Matematisk modellering og numeriske metoder. Lektion 12

Størrelse: px
Starte visningen fra side:

Download "Matematisk modellering og numeriske metoder. Lektion 12"

Transkript

1 Mtemtisk modellering numeriske metoder Lektion 12 Morten Grud Rsmussen 21. oktober, Prtielle differentilligninger 1.1 Løsning f vrmeligningen vh. Fourierrækker [Bens sektion 12.6 på side 558] Vi vil nu løse den en-dimensionelle vrmeligning. Principperne bg løsningsmetoden hr vi llerede set den første gng, vi løste bølgeligningen, fktisk vil der være stort smmenfld ikke blot i principperne, men så i de konkrete udregninger, grundet bølge- vrmeligningernes fællestræk. Det vil d vise sig, t det er forskellene, der kommer til t dominere, i den forstnd t løsningerne vil opføre sig fundmentlt forskelligt. Vi begynder med t formulere det problem, vi vil løse. I første omgng formulerer vi det som et fysisk problem, derefter modellerer vi det vh. en pssende PDE med begyndelses- rndbetingelser. Det fysiske system består f en tynd metlstng eller -tråd, som er perfekt homen, hr konstnt tykkelse, er fuldstændigt isoleret, bortset fr i enderne, hvor temperturen holdes på 1. Hvis vi vælger vort koordintsystem, så metlfætteren ligger lngs x-ksen med den ene ende i x = den nden ende i x = L, så er dens tempertur til tiden beskrevet ved f(x for < x < L, hvor f er en pssende funktion. Det fysiske ( om lidt mtemtiske problem består nu i t udregne, hvd temperturen på et givet punkt på stngen er til en vilkårlig positiv tid. Med ndre ord skl vi finde en funktion u, som opfylder, t u(x, = f(x (1 u(, t = u(l, t = for t, (2 1 Vi vælger f bekvemmelighedsårsger. Det er reltivt simpelt t indse, t differentilligningen er ligegld med konstnter, så vi kunne lige så vel hve vlgt temperturen 1 hvilken så viser, t der for metoden ikke er forskel på, om vi snkker om i eksempelvis C eller K. 1

2 som opfører sig, som vrme vil gøre. Til t håndtere sidstnævnte hr vi heldigvis vrmeligningen i én dimension u t = 2 u c2 x 2 (isoleringen tykkelsen f stngen gør, t vi kn betrgte problemet som en-dimensionelt. Vi tler om, t vi betrgter vrmeligningen med begyndelsesbetingelsen (1 rndbetingelsen (2. Bemærk, t vi ikke hr specificeret hstighedsændringen til tid t = i begyndelsesbetingelsen som vi gjorde det for bølgeligningen. Dette er ikke nødvendigt for vrmeligningen, er en første indiktion på, t dette problem opfører sig mrknt nderledes end tilfældet er for bølgeligningen. Løsningsmetoden består f de smme tre trin som for bølgeligningen. Trin 1: Seprering f vrible-metoden eller produktmetoden Antg, t løsningen kn skrives på formen u(x, t = F (xg(t. Så er u t = F G 2 u x 2 = F G. Vi sætter disse udtryk ind i vrmeligningen dividerer med c 2 F G får G c 2 G = F G c 2 F G = c2 F G c 2 F G = F F, hvor yderste højre yderste venstre udtryk hver især kun fhænger f t hhv. x, de må derfor være konstnte. Vi får derfor F kf = G c 2 kg =, ltså to ODE er, præcis som for bølgeligningen, med den fgørende, skl det vise sig forskel, t ODE en for G kun er førsteordens. Trin 2: Bestemmelse f løsninger, som opfylder rndbetingelserne Idet ligningen for F er identisk for bølge- vrmeligningen får vi med verbtim smme rgumenter, t k = p 2 skl være negtiv, t p = nπ t F derfor er givet som L F (x = F n (x = sin L x, hvor n N. Med λ n = cp = cnπ L k = p2 bliver ODE en for G ltså G + λ 2 ng =, som hr løsningen Hvis vi ltså skriver G n (t = b n e λ2 nt, hvor n N b n R. u n (x, t = F n (xg n (t = b n sin L x e λ2 n t, så er u n problemets egenfunktioner med egenværdier λ n. 2

3 Trin 3: Bestemmelse f løsninger, som så opfylder begyndelsesbetingelsen Indtil videre hr vi konstrueret løsninger som løser den endimensionelle vrmeligning med rndbetingelserne (2. Med mindre begyndelsesbetingelserne er helt specielle, vil vi i midlertid ikke hve fundet løsninger, som opfylder (1. Ideen er igen t tge linerkombintioner f u n erne, så resulttet opfylder begyndelsesbetingelserne. Vi ved fr Theorem 1.5 fr Lektion 1, t vi må tge endelige linerkombintioner f løsninger stdig hve en løsning (d vrmeligningen er homent lineær. Som for bølgeligningen vil vi imidlertid forsøge os med en uendelig linerkombintion: u(x, t = u n (x, t = b n sin L x e λ2 n t, hvor λ n = cnπ L. (3 Begyndelsesbetingelsen lyder u(x, = b n sin L x = f(x, (4 idet eksponentilfunktionerne fejes f bnen f t =. Af (4 fremgår det, t b n erne ltså skl være Fourier-koefficienterne for den ulige 2L-periodiske udvidelse f f, er ltså givet ved b n = 2 L L f(x sin L x dx. Dette beviser ikke, t u givet ved ovenstående er en løsning, blot t en evt. løsning på formen (3 nødvendigvis må være givet på denne måde. Et egentligt bevis er udenfor dette kursus fgrænsning. Vi nøjes med t konsttere, t det kn bevises, eksempelvis hvis f er stykkevist kontinuert hr venstre- højrefledede overlt. Vi bemærker, t idet λ 2 n >, så vil lle løsninger nærme sig nul med eksponentiel hst. At lle løsninger nærmer sig nul kn næppe overrske; en metlfætter, som ikke bliver tilført vrme, men som er fuldstændigt isoleret bortset fr i endepunkterne, hvor den holdes på nul grder, vil nturligvis gå mod en tempertur på nul overlt. En nden ting, vi bemærker, er, t jo større n, desto større λ 2 n, dermed hurtigere konvergens mod. Men hvd betyder et højere n for u n s begyndelsesværdi? Prøv t tegne situtionen, overbevis dig selv om, t større n er nturligt må betyde, t u n hurtigere konvergerer mod! 1.2 Eksempler Vi vil nu illustrere sidste fsnits fsluttende bemærkning med et konkret eksempel. Eksempel 1.1. For t få nle tl, mn kn forholde sig til, ud f det, ntger vi, t vi ser på en 8 cm lng kobberstng, hvor de fysiske dt er som følger: ρ = 8.92 g/cm 3, σ =.92 cl/(g C K =.95 cl/(cm s C. Med disse tl giver c 2 = K/(σρ = cm 2 /s. Vi betrgter to tilfælde. I det ene tilfælde er begyndelsesbetingelsen f givet f (x = 1 C sin( i det ndet er begyndelsesbetingelsen f b givet ved π x, 8 cm f b (x = 1 C sin( 3π 8 cm x. 3

4 Vi hr ltså b n (f = { 1 C for n = 1 C ellers b n (f b = { 1 C for n = 3 C ellers. idet λ 2 1 = π 2 /8 2 s 1 =.1785 s 1 λ 2 3 = 3 2 λ 2 1 =.167 s 1 er temperturudviklingen i de to tilfælde ltså givet ved hhv. u 1 (x, t = 1 C sin( π 8 cm xe.1785 s 1 t u 3 (x, t = 1 C sin( 3π 8 cm xe.167 s 1t. (Bemærk i øvrigt, hvordn enhederne for konstnterne utomtisk kommer til t psse, hvis ellers mn gør det rigtigt. Vi vil nu undersøge, hvor hurtigt mksimltemperturerne hlveres i hhv. det ene det ndet tilfælde. Det ses let, t mksimltemperturerne ntges i hhv. x = 4 cm (eksempelvis x = 8 cm (hvor hhv. den ene den nden sinus-fktor er 1, vi skl ltså blot 6 løse u 1 (4 cm, t = 1 Ce.1785 s 1t = 5 C u 3 ( 8 6 cm, t = 1 Ce.167 s 1t = 5 C som giver hhv. t = 388 s = 6.5 min t = 43 s, ndet tilfælde køler ltså 9 gnge så hurtigt f som det første tilfælde (hvorfor netop 9?. Vi vil nu betrgte en vrint, hvor begyndelsesbetingelsen giver nledning til uendeligt mnge Fourierled, modst ovenstående, hvor der kun vr brug for ét i hver sitution (hhv. (n = 1- (n = 3-ledet. Eksempel 1.2. Ld f være givet ved { x for < x < 4 cm f(x = 8 cm x for 4 cm < x < 8 cm. Ved omsklering koefficienterne fr opgve 15 i fsnit 11.2, som I blev stillet som opgve til lektion 9, ser vi, t for n 2N 32 cm b n (f = for n 4N 3. n 2 π 2 32 cm for n 4N 1 n 2 π 2 Dvs. 32 cm ( 1 n+1 (2n 1π u(x, t = sin( π 2 (2n 1 x exp( (2n 2 8 cm 12 λ 2 1t n N løser problemet. Men dette viser tydeligt, t for t > gælder det, t jo større n er, desto mindre er bidrget til summen ( jo større t, desto mindre behøver n være, før ledet bliver lille: ikke nok 1 med, t der i hvert led indgår en fktor, der indgår så en fktor exp( (2n 1 2 λ 2 (2n 1 1t ( 2 sidstnævnte går klrt hurtigst mod nul. Hvd betyder dette? Jo, det betyder, t så snrt tiden er strtet, vil udtrykket hurtigt domineres f dermed være reltivt velbeskrevet ved nle få, 32 cm π lngsomtsvingende sinus-kurver med (n = 1-ledet sin( x π 2 8 cm exp( λ2 1t som det klrt vigtigste. Med ndre ord vil selv denne meget skrpe fordeling f vrmen i udgngspunktet meget hurtigt blive glt rund ligne en sinus-kurve. Se i øvrigt figur 295 på side 652 i ben. 4

5 1.3 Nye rndbetingelser: isolerede endepunkter Vi vil nu se på, hvd der sker, hvis mn ikke fstholder endepunkterne f metlstngen på en bestemt tempertur, men i stedet isolerer dem, så de ikke kn fgive (eller optge vrme. Antgelse 3 fr lektion 11 vr, t vrmestrømningen vr proportionl med grdienten f temperturen. I vores endimensionelle setup svrer grdienter til prtielle x-fledede, isolerede endepunkter svrer til, t vrmestrømningen er. Med ndre ord betyder isoleringen, t vi i stedet for u(, t = u(l, t = hr rndbetingelsen u x (, t = u x (L, t =. (5 Anvendes produktmetoden nu igen (u(x, t = F (xg(t F ( = F (L =, så når mn i stedet frem til, t F skl være f typen F (x = F n (x = cos L x (evt. gnget med en konstnt, således t egenfunktionerne i stedet bliver u n (x, t = n cos L x e λ2 nt for λ n = cnπ L, n N {}, ltså inkl. n =! Vi ser ltså, t problemet hr som egenværdi med f (en vilkårlig konstnt funktion som tilhørende egenfunktion, vi ser, t vi for t løse begyndelsesværdiproblemer nu i stedet skl nvende Fourierrækker for lige funktioner (cosinus-udviklinger i stedet for ulige funktioner (sinus-udviklinger. Løsninger er derfor på formen u(x, t = = 1 L L n= n cos L x e λ2 n t, hvor λ n = cnπ L f(x dx smt n = 2 L L f(x cos L x. Det ses, t lle led undtgen (n = -ledet som er konstnt lig, som er begyndelsesværdiens gennemsnitsværdi går mod nul med eksponentiel hstighed. Forklr dette udfr intuitive betrgtninger! 1.4 Tidsufhængige vrmeledningsproblemer Lplce-ligningen Antg, t en vrmestrømning er i blnce i den forstnd, t den ikke ændrer sig over tid. Så er u t = i to dimensioner ser vrmeligningen pludselig således ud: = c 2 ( 2 u x u y 2 eller blot 2 u x + 2 u 2 y = 2 2 u =, som vi genkender som Lplce-ligningen, vi kort stiftede bekendtskb med i lektion 1. Begyndelsesbetingelsen bortflder (nturligvis? i dette tilfælde, vi står tilbge med et rndbetingelsesproblem, som kn være f tre forskellige typer. 5

6 Definition 1.3 (Rndbetingelser for Lplce-ligningen. Rndbetingelser for Lplce-ligningen inddeles i følgende tre typer. Dirichlet-rndbetingelser (eller rndbetingelser f første type er betingelser, hvor u er ngivet på rnden. Neumnn-rndbetingelser (eller rndbetingelser f nden type er betingelser, hvor u n er ngivet på rnden, hvor n er en vektor, som står vinkelret på rnden. Robin-rndebetingelser (eller rndbetingelser f tredje type er betingelser, hvor u er ngivet på en del f rnden, mens u n er ngivet på resten f rnden. Eksempel 1.4. Vi illustrerer nu Dirichlet-problemet for den todimensionelle Lplce-ligning. Ld R = [, ] [, b], så rnden S består f de fire linjestykker i rummet L 1 = {} [, b], L 2 = [, ] {b}, L 3 = {} [, b] L 4 = [, ] {}, S = L 1 L 2 L 3 L 4. Antg, t u(, y = på L 1, u(x, b = f(x på L 2, u(, y = på L 3 u(x, = på L 4. Igen nvendes produktmetoden, hvor vi ntger, t u(x, y = F (xg(y. Dette giver ved lidt rbejde nvendelse f rndbetingelserne på L 1, L 3 L 4 F (x = F n (x = sin x G(y = G n (y = n sinh y (bemærk, t den ene er en sinus hyperbolsk! dermed egenfunktionerne u n (x, y = n sin x sinh y, som vi summer smmen til u(x, y = n sin x sinh y. Rndbetingelserne på L 2 giver derfor t ( b nπ u(x, b = n sinh sin( x = f(x. For t dette kn være opfyldt, må n sinhb være lig Fourier-koefficienterne for f tolket som en ulige 2-periodisk funktion (d det er sinus-rækken, de indgår i. Altså b n sinh = b n (f = 2 f(x sin x dx eller n = b n(f sinhb = 2 sinhb f(x sin x dx. Vi hr igen ikke bevist, t dette er en løsning, men dette kn vises, eksempelvis hvis f f er kontinuerte, f er stykkevist kontinuert. Vi bemærker fslutningsvist, t så den tidsufhængige bølgeligning reducerer til Lplceligningen, ligesom flere ndre nturlige, fysiske problemer gør i det tidsufhængige tilfælde. Eksempelvis vil så en stillestående sæbehinde være beskrevet f Lplce-ligningen. 6

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

Matematisk modellering og numeriske metoder. Lektion 10

Matematisk modellering og numeriske metoder. Lektion 10 Matematisk modellering og numeriske metoder Lektion 10 Morten Grud Rasmussen 2. november 2016 1 Partielle differentialligninger 1.1 Det grundlæggende om PDE er Definition 1.1 Partielle differentialligninger

Læs mere

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx = Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

Formelsamling til Fourieranalyse 10. udgave

Formelsamling til Fourieranalyse 10. udgave Formelsmling til Fouriernlyse. udgve Kristin Jerslev og Steven Hyden 3. oktober 9 Her følger en formelsmling lvet til kurset Fouriernlyse på Arhus Universitet. Bemærk venligst, t smlingen indeholder sætninger

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k 0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

ANALYSE 1, 2014, Uge 3

ANALYSE 1, 2014, Uge 3 ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

Om Dido var kyndig i matematik er nok tvivlsomt, men hun havde i hvert fald en veludviklet logisk sans, som vi skal se.

Om Dido var kyndig i matematik er nok tvivlsomt, men hun havde i hvert fald en veludviklet logisk sans, som vi skal se. Forord. Det isoperimetriske problem går i l sin enkelhed ud på t finde den lukkede kurve i plnen, blndt en mængde f kurver lle med smme omkreds, som fgrænser det størst mulige rel. Løsningen til det isoperimetriske

Læs mere

UGESEDDEL 52. . Dette gøres nedenfor: > a LC

UGESEDDEL 52. . Dette gøres nedenfor: > a LC UGESEDDE 52 Opgve 1 Denne opgve er et mtemtisk eksempel på Ricrdo s én-fktor model, der præsenteres i Krugmn & Obstfeld kpitel 2 side 12-19. Denne model beskriver hndel som et udslg f komprtive fordele

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

114 Matematiske Horisonter

114 Matematiske Horisonter 114 Mtemtiske Horisonter Mtemtik i medicinudvikling Af Ph.d-studerende Ann Helg Jónsdóttir, Ph.d-studerende Søren Klim, Ph.d-studerende Stig Mortensen og Professor Henrik Mdsen, DTU Informtik Hovedpinen

Læs mere

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet.

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet. !#" $ "&% (')"&*,+.-&/102%435"&6,+879$ *1')*&: or et system, hvor kun den termiske energi ændres, vil tilvæksten E term i den termiske energi være: E term A + Q hvor A er de ydre kræfters rbejde på systemet

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Integrationsteknikker

Integrationsteknikker Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

Krumningsradius & superellipsen

Krumningsradius & superellipsen Krumningsrdius & suerellisen Side /5 Steen Toft Jørgensen Krumningsrdius & suerellisen Formålet med dette mini-rojekt er t erhverve mtemtisk viden om krumningsrdius f en kurve og nvende denne viden å det

Læs mere

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1 SEKTION 7 FOURIERANALYSE 7 Fouriernlyse Periodiske funktioner er vigtige i mnge smmenhænge, både videnskbeligt og teknisk Vi vil normlisere, så ntger, t perioden er π Disse funktioner er bedst nlyseret

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3

Læs mere

Elementær Matematik. Vektorer i planen

Elementær Matematik. Vektorer i planen Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning

Læs mere

KEGLESNIT OG BANEKURVER

KEGLESNIT OG BANEKURVER KEGLESNIT OG BANEKURVER x-klsserne Gmmel Hellerup Gymnsium INDHOLDSFORTEGNELSE INDHOLDSFORTEGNELSE... BEGREBET KEGLE... 3 KEGLESNIT... 5 Cirkel... 6 Ellipse... 8 Prbel... 15 Hyperbel... 19 Keglesnitsligninger

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 17. oktober, 2013 1 Partielle differentialligninger 1.1 D Alemberts løsning af bølgeligningen [Bogens sektion 12.4 på side 553]

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

ANALYSE 1, 2013, Uge 2

ANALYSE 1, 2013, Uge 2 ANALYSE 1, 2013, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Om Riemann-integralet. Noter til Matematik 1

Om Riemann-integralet. Noter til Matematik 1 Om Riemnn-integrlet. Noter til Mtemtik 1 Jon Johnsen Institut for Mtemtiske Fg, Alborg Universitet Fredrik Bjers Vej 7G, 9220 Ålborg Ø 3. december 2001 1 Indledning Integrlregning går tilbge til Newtons

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Opstakning og afstakning, fremadregning og tilbageregning

Opstakning og afstakning, fremadregning og tilbageregning 1 Opstkning og fstkning, fremdregning og tilgeregning 1.1 Fremdregning og tilgeregning...2 1.2 Æskeregning...2 1.3 Høseringe-regning, indkodning og fkodning...3 1.4 Vndret tilgeregning, t dnse en ligning...3

Læs mere

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....

Læs mere

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a.

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a. 5. FORSKRIFT FOR EN POTENSFUNKTION Vi hr i vores gennemgng f de forskellige funktionstper llerede være inde på udtrk, som indeholder forskellige potenser f I dette kpitel skl vi se på forskellige tper

Læs mere

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2 Mt1GB Minilex Henrik Dhl, Hold 8 29. mj 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 18 2.1 Begrænsethed, åben/lukket..................... 18 2.2 Differentition............................ 18 2.3 Differentilligninger.........................

Læs mere

Eksamensspørgsmål: Potens-funktioner

Eksamensspørgsmål: Potens-funktioner Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for

Læs mere

PotenssammenhÄnge. 2009 Karsten Juul

PotenssammenhÄnge. 2009 Karsten Juul PotenssmmenhÄnge y b y k k 009 Krsten Juul Dette häfte er en fortsättelse f häftet "Eksponentielle smmenhänge, 009". Indhold 4. Hvd er en potens-smmenhäng?... 83 5. Hvordn ser grfen ud for en potens-smmenhäng...

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeborg 09-0-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Udrbejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger fejl i

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Projekt 10.3 Terningens fordobling

Projekt 10.3 Terningens fordobling Hvd er mtemtik? C, i-og Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deduere sig til og konstruere ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige, t l den viden, der

Læs mere

Analyse 30. januar 2015

Analyse 30. januar 2015 30. jnur 2015 Større dnsk indkomstulighed skyldes i høj grd stigende kpitlindkomster Af Kristin Thor Jkosen Udgivelsen f Thoms Pikettys Kpitlen i det 21. århundrede hr fstedkommet en del diskussion f de

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE...

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE... MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: FERUAR 04 Michel Mndi (00) Side f 35 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... EN TREKANTS VINKELSUM... 3 PYTHAGORAS

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske

Læs mere

1. Eksperimenterende geometri og måling

1. Eksperimenterende geometri og måling . Eksperimenterende geometri og måling Undersøgelse Undersøgelsen drejer sig om det såkldte Firfrveproblem. For mere end 00 år siden fndt mn ved sådnne undersøgelser frem til, t fire frver er nok til t

Læs mere

9 Geodætiske kurver og Gauss-krumning

9 Geodætiske kurver og Gauss-krumning 9 Geodætiske kurver og Guss-krumning 9. Geodætiske kurver En ret linie i plnen fr punktet p til punktet q hr den egenskb t enhver nden kurve fr p til q hr kurvelængde som er mindst p q. Et stykke f en

Læs mere

Stamfunktion & integral

Stamfunktion & integral PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn

Læs mere

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion)

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion) Mere end lot lektiehjælp Få topkrkter i din SRP 12: Hovedfsnittene i din SRP (Redegørelse, nlyse, diskussion) Hjælp til SRP-opgven Sidste år hjlp vi 3.600 gymnsieelever med en edre krkter i deres SRP-opgve.

Læs mere

ELEVER underviser elever En motiverende metode Drejebog med eksempler

ELEVER underviser elever En motiverende metode Drejebog med eksempler ELEVER underviser elever En motiverende metode Drejeog med eksempler Lyngy Tekniske Gymnsium Introduktion Lyngy Tekniske Gymnsium, HTX, hr i smrejde med Udviklingslortoriet for pædgogisk og didktisk prksis

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske - 8 - Appendi : Logistisk vækst og integrlregning. I forbindelse med eksponentielle vækstfunktioner er der tle om en vækstform, hvor funktionens væksthstighed er proportionl med den ktuelle funktionsværdi,

Læs mere

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2.

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2. Differentil-kvotient Ld f være en funktion - f.eks. f (x) = 2x 2. Produkt og mrked - differentil og integrlregning Rsmus Wgepetersen Institut for Mtemtiske Fg Alborg Universitet Februry 14, 2014 Differentilkvotienten

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

Matematikken bag perspektivet I

Matematikken bag perspektivet I Supperende mterie ti erspektiv med GeoMeter Mtemtikken bg perspektivet I Som udgngspunkt for t diskutere de vigtigste mtemtiske sætninger bg perspektivtegninger vi vi benytte noge eementære egenskber for

Læs mere

Matematik - introduktion. Martin Lauesen February 23, 2011

Matematik - introduktion. Martin Lauesen February 23, 2011 Mtemtik - introduktion Mrtin Luesen Februry 23, 2011 1 Contents 1 Aritmetik og elementær lgebr 3 1.1 Symboler............................... 3 1.1.1 ligheder............................ 4 1.1.2 uligheder...........................

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler

Læs mere

Integralregning. Erik Vestergaard

Integralregning. Erik Vestergaard Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

Pust og sug Design og konstruktion af et apparat til at måle udåndingsvolumen Biomedicinsk teknologi

Pust og sug Design og konstruktion af et apparat til at måle udåndingsvolumen Biomedicinsk teknologi Pust og sug Design og konstruktion f et pprt til t måle udåndingsvolumen Biomedicinsk teknologi Ingeniørens udfordring Elevæfte Menneskekroppen, Åndedrætssystemet 1 Pust og sug Ingeniørens udfordring At

Læs mere

Lukkede flader med konstant krumning

Lukkede flader med konstant krumning Lukkede flder med konstnt krumning Hns Anton Slomonsen Arhus Universitet Mrch 13, 2015 En flde i rummet B A giver nledning til to mål for fstnden mellem to punkter A og B på flden: - længden f den rette

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10 Oversigt [LA] 9 Nem vej til rel Nøgleord og begreber Helt simple determinnter Determinnt defineret Effektive regneregler Genkend determinnt nul determinnt nul Produktreglen Inversreglen inversregel og

Læs mere

Astrofysik. M bol = konstant + α log Π,

Astrofysik. M bol = konstant + α log Π, Astrofysik Ugeseddel 6 7 9/5 giver jeg en indledning til kosmologi med en gennemgng f Fundmentl Astronomy, Kpitel 19, og det supplerende mterile på denne ugeseddel. 11/5 behndler jeg målinger f kosmologiske

Læs mere

Dødelighed og kræftforekomst i Avanersuaq. Et registerstudie

Dødelighed og kræftforekomst i Avanersuaq. Et registerstudie Dødelighed og kræftforekomst i Avnersuq. Et registerstudie Peter Bjerregrd, Anni Brit Sternhgen Nielsen og Knud Juel Indledning Det hr været fremført f loklbefolkningen i Avnersuq og f Lndsstyret, t der

Læs mere

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Dgens emner fsnit 3.5 og 4. oissonfordelingen Sndsynlighedsregning 5. forelæsning Bo Friis Nielsen Mtemtik og Computer Science Dnmrks Tekniske Universitet 800 Kgs. Lyngby Dnmrk Emil: bfni@dtu.dk Kontinuerte

Læs mere

Fremkomsten af mængdelæren. Stig Andur Pedersen

Fremkomsten af mængdelæren. Stig Andur Pedersen Fremkomsten f mængdelæren Stig Andur Pedersen 1 Fourier række for f(x)=x x n 1 ( 1) 2 sin( nx) n n= 1 sin(2 x) sin(3 x) sin(4 x) = 2 sin( x) + + 2 3 4 De første 15 led er tget med på kurven. 2 Fourierrække

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger

Læs mere