen

Fremkomsten af mængdelæren. Stig Andur Pedersen Fremkomsten f mængdelæren Stig Andur Pedersen 1 Fourier række for f(x)=x x n 1 ( 1) 2 sin( nx) n n= 1 sin(2 x) sin(3 x) sin(4 x) = 2 sin( x) + + 2 3 4 De første 15 led er tget med på kurven. 2 Fourierrække

Læs mere

k(k 1)(k 2)... (k n + 1) = = 12 2 = 6

k(k 1)(k 2)... (k n + 1) = = 12 2 = 6 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Binomilformlen Binomilkoefficienter Binomilrækken Tylor polynomier Vurdering f Tylor s restled Eksponentilrækken konvereger mod eksponentilfunktionen Clculus

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

Eksamen i Mat F, april 2006

Eksamen i Mat F, april 2006 Eksamen i Mat F, april 26 Opgave Lad F være et vektorfelt, givet i retvinklede koordinater som: Udregn F og F: F x F = F x i + F y j + F z k = F y = z 2 F z xz y 2 F = F x + F y + F z = + + x. F = F z

Læs mere

9 Geodætiske kurver og Gauss-krumning

9 Geodætiske kurver og Gauss-krumning 9 Geodætiske kurver og Guss-krumning 9. Geodætiske kurver En ret linie i plnen fr punktet p til punktet q hr den egenskb t enhver nden kurve fr p til q hr kurvelængde som er mindst p q. Et stykke f en

Læs mere

Oversigt [S] 4.5, 5.10

Oversigt [S] 4.5, 5.10 Oversigt [S] 4.5, 5.0 Nøgleord og begreber Ubestemte udtryk l Hospitals regel l Hospitals regel 2 Test l Hospitals regel Uegentlige integraler Test uegentlige integraler Uegentlige integraler 2 Test uegentlige

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 Ligninger 1 3 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 2 c d e f 6 æg + 5 høns. 1 æle + 13 pærer. 5 myg + 1 flue. 6x + 5y + 13 3x + 5y 3 4 Gælder i nogle tilfælde. Gælder ltid. c Gælder

Læs mere

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k 0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0} Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de

Læs mere

Eksamensspørgsmål: Potens-funktioner

Eksamensspørgsmål: Potens-funktioner Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10 Oversigt [LA] 9 Nem vej til rel Nøgleord og begreber Helt simple determinnter Determinnt defineret Effektive regneregler Genkend determinnt nul determinnt nul Produktreglen Inversreglen inversregel og

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Om Dido var kyndig i matematik er nok tvivlsomt, men hun havde i hvert fald en veludviklet logisk sans, som vi skal se.

Om Dido var kyndig i matematik er nok tvivlsomt, men hun havde i hvert fald en veludviklet logisk sans, som vi skal se. Forord. Det isoperimetriske problem går i l sin enkelhed ud på t finde den lukkede kurve i plnen, blndt en mængde f kurver lle med smme omkreds, som fgrænser det størst mulige rel. Løsningen til det isoperimetriske

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Dgens emner fsnit 3.5 og 4. oissonfordelingen Sndsynlighedsregning 5. forelæsning Bo Friis Nielsen Mtemtik og Computer Science Dnmrks Tekniske Universitet 800 Kgs. Lyngby Dnmrk Emil: bfni@dtu.dk Kontinuerte

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Laplace- og Fouriertransformationer med anvendelser. Karin Lentfer Kristiansen og Thomas Hecksher

Laplace- og Fouriertransformationer med anvendelser. Karin Lentfer Kristiansen og Thomas Hecksher Laplace- og Fouriertransformationer med anvendelser Karin Lentfer Kristiansen og Thomas Hecksher EVU master i matematikuddannelsen på Aalborg Universitet 6. september 4 Resumé The following report is a

Læs mere

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2.

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2. Differentil-kvotient Ld f være en funktion - f.eks. f (x) = 2x 2. Produkt og mrked - differentil og integrlregning Rsmus Wgepetersen Institut for Mtemtiske Fg Alborg Universitet Februry 14, 2014 Differentilkvotienten

Læs mere

Stamfunktion & integral

Stamfunktion & integral PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn

Læs mere

Kompleks Funktionsteori

Kompleks Funktionsteori Kompleks Funktionsteori Formelræs Holomorfe funktioner Sætning. (Caucy-Riemans ligninger). Funktionen f : G C, f = u+iv er holomorf i z 0 = x 0 + iy 0 hvis og kun hvis i punktet (x 0, y 0 ). du dx = dv

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Matematik 2 MA Matematisk Analyse. Kapitel V. Sædvanlige og partielle differentialligninger. Gerd Grubb

Matematik 2 MA Matematisk Analyse. Kapitel V. Sædvanlige og partielle differentialligninger. Gerd Grubb 1 Matematik 2 MA Matematisk Analyse 1994 95 Kapitel V. Sædvanlige og partielle differentialligninger Gerd Grubb 1 1 Matematik 2. Matematisk Analyse 1994-95 Kapitel V. Sædvanlige og partielle differentialligninger

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger

Læs mere

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1 Analyse 1, Prøve 4 25. juni 29 Alle henvisninger til CB er henvisninger til Metriske Rum (1997, Christian Berg), alle henvisninger til TL er til Kalkulus (26, Tom Lindstrøm), og alle henvisninger til Opgaver

Læs mere

MATEMATIK 3 EN,MP 30. august 2013 Oversigt nr. 1

MATEMATIK 3 EN,MP 30. august 2013 Oversigt nr. 1 EN,MP 30. august 2013 Oversigt nr. 1 Litteratur: I Matematik 3 bruger vi (igen) i efteråret 2013 E. Kreyzig: Advanced engineering mathematics, 10. udg., Wiley, 2011. Beskrivelse: Kurset vil handle om matematiske

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... 1 BRØER... PARENTESER... 3 PROCENT... 4 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C Mihel Mndix (07) Sinusreltionen Nott Side f 9 Sinusreltionen Indtil videre, er der kun eskrevet, hvordn mn eregner på retvinklede treknter. Men desværre er det lngtfr lle treknter, som er retvinklede.

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere