GENEREL INTRODUKTION.

Størrelse: px
Starte visningen fra side:

Download "GENEREL INTRODUKTION."

Transkript

1 Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION. Materialer. Du skal bruge - E lærebog til matematik C (fællesfag). - Matematiklærerforeiges opgavesamlig - E tabelsamlig med retetabeller og tabeller over biomialfordeliger. - Matematisk formelsamlig for HF fællesfag. - E lommereger Lommereger. E lommereger (helst e grafikreger) er e ødvedighed. De skal som et miimum have kvadratrod, sius, cosius, tages, logaritme, deres omvedte samt y x (eller tilsvarede). Ældre modeller giver de ulempe, at du i ogle tilfælde skal idtaste "baglæs". På sådae maskier bereges kvadratrode af 47 ved at taste 47. På yere modeller og grafikregere tastes (47) lige som ma skriver. Uder alle omstædigheder bør du gøre dig fortrolig med di reger, så maski-problemer ikke giver støj uder idlærige af matematikke. Vær især opmærksom på bruge af pareteser, år der reges med brøker. Forudsætiger. Ide du går i gag med pesum til Matematik C, er det e god ide at du sikrer dig, at du har forudsætigere i orde. Det drejer sig om fortrolighed med reglere for regig med brøker, pareteser, kvadratrødder og ligede. Disse emer idgår ikke i pesum for Matematik C. Alligevel medtager mage lærebøger til Matematik C et afsit til opfriskig af disse forudsætiger. Slår det ikke til, vil di kotaktperso sikkert gere hevise til supplerede materiale. Adre råd. De fleste har fordel af at fide e læsemakker. Sidder du alligevel fast i stoffet, tilbyder mage skoler et værksted, hvor ma ka få hjælp. De fleste lærebøger har et opgaveafsit med programmerede opgaver (opgaver med svar). Reg så mage af dem, at du føler dig tryg. EMNELISTEN. Idledig. Dee guide er bygget op efter følgede pricip. Til hvert eme er der e beskrivelse af - - Hvad skal jeg kue. Mudtlig eksame vedrører væsetligst Hvad skal jeg vide. Det meste er omtalt i formelsamlige.

2 Vigtigt. Af puktere uder Hvad skal jeg vide skal du kue begrude ogle. Adre ka du øjes med at omtale. Det er op til dig at vælge, hvilke du vil argumetere for. Skriftlig eksame hadler tilsvarede om Hvad jeg skal kue. Det væsetligste er listet i det følgede. Me i de sidste ede er det de opgaver, der har været givet til eksame, der fastlægger pesum. FUNKTIONER: Først et udsit af bekedtgørelse ad 4) Fuktioer: E fuktio beskriver de sammehæg, der er mellem de uafhægige og de afhægige variabel. Dee sammehæg ka fastlægges på forskellige måder, og behadlige skal omfatte fuktioer, der er fastlagt ved e regeforskrift, ved tabel, ved graf samt ved algoritme idb ygget fx i e lomm ereger. Sp ecielt skal fuktioere med forskriftere kvadratrod x, x, /x og log(x) behadles. Uder fuktioers mootoiforhold behadles begrebere voksede og aftagede fuktio samt begrebere største- og midsteværdi for e fuktio. I forbidelse med koordiatsystemer arbejdes også med eksempler på koordiatsystemer med forskudte akser og med koordiatsystemer med forskellige akseeheder. Ved behadlig af de lieære fuktioer og de ekspoetielt voksede/aftagede fuktioer skal deres udstrakte rolle som beskrivelsesmiddel ved mage i praksis forekommede problemstilliger uderstreges. Forskriftere ax+b og b. a x behadles, og de idgåede kostaters betydig diskuteres. I forbidelse med ekspoetiel vækst behadles edvidere begrebere fordobligs- og halverigskostat. Fuktioer geerelt.. E fuktio f beskriver sammehæge mellem de afhægige variable (-koordiate) og de uafhægige variable (-koordiate). -koordiate er e fuktio af -koordiate. Ma skriver ofte f(x) for f s værdi eller billede, år -koordiate har værdie x.. E fuktios defiitiosmægde Dm(f) består af de lovlige -koordiater. 3. E fuktios værdimægde Vm(f) består af de -koordiater, der svarer til -koordiatere i defiitiosmægde. 4. E fuktio har é og ku é værdi (-koordiat) svarede til é -koordiat i fuktioes defiitiosmægde. Hvad skal jeg kue.. Afgøre hvem der er de uafhægige variable d.v.s. -koordiate, og hvem der er de afhægige variable d.v.s. -koordiate.. Tege grafe for e fuktio, der er givet ved e regeforskrift eller e tabel. 3. Fide e fuktios defiitios- og værdimægder ud fra des graf. Fide fuktioes mootoiitervaller. 4. Løse ligiger og uligheder af forme f(x) = g(x) og f(x) < g(x) grafisk og for lieære eller ekspoetielle fuktioer ved beregig. Lieære fuktioer.. E fuktio kaldes lieær, hvis des graf i et sædvaligt koordiatsystem er (e del af) e ret liie.. Lieære fuktioer har regeforskrifter af form f(x) = ax + b, hvor a og b er tal. 3. Tallet a kaldes grafes hældigskoefficiet eller stigigstal. 4. Tallet b er -koordiate til grafes skærigspukt med -akse d.v.s. f(0) = b. 5. Ideholder grafe puktere (x ) og (x ), ka a bereges af

3 3. 6. Har grafe hældigskoefficiete a, og ligger (x ) på grafe, ka b bereges af b = y - ax. Hvad skal jeg kue.. Afgøre, om 3 pukter ligger på samme rette liie, ved at berege og sammelige hældigskoefficieter.. Fide regeforskrifte for e lieær fuktio, hvis graf ideholder puktere (x ) og (x ). 3. Har fuktioe forskrifte f (x) = ax + b, skal du kue fide y år x er kedt og fide x år y er kedt. 4. Har fuktioe forskrifte f (x) = ax + b, skal du kue tege des graf i et sædvaligt koordiatsystem. Ekspoetielle fuktioer.. E fuktio kaldes ekspoetiel, hvis des graf i et halvlogaritmisk koordiatsystem er (e del af) e ret liie.. Ekspoetielle fuktioer har regeforskrifter af form f(x) = b a x, hvor a og b er positive tal. 3. Tallet a kaldes fuktioes fremskrivigsfaktor. a = + r, hvor r er vækstrate. 4. Tallet b er -koordiate til grafes skærigspukt med -akse d.v.s. f(0) = b. 5. Ideholder grafe puktere (x ) og (x ), ka a bereges af. 6. Har fuktioe fremskrivigsfaktore a, og ligger (x ) på grafe, ka b bereges af. 7. E voksede ekspoetiel fuktio har e fordobligskostat T, e aftagede har halverigskostat T /.. Hvad skal jeg kue.. Fide regeforskrifte for e ekspoetiel fuktio, hvis graf ideholder puktere (x ) og (x ).. Har fuktioe e forskrift af forme f (x) = b a x, skal du kue fide y år x er kedt og fide x år y er kedt. 3. Har fuktioe e forskrift af forme f (x) = b a x, skal du kue tege des graf i et sædvaligt og i et halvlogaritmisk koordiatsystem. 4. Fide a ud fra T eller T / og omvedt. 5. Fide T eller T / ud fra grafe i et halvlogaritmisk koordiatsystem. 6. Løse ekspoetielle ligiger af forme b. a x = c.

4 4 Matematiske modeller.. E matematisk model af "oget" fra virkelighede er et stykke matematik, der gegiver "de væsetligste" sider af "oget". Hvad skal jeg kue.. Tage stillig til om der gælder e med tilærmelse lieær eller ekspoetiel sammehæg mellem to størrelser ved at plotte i heholdsvis almidelige og halvlogaritmisk koordiatsystem.. Fide regeforskrifte for modelle ved at læse på de bedste rette liie i koordiatsystemet. PROCENTREGNING. Ideholder ifølge bekedtgørelse Procetregig; geemsitlig procet, idekstal, vejet geem sit. Retesregig; opsparigs- og gældsauitet.. Fremskrivigsfaktore bereges af. Vækstrate fides af fremskrivigsfaktore ved r = a De geemsitlige vækstrate r af ratere r, r, r bestemmes af 4. Et idex I for "oget" fra virkelighede er 5. Det vejede geemsit af størrelsere s, s, s med vægtee v, v,.v er Retesregig. Bekedtgørelse siger: Procetregig omfatter fremskrivig med fast procet og reteformle. Formler for opsparigs- og gældsauitet skal beyttes til beregig og/eller vurderig af de idgåed e størrelser.. E kapital K 0 sat på rete med retefode r i termier vokser til K = K 0 (+r) (reteformle).. E auitet er e opsparigsform, hvor et beløb b idsættes gage på efterfølgede termisdage til rete r. Lige efter sidste idbetalig er auitetes værdi 3. E gældsauitet er e afbetaligsform, hvor gælde G afdrages med ydelser y idbetalt

5 5 på termisdage til rete r. Optages lået på termisdage før første afdrag er Hvad skal jeg kue.. Hvis tre af størrelsere K 0, K, r og i reteformle er kedte, skal du kue fide de sidste.. Rege om fra f. eks. måedlig rete til årlig rete. 3. Hvis tre af størrelsere A, b, r og i auitetsformle er kedte, skal du kue fide de sidste (r dog ku med de øjagtighed, retetabelle giver). 4. Hvis tre af størrelsere G, r og i formle for gældsauitet er kedte, skal du kue fide de sidste (r dog ku med de øjagtighed, retetabelle giver). GEOMETRI OG TRIGONOMETRI. I bekedtgørelse læser vi ad 3) Geom etri og trigo ometri: I forbidelse med trekater omtales vikelsum, højde og areal. Sammehæge mellem sideres lægde i esviklede trekater behadles. Beregig af sider og vikler i retviklet trekat omfatter sius, cosius og tages samt de pythagoræiske læ resætig.. Summe af viklere i ehver trekat er 80 o.. Arealet af e vilkårlig trekat med højde h og grudliie g er /. hg. 3. To trekater kaldes esviklede, hvis deres vikler er parvis es. 4. I esviklede trekater er sidere proportioale. D.v.s. er sidere i de ee a, b og c og de tilsvarede i de ade a, b og c gælder 5. Hvorda sius og cosius til e spids vikel er fastlagt ete ud fra e retviklet trekat med hypoteuse eller ud fra ehedscirkle. 6. At tages til e spids vikel er fastlagt ved 7. Med de sædvalige betegelser (a er katete over for vikel A, b ligger over for B. c er hypoteuse og C er ret) gælder og tilsvarede for vikel B. 8. Med sædvalige betegelser gælder (de pythagoræiske sætig) a + b = c eller a = c - b. Hvad skal jeg kue.. Af areal, højde og grudliie fide de ee, år de to adre er kedte.. Fide ukedte sider i esviklede trekater ud fra kedte. 3. Ud fra e side samt e side eller vikel i e retviklet trekat fide reste. (Det ka ofte være e

6 6 fordel at tege e delfigur, hvis opgave hadler om e kompliceret figur). SANDSYNLIGHEDSREGNING OG STATISTIK. Bekedtgørelse siger: ad 5) Sadsylighedsregig og statistik: E diskret stokastisk variabel beskrives ved, hvilke værdier de ka atage samt sadsylighedere for disse værdier. Kombiatoriske metoder medtages til illustratio af formle for K(,r) med heblik på behadlige af biomialfordelige. Sadsyligheder i biomialfordelige bestemmes ved beregig og ved hjælp af tabel over kumulerede sadsyligheder. I forbidelse med grupperede observatioer behadles itervalhyppighed, itervalfrekves og kumuleret frekvesfordelig. Grafiske beskrivelsesmidler omfatter histogram og sumkurve. Statistiske deskriptorer omfatter middeltal og fraktiler, heruder specielt media og øvrige kvartiler. Ved behadlige af ormalfordelte observatioer skal der lægges vægt på at belyse, at sådae optræ der i mage forskelligartede situatioer. Sadsylighedsregig.. Et stokastisk eksperimet er et forsøg, hvor tilfældet spiller e rolle. Eksperimetet resulter i et atal udfald. Udfaldsrummet U er mægde af udfald.. Sadsylighede p for et udfald er et tal-mål for vor forvetig til, at udfaldet idtræffer.. Summe af udfaldees sadsyligheder er. 3. Mægde af udfald og deres sadsyligheder kaldes sadsylighedsfeltet. 4. Har alle udfald samme sadsylighed, kaldes sadsylighedsfeltet symmetrisk. p = /. 5. E hædelse H er e (del-)mægde af eksperimetets udfald. Hædelses sadsylighed P(H) er summe af sadsylighedere for de udfald, der idgår i hædelse. 6. Er feltet symmetrisk, bereges e hædelses sadsylighed af 7. E stokastisk variabel X kytter tal til udfald og hædelser. 8. Middelværdie af X skrives E(X) eller. De er et vægtet geemsit af X's værdier. K(, r) er atallet af r-delmægder, der ka udtages af e -mægde. 9. E stokastisk variabel kaldes biomialfordelt, hvis de måler atallet af "gevister" i e forsøgsrække på es forsøg, hvor sadsylighede for "gevist" i det ekelte forsøg er p. kaldes atalsparametere og p sadsylighedsparametere.. I det biomialfordelte tilfælde bereges sadsylighede for etop r "gevister" i forsøg af. E biomialfordelt stokastisk variabel har middelværdie. Hvad skal jeg kue.. Tege diagram for e give sadsylighedsfordelig og fide sadsylighedsfordelige ud fra et diagram.. Berege sadsylighede for e hædelse ud fra sadsylighedere for udfaldee. 3. Berege sadsyligheder for at e stokastisk variabel atager forskellige værdier samt berege des middelværdi.

7 7 4. Afgøre, om e stokastisk variabel er biomalfordelt eller ej. 5. Berege sadsyligheder f.eks. P(X=a),, P(X<a) og P(a<X<b) for e stokastisk variabel (biomialfordelte evt. ved brug af tabel). Statistik.. Kede betydige af begrebere hyppighed, frekves og kummuleret hyppighed og frekves.. I et histogram illustrerer søjleres arealer hyppigheder eller frekveser. 3. Sumkurve for e fordelig er grafe for e ikke-aftagede fuktio, hvor fuktiosværdie af x er frekvese (eller hyppighede) af observatioer op til og med x. 4. Ligger p% af fordelige uder eller på x, siges p-fraktile at ligge på x. 5. E fordelig kaldes ormal, hvis des sumkurve i sadsylighedspapir (ormalfordeligspapir) er (e del af) e ret liie. "Hvad skal jeg kue". Gruppere observatioer og lave et skema med hyppigheder og frekveser.. Tege histogram for e grupperet fordelig. 3. Lave skema med kumulerede hyppigheder og/eller frekveser. 4. Tege sumkurver for grupperede fordeliger. 5. Aflæse fraktiler (f.eks. kvartilsættet) ud fra sumkurve. 6. Tage stillig til om e fordelig er med tilærmelse ormal ved at plotte kumulerede frekveser i et ormalfordeligspapir. EKSAMEN. Skriftlig eksame. Der er itet krav om blæk eller kuglepe. Me bruger du blyat, skal du skrive så tydeligt, at der ikke er tvivl om, hvad du meer. Pas på at trykke hårdt ok. Orde (d.v.s. opstillig og overskuelighed) spiller e rolle. Ofte letter figurer og skemaer læseres forståelse. Det er vigtigt, at die begrudelser for die påstade er med. Det er e god ide, at skrive "bogstaver før tal", d.v.s. skrive formle, før du sætter tal id. Mudtlig eksame. Når ma skal forberede sig til mudtlig eksame, er det vigtigt, at ma læser aktivt. D.v.s. at ma læser "med blyat og papir". E læsestrategi, der opfylder dette er: a) Tag er atal A4-sider og skriv e overskrift på hvert af dem. Det ka f.eks. være title på et eksamesspørgsmål, ma vil forberede sig på. b) Når ma vil repetere et afsit i læreboge, har ma det relevate A4-ark ved side af sig, og det hadler u om at fremstille et mauskript for, hvad ma kue tæke sig at sige, hvis ma trækker pågældede spørgsmål. Mes ma geemarbejder afsittet i læreboge, tager ma hele tide stillig til, om det ma etop læser, skal med i præsetatioe. Dee vurderig af stoffets ekelte dele er e vigtig del af aktiv læsig. Beslutter ma sig for, at det pågældede afsit skal med i fremstillige, formulerer ma stoffet med ege ord på A4-arket. Det, at ma sætter sit figeraftryk på

8 8 fremstillige, er e vigtig del af aktiv læsig. Ege eksempler til belysig af stoffet idskrives i mauskriptet. Ku hvis ma absolut ikke ka fide sie ege eksempler, beytter ma boges (det virker meget mere overbevisede, at kursiste selv har fudet eksempler frem evt. fra si opgavesamlig). Mauskriptet skal have et omfag svarede til ca. 0 miutters sak. Har ma e tålmodig lillebror eller ligede, er det e god ide at afprøve mauskriptet ved at holde et foredrag for ham. c) Uder seere repetitio og i forberedelsestide før eksame holder ma sig i det helt væsetlige til sit mauskript. Der er ige grud til at skjule, at dee form for aktiv læsig er betydelig mere krævede ed læsig efter "diagoalmetode" og/eller i hægekøje. Til gegæld kaster det af sig i de forstad, at times aktiv læsig let giver større udbytte ed måske 4 timer af de sædvalige slags. Eksempel. Til mudtlig eksame ka et spørgsmål være formuleret således: Ekspoetielle fuktioer. Fortæl om ekspoetielle fuktioer, deres regeforskrifter og deres grafer i et sædvaligt og et semilogaritmisk koordiatsystem. Fortæl om halverigs- og fordobligskostater. Vælg selv passede eksempler. Bilag: Bekedtgørelse for matematik C. Fællesfag Formålet. Formålet er, at de studerede opår ogle matematiske kudskaber, som ka være dem til ytte i adre fag og i deres øvrige dagligdag, samt at d e får et idtryk af matematisk metode og takegag. Udervisige. For at tilgodese det dobbelte sigte med faget skal arbejdet med matematiske modeller spille e fremtrædede rolle, ligesom det er af betydig at sætte behadlige af ogle af emere id i e historisk eller samfudsmæssig sammehæg. Kursistere skal videreudvikle deres elemetære matematiske færdigheder, og udervisige skal uddybe deres forståelse af talbegrebet og opøve deres regefærdighed med såvel tal som symboludtryk. For at styrke kursisteres færdighed er, udtryksmuligheder og idsigt skal der arbejdes målrettet med såvel fagets skriftlige so m mudtlige side.. Skriftligt arbejde idgår som led i udervisige. Kursister skal ca. 5 gage aflevere skriftligt arbejde, som rettes og komm eteres af lærere. Arbejdsomfaget af det skriftlige arbejde skal pr. gag svare til 50-00% af et eksamessæt. Det skriftlige arbejde omfatter opgaveregig, problemløsig samt adre former for skriftligt arbejde, fx e midre redegørelse for et eme eller tema i tilkytig til et udervisigsforløb. E såda redegørelse ka erstatte et eller flere sædvalige opgavesæt..3 Edb idgår som e del af udervisige. Udervisiges idho ld 3. Udervisige omfatter følgede emer: ) Tal. Hele, ratioale og reelle tal samt regeregler for disse. T almægder. Regig med poteser og rødder. ) Procet- og retesregig. Procetregig; geemsitlig procet, idekstal, vejet geem sit. Retesregig; opsparigs- og gældsauitet. 3) Geom etri og trigo ometri. Trekater; retviklet trekat og esviklede trekater. Beregig af sider og vikler i retviklet trekat. 4) Fuktioer. Fuktiosb egrebet; de fiitiosmægde, fuktiosværdi, værdimægde, mootoiforhold. Forskellige måder at fastlægge e fuktio på. Elemetære fuktioer; heruder lieære og stykkevis lieære fuktioer samt ekspoetielt voksede og ekspoetielt aftagede fuktioer. Koordiatsystem; heruder ekeltlogaritmisk koordiatsystem. Eksempler på opstillig og løsig af simple ligiger og ulighede r, hvori de æ vte fuktioer idgår. 5) Sadsylighedsregig og statistik. Stokastisk eksperimet. D iskret stokastisk variabel; sadsylighedsfordelig, middelværdi. Biomialfordelige. Talmæssig beskrivelse af observatiossæ t; grafiske beskrivelsesmidler, statistiske deskriptorer. Eksempler på ormalfordel-

9 9 te observatioer; ormalfordeligsp apir. 3. Uddybede idholdsagivelse til puktere i 3.: ad ) Tal : Potes- og rodbegrebet behadles i det omfag, det er ødvedigt for arbejdet med geemsitlig procet og løsig af ligige b. r a = c. Begreber fra mægdelære og logik medtages i det omfag, det er ødvedigt for behadlige af de øvrige emer. ad ) Procet- og retesregig: Procetregig omfatter fremskrivig med fast procet og reteformle. Formler for opsparigs- og gældsauitet skal beyttes til beregig og/eller vurderig af de idgåed e størrelser. ad 3) Geom etri og trigo ometri: I forbidelse med trekater omtales vikelsum, højde og areal. Sammehæge mellem sideres lægde i esviklede trekater behadles. Beregig af sider og vikler i retviklet trekat omfatter sius, cosius og tages samt de pythagoræiske læ resætig. ad 4) Fuktioer: E fuktio beskriver de sammehæg, der er mellem de uafhægige og de afhægige variabel. Dee sammehæg ka fastlægges på forskellige måder, og behadlige skal omfatte fuktioer, der er fastlagt ved e regeforskrift, ved tabel, ved graf samt ved algoritme idb ygget fx i e lomm ereger. Sp ecielt skal fuktioere med forskriftere kvadratrod x, x, /x og log(x) behadles. Uder fuktioers mootoiforhold behadles begrebere voksede og aftagede fuktio samt begrebere største- og midsteværdi for e fuktio. I forbidelse med koordiatsystemer arbejdes også med eksempler på koordiatsystemer med forskudte akser og med koordiatsystemer med forskellige akseeheder. Ved behadlig af de lieære fuktioer og de ekspoetielt voksede/aftagede fuktioer skal deres udstrakte rolle som beskrivelsesmiddel ved mage i praksis forekommede problemstilliger uderstreges. Forskriftere ax+b og b. a x behadles, og de idgåede kostaters betydig diskuteres. I forbidelse med ekspoetiel vækst behadles edvidere begrebere fordobligs- og halverigskostat. ad 5) Sadsylighedsregig og statistik: E diskret stokastisk variabel beskrives ved, hvilke værdier de ka atage samt sadsylighedere for disse værdier. Kombiatoriske metoder medtages til illustratio af formle for K(,r) med heblik på behadlige af biomialfordelige. Sadsyligheder i biomialfordelige bestemmes ved beregig og ved hjælp af tabel over kumulerede sadsyligheder. I forbidelse med grupperede observatioer behadles itervalhyppighed, itervalfrekves og kumuleret frekvesfordelig. Grafiske beskrivelsesmidler omfatter histogram og sumkurve. Statistiske deskriptorer omfatter middeltal og fraktiler, heruder specielt media og øvrige kvartiler. Ved behadlige af ormalfordelte observatioer skal der lægges vægt på at belyse, at sådae optræ der i mage forskelligartede situatioer. 3.3 De regetekiske hjælpemidler (lommereger, formelsamlig, tabeller, ekeltlogaritmisk papir og ormalfordeligspapir) idd rages i forbid else med behadlige af de matematiske emer. 3.4 Der læses sider, afhægigt af det valgte udervisigsmateriale. Eksame 4. Der afholdes e mudtlig prøve med e forberedelsestid på ca. 5 miutter (ikl. istruktio og materialeudleverig). Der eksamieres (ikl. cesur),5 eksamiader i time. 4. Eksamespesum for kursister med reduceret pesum er ca. halvdele af det læste pesum, udvalgt på e såda måde, at cetrale dele af det læste stof idgår med rimelig vægt. Afhægigt af udervisigsmaterialets art opgives sider. 4.3 Eksamespesum for selvstuderede, heruder kursister med fuldt pesum, er læsep esum. 4.4 I forberedelsestide er følgede hjælpemidler tilladte: lærebøger og adet materiale med tilkytig til læsepesum, heruder ege oter samt de regetekiske hjælpemidler. 4.5 Der gives hver eksamiad et spø rgsmål. Spø rgsmålee udformes således, at det er muligt at evaluere såvel eksam i- ades eve til at redegø re for e afgræ set del af et fagligt em e som eksamiades overblik over et fagligt område. 4.6 Bedømmelse af e eksamiads præstatio foretages som e helhedsvurderig, og der gives e karakter. 5. Der afholdes e skriftlig prøve, hvortil der gives 4 timer. Der forelægges et opgavesæt beståede af et atal midre opgaver og evetuelt e eller flere mere omfattede opgaver. Nogle af opgavere i sættet er valgfrie. U dervisigsmiisteriet udsed er vejledede eksem pler på eksamesop gaver. 5. Til de skriftlige prøve er følgede særlige hjælpemidler tilladte: a) Matematisk formelsamlig bereget for hf-fællesfag, udgivet af Udervisigsmiisteriet, Gymasieafdelige. Udleveres af kurset ved prøves start. b) Tabelsamlig omfattede tabeller over biomialkoefficieter og kumulerede biomialfordeliger samt opsparigsauitet og gældsauitet, svarede til Erlag G (Gads forlag), Sigma (Forlaget VVC), Matematiske Tabeller (Forlaget Trip) og Tabelregere (Forlaget Mikro). Medbriges af eksamiade eller udleveres af kurset ved p røves start. c) Godkedt lommereger. Medb riges af eksam iade. d) Millimeterpapir, ekeltlogaritmisk papir med 3 dekader på adeakse samt ormalfordeligspapir. Udle-

10 veres af kurset i forbidelse m ed prøve. 5.3 Ved bedømmelse af e eksamiads besvarelse af de ekelte opgave lægges der vægt på, at eksamiades takegag klart fremgår af besvarelse samt på de avedte metoders og beregigers korrekthed. Ved fastsættelse af karaktere for e eksamiads opgavebesvarelse idgår såvel bedømm else af besvarelse af de ekelte opgaver som e helhedsvurderig. 5.4 Der gives e karakter. 6. Der gives e karakter på grudlag af delkaraktere for de mudtlige prøve og delkaraktere for de skriftlige prøve. 0

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

2. februar Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 9. februar 2006 Michael Væth, Afdeling for Biostatistik.

2. februar Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 9. februar 2006 Michael Væth, Afdeling for Biostatistik. . februar 006 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 9. februar 006 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne.

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne. 3y MA, Stee Toft Jørgese side /5 Helsigør Gymasium Vektorregig i 3D Formålet er at skabe overblik over emet. Boge Mat3A af Jes Carstese, kapitel 3 og 4, side 83-5. Defiitioer, formler, sætiger og idee

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet)

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet) Oversigt (idholdsfortegelse) Bilag 1 Bilag 2 Bilag 3 De fulde tekst Bekedtgørelse om takstædriger i offetlig servicetrafik i trafikselskaber og hos jerbaevirksomheder m.v. (takststigigsloftet) I medfør

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger Faculty of Life Scieces Program Populatioer og stikprøver Claus Ekstrøm E-mail: ekstrom@life.ku.dk Praktiske oplysiger Populatioer og stikprøver Data Datatyper Visualiserig Cetrum og spredig af e fordelig

Læs mere

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

A14 4 Optiske egenskaber

A14 4 Optiske egenskaber A4 4 Optiske egeskaber Brydigsideks Når lys træffer e græseflade mellem to materialer, kastes oget af lyset tilbage (refleksio), mes oget går igeem græseflade med foradret retig (brydig eller refraktio).

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

TILSKUDSREGLER FOR AFTENSKOLER FAABORG-MIDTFYN-ORDNINGEN

TILSKUDSREGLER FOR AFTENSKOLER FAABORG-MIDTFYN-ORDNINGEN TILSKUDSREGLER FOR AFTENSKOLER FAABORG-MIDTFYN-ORDNINGEN VELKOMMEN Tilskudsreglere beskriver hvorda Faaborg-Midtfy Kommue støtter det frivillige folkeoplysede foreigsarbejde med økoomisk tilskud og avisig

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

TEKST NR 435 2004. TEKSTER fra IMFUFA

TEKST NR 435 2004. TEKSTER fra IMFUFA TEKST NR 435 2004 Basisstatisti 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Begreber og definitioner

Begreber og definitioner Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2003 Dette er de ade obligatoriske projektopgave på kurset Itroduktio til optimerig og operatiosaalyse.

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

NOTAT Det daglige arbejde med blisterpakninger

NOTAT Det daglige arbejde med blisterpakninger Sige Friis Christiase 7. maj 2015 NOTAT Det daglige arbejde med blisterpakiger I paeludersøgelse 55 i DSRs medlemspael blev deltagere stillet e række spørgsmål om deres arbejde med blisterpakiger. Afrapporterige

Læs mere

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968)

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968) Algoritmedesig med iteretavedelser ved Keld Helsgau Aalyse af algoritmer Iput Algoritme Output E algoritme er e trivis metode til løsig af et problem i edelig tid 1 2 Algoritmebegrebet D. E. Kuth (1968)

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Nanomaterialer Anvendelser og arbejdsmiljøforhold

Nanomaterialer Anvendelser og arbejdsmiljøforhold F O A F A G O G A R B E J D E Naomaterialer Avedelser og arbejdsmiljøforhold Dee Kort & Godt pjece heveder sig til dig, som er medlem af FOA. Pjece giver iformatio om: Hvad er et aomateriale? Eksempler

Læs mere

Psyken på overarbejde hva ka du gøre?

Psyken på overarbejde hva ka du gøre? Psyke på overarbejde hva ka du gøre? Idhold Hvorår kommer ma uder psykisk pres? 3 Hvad ka øge det psykiske pres på dit arbejde? 4 Typiske reaktioer 6 Hvorda forløber e krise? 7 Hvad ka du selv gøre? 9

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

PET 3 1/3 ECTS. Valgfaget afholdes UCN Radiografuddannelsen, Selma Lagerløfs Vej 2, 9220 Aalborg øst

PET 3 1/3 ECTS. Valgfaget afholdes UCN Radiografuddannelsen, Selma Lagerløfs Vej 2, 9220 Aalborg øst PET 3 1/3 ECTS Valgfaget afholdes UCN Radiografuddaelse, Selma Lagerløfs Vej 2, 9220 Aalborg øst Valgfagets tema Valgfaget præseterer overordede cetrale begreber, teorier samt hadlemåder, der ka avedes

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...

Læs mere

Blisterpakninger i det daglige arbejde

Blisterpakninger i det daglige arbejde Bettia Carlse Marts 2013 Blisterpakiger i det daglige arbejde I paeludersøgelse 35 1 har 1.708 beskæftigede sygeplejersker besvaret e række spørgsmål om (hådterige af) blisterpakiger i det daglige arbejde.

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Facilitering ITU 15. maj 2012

Facilitering ITU 15. maj 2012 Faciliterig ITU 15. maj 2012 Facilitatio is like movig with the elemets ad sailig the sea Vejvisere Velkomst de gode idflyvig Hvad er faciliterig? Kedeteg ved rolle som facilitator Facilitatores drejebog

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Information til dig, der er elev som tekstil- og beklædningsassistent. og/eller beklædningshåndværker. Hej elev!

Information til dig, der er elev som tekstil- og beklædningsassistent. og/eller beklædningshåndværker. Hej elev! Iformatio til dig, der er elev som tekstil- og beklædigsassistet og/eller beklædigshådværker Hej elev! Til dig som er elev som tekstil- og beklædigsassistet og/eller beklædigshådværker Idustri Hej elev!

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage Dages forelæsig Ige-Arbirage pricippe Claus Muk kap. 4 Nulkupoobligaioer Simpel og geerel boosrappig Forwardreer Obligaiosprisfassæelse Arbirage Værdie af e obligaio Nuidsværdie af obligaioes fremidige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 - Juni 2015 Institution Uddannelse Herning HF og VUC Hf Fag og niveau Matematik C Lærer(e) Hold

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

Statistiske test. Silkeborg efteråret 2009 Jens Friis, AAU. Hjemmeside :

Statistiske test. Silkeborg efteråret 2009 Jens Friis, AAU. Hjemmeside : Statistiske test Silkeborg efteråret 009 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Dårligt arbejdsmiljø koster dyrt

Dårligt arbejdsmiljø koster dyrt Dårligt arbejdsmiljø F O A f a g o g a r b e j d e koster dyrt Hvad koster et dårligt arbejdsmiljø, og hvad ka vi gøre for at bedre forholdee for de asatte idefor Kost- og Servicesektore? Læs her om de

Læs mere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

Børn og unge med seksuelt bekymrende og krænkende adfærd

Børn og unge med seksuelt bekymrende og krænkende adfærd Projekt Vest for Storebælt Bør og uge med seksuelt bekymrede og krækede adfærd Hvorår er der grud til bekymrig? Hvorda hevises et bar/e ug til gruppebehadlig? Hvad hadler projektet om? Projekt Vest for

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Resultatoversigt for Retten på Bornholm

Resultatoversigt for Retten på Bornholm Resultatoversigt for Rette på Borholm BEMÆRK: Spørgsmål markeret med *) er ku stillet til professioelle brugere. Spørgsmål markeret med **) er ku stillet til almidelige brugere. Baggrudsoplysiger Besvarelser

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Matematisk trafikmodellering

Matematisk trafikmodellering - Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

Team Danmark tilfredshedsundersøgelse 2013

Team Danmark tilfredshedsundersøgelse 2013 Team Damark tilfredshedsudersøgelse 2013 Baggrudsrapport Trygve Buch Laub, Rasmus K. Storm, Lau Tofft-Jørgese & Ulrik Holskov Idrættes Aalyseistitut MIND THE CUSTOMER December 2013 Titel Team Damark tilfredshedsudersøgelse

Læs mere

Introduktion til Statistik

Introduktion til Statistik Itroduktio til Statistik 4. udgave Susae Ditlevse og Helle Sørese Susae Ditlevse, susae@math.ku.dk Helle Sørese, helle@math.ku.dk Istitut for Matematiske Fag Købehavs Uiversitet Uiversitetsparke 5 2100

Læs mere